Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1997 KiB  
Article
Bis-Iridoid Glycosides and Triterpenoids from Kolkwitzia amabilis and Their Potential as Inhibitors of ACC1 and ACL
by Jiang Wan, Ze-Yu Zhao, Can Wang, Chun-Xiao Jiang, Ying-Peng Tong, Yi Zang, Yeun-Mun Choo, Jia Li and Jin-Feng Hu
Molecules 2024, 29(24), 5980; https://doi.org/10.3390/molecules29245980 - 18 Dec 2024
Cited by 3 | Viewed by 909
Abstract
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of Kolkwitzia amabilis, a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (14 and 7 [...] Read more.
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of Kolkwitzia amabilis, a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (14 and 713), 20 triterpenoids (5, 6, and 1431), and 8 phenylpropanoids (3239). Among these, amabiliosides A (1) and B (2) represent previously undescribed bis-iridoid glycosides, while amabiliosides C (3) and D (4) feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro-β-carboline-5-carboxylic acid moiety. Amabiliacids A (5) and B (6) are 24-nor-ursane-type triterpenoids characterized by an uncommon ∆11,13(18) transannular double bond. Their chemical structures and absolute configurations were elucidated through spectroscopic data and electronic circular dichroism analyses. Compound 2 exhibited a moderate inhibitory effect against acetyl CoA carboxylase 1 (ACC1), with an IC50 value of 9.6 μM. Lonicejaposide C (8), 3β-O-trans-caffeoyl-olean-12-en-28-oic acid (29), and (23E)-coumaroylhederagenin (31) showed notable inhibitory effects on ATP-citrate lyase (ACL), with IC50 values of 3.6, 1.6, and 4.7 μM, respectively. Additionally, 3β-acetyl-ursolic acid (17) demonstrated dual inhibitory activity against both ACC1 and ACL, with IC50 values of 10.3 and 2.0 μM, respectively. The interactions of the active compounds with ACC1 and ACL enzymes were examined through molecular docking studies. From a chemotaxonomic perspective, the isolation of bis-iridoid glycosides in this study may aid in clarifying the taxonomic relationship between the genera Kolkwitzia and Lonicera within the Caprifoliaceae family. These findings highlight the importance of conserving plant species with unique and diverse secondary metabolites, which could serve as potential sources of new therapeutic agents for treating ACC1/ACL-associated diseases. Full article
(This article belongs to the Special Issue Terpenes, Steroids and Their Derivatives (2nd Edition) )
Show Figures

Graphical abstract

13 pages, 1977 KiB  
Article
Yeast-Hydrolysate-Derived 1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic Acid Inhibits Fat Accumulation during Adipocyte Differentiation
by Nari Kim, Sekyung Lee, Eun-Jin Jung, Eun Young Jung, Un-Jae Chang, Cheng-Min Jin, Hyung Joo Suh and Hyeon-Son Choi
Foods 2023, 12(18), 3466; https://doi.org/10.3390/foods12183466 - 18 Sep 2023
Cited by 3 | Viewed by 2270
Abstract
This study aimed to investigate the impact of yeast hydrolysate (YH) on lipogenesis, elucidate its mechanistic action, and identify the active compounds responsible for its anti-adipogenic effects. YH (2 mg/mL) significantly reduced Oil Red O-stained lipids. YH (2 mg/mL) also downregulated C/EBPβ and [...] Read more.
This study aimed to investigate the impact of yeast hydrolysate (YH) on lipogenesis, elucidate its mechanistic action, and identify the active compounds responsible for its anti-adipogenic effects. YH (2 mg/mL) significantly reduced Oil Red O-stained lipids. YH (2 mg/mL) also downregulated C/EBPβ and upregulated KLF2, both of which are early adipogenic factors. Moreover, YH (2 mg/mL) decreased C/EBPα, PPARγ, FABP4, FAS, ACC, and HMGCR mRNA expression. Additionally, YH significantly downregulated SEBP1c and SREBP2 and their target genes, which govern fatty acid and cholesterol metabolism; however, 2 mg/mL YH had a greater suppressive effect on SREBP1c than on SREBP2. YH (2 mg/mL) also significantly reduced the mRNA level of G6PD and malic enzyme, which are enzymes that synthesize NADPH for lipid synthesis, compared with the control. Furthermore, 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA) was identified as the active compound with anti-adipogenic effects using solvent fractionation and chromatographic analysis of YH, and 1.1 μg/mL MTCA significantly downregulated SREBP1c/SREBP2 mRNAs by 47.8% and 69.2%, respectively, along with the target genes FAS, ACC, and HMGCR by 79.0%, 77.0%, and 40.9%, respectively. Collectively, YH effectively suppressed adipogenic lipid storage by downregulating SREBP- and NADPH-synthesizing genes. These findings suggest that YH containing MTCA has the potential to act as an anti-obesity agent. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds from Food on Human Health)
Show Figures

Figure 1

14 pages, 2290 KiB  
Review
Lipase-Catalyzed Strategies for the Preparation of Enantiomeric THIQ and THβC Derivatives: Green Aspects
by György Orsy and Enikő Forró
Molecules 2023, 28(17), 6362; https://doi.org/10.3390/molecules28176362 - 30 Aug 2023
Cited by 2 | Viewed by 2241
Abstract
This report reviews the most important lipase-catalyzed strategies for the preparation of pharmaceutically and chemically important tetrahydroisoquinoline and tetrahydro-β-carboline enantiomers through O-acylation of the primary hydroxy group, N-acylation of the secondary amino group, and COOEt hydrolysis of the [...] Read more.
This report reviews the most important lipase-catalyzed strategies for the preparation of pharmaceutically and chemically important tetrahydroisoquinoline and tetrahydro-β-carboline enantiomers through O-acylation of the primary hydroxy group, N-acylation of the secondary amino group, and COOEt hydrolysis of the corresponding racemic compounds with simple molecular structure, which have been reported during the last decade. A brief introduction describes the importance and synthesis of tetrahydroisoquinoline and tetrahydro-β-carboline derivatives, and it formulates the objectives of this compilation. The strategies are presented in chronological order, classified according to function of the reaction type, as kinetic and dynamic kinetic resolutions, in the main text. These reactions result in the desired products with excellent ee values. The pharmacological importance of the products together with their synthesis is given in the main text. The enzymatic hydrolysis of the hydrochloride salts as racemates of the starting amino carboxylic esters furnished the desired enantiomeric amino carboxylic acids quantitatively. The enzymatic reactions, performed in tBuOMe or H2O as usable solvents, and the transformations carried out in a continuous-flow system, indicate clear advantages, including atom economy, reproducibility, safer solvents, short reaction time, rapid heating and compression vs. shaker reactions. These features are highlighted in the main text. Full article
Show Figures

Graphical abstract

13 pages, 1937 KiB  
Article
β-Carboline Alkaloids in Soy Sauce and Inhibition of Monoamine Oxidase (MAO)
by Tomás Herraiz
Molecules 2023, 28(6), 2723; https://doi.org/10.3390/molecules28062723 - 17 Mar 2023
Cited by 11 | Viewed by 3016
Abstract
Monoamine oxidase (MAO) oxidizes neurotransmitters and xenobiotic amines, including vasopressor and neurotoxic amines such as the MPTP neurotoxin. Its inhibitors are useful as antidepressants and neuroprotectants. This work shows that diluted soy sauce (1/3) and soy sauce extracts inhibited human MAO-A and -B [...] Read more.
Monoamine oxidase (MAO) oxidizes neurotransmitters and xenobiotic amines, including vasopressor and neurotoxic amines such as the MPTP neurotoxin. Its inhibitors are useful as antidepressants and neuroprotectants. This work shows that diluted soy sauce (1/3) and soy sauce extracts inhibited human MAO-A and -B isozymes in vitro, which were measured with a chromatographic assay to avoid interferences, and it suggests the presence of MAO inhibitors. Chromatographic and spectrometric studies showed the occurrence of the β-carboline alkaloids harman and norharman in soy sauce extracts inhibiting MAO-A. Harman was isolated from soy sauce, and it was a potent and competitive inhibitor of MAO-A (0.4 µM, 44 % inhibition). The concentrations of harman and norharman were determined in commercial soy sauces, reaching 243 and 52 μg/L, respectively. Subsequently, the alkaloids 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (THCA) and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA) were identified and analyzed in soy sauces reaching concentrations of 69 and 448 mg/L, respectively. The results show that MTCA was a precursor of harman under oxidative and heating conditions, and soy sauces increased the amount of harman under those conditions. This work shows that soy sauce contains bioactive β-carbolines and constitutes a dietary source of MAO-A and -B inhibitors. Full article
Show Figures

Figure 1

14 pages, 1149 KiB  
Article
Stem Lettuce and Its Metabolites: Does the Variety Make Any Difference?
by Janusz Malarz, Klaudia Michalska and Anna Stojakowska
Foods 2021, 10(1), 59; https://doi.org/10.3390/foods10010059 - 29 Dec 2020
Cited by 11 | Viewed by 4874
Abstract
The objective of the present study was to characterize chemical composition of hitherto unexamined aerial parts of Lactuca sativa var. angustana cv. Grüner Stern. In contrast to leafy and head varieties of the lettuces, asparagus lettuce grown in Europe is much less studied. [...] Read more.
The objective of the present study was to characterize chemical composition of hitherto unexamined aerial parts of Lactuca sativa var. angustana cv. Grüner Stern. In contrast to leafy and head varieties of the lettuces, asparagus lettuce grown in Europe is much less studied. Fractionation of a methanolic extract from leaves of L. sativa cv. Grüner Stern, supported with HPLC/DAD and 1H NMR analysis, led to the isolation and/or identification of numerous terpenoid and phenolic compounds, including five apocarotenoids—(-)-loliolide, (+)-dehydrovomifoliol, blumenol A, (6S,9S)-vomifoliol, and corchoionoside C; three sesquiterpene lactones; two lignans—((+)-syringaresinol and its 4-O-β-glucoside); five caffeic acid derivatives; and three flavonoids. Some of the compounds, to the best of our knowledge, have never been isolated from L. sativa before. Moreover, monolignols, phenolic acids and a tryptophan-derived alkaloid were found in the analyzed plant material. Stems, leaves and shoot tips of the asparagus lettuce were examined to assess their phenolics and sesquiterpene lactone content as well as DPPH scavenging activity. Another stem lettuce—L. sativa var. angustana cv. Karola, two cultivars of leafy lettuces and one species of wild lettuce—L. serriola, were also examined as a reference material using HPLC/DAD. The results have been discussed regarding our previous studies and the literature data available. Full article
(This article belongs to the Special Issue Isolation and Identification of Bioactive Secondary Metabolites)
Show Figures

Graphical abstract

11 pages, 3500 KiB  
Communication
Anti-adipogenic Effect of β-Carboline Alkaloids from Garlic (Allium sativum)
by Su Cheol Baek, Ki Hong Nam, Sang Ah Yi, Mun Seok Jo, Kwang Ho Lee, Yong Hoon Lee, Jaecheol Lee and Ki Hyun Kim
Foods 2019, 8(12), 673; https://doi.org/10.3390/foods8120673 - 12 Dec 2019
Cited by 27 | Viewed by 6637
Abstract
Garlic (Allium sativum L.) is utilized worldwide for culinary and medicinal use and has diverse health benefits. As part of our ongoing research to identify bioactive components from natural resources, phytochemical analysis of the methanolic extract of garlic led to the isolation [...] Read more.
Garlic (Allium sativum L.) is utilized worldwide for culinary and medicinal use and has diverse health benefits. As part of our ongoing research to identify bioactive components from natural resources, phytochemical analysis of the methanolic extract of garlic led to the isolation and characterization of six compounds: Three eugenol diglycosides (13) and three β-carboline alkaloids (46). In particular, the absolute configurations of β-carboline alkaloids (5 and 6) were established by gauge-including atomic orbital nuclear magnetic resonance chemical shift calculations, followed by DP4+ analysis. Here, we evaluated the effects of compounds 16 on 3T3-L1 preadipocyte adipogenesis and lipid metabolism. 3T3-L1 adipocyte differentiation was evaluated using Oil Red O staining; the expression of adipogenic genes was detected using RT-qPCR. Among compounds 16, (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (6) inhibited 3T3-L1 preadipocyte adipogenesis and reduced the expression of adipogenic genes (Fabp4, PPARγ, C/EBPβ, Adipsin, and Adipoq). Moreover, it markedly decreased the actylation of α-tubulin, which is crucial for cytoskeletal remodeling during adipogenesis. Anti-adipogenic effects were observed upon treatment with compound 6, not only during the entire process, but also on the first two days of adipogenesis. Additionally, treatment with compound 6 regulated the expression of genes involved in adipocyte lipid metabolism, decreasing the lipogenic gene (SREBP1) and increasing lipolytic genes (ATGL and HSL). We provide experimental evidence of the health benefits of using (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid obtained from garlic to prevent excessive adipogenesis in obesity. Full article
(This article belongs to the Special Issue Nutraceuticals in Human Health)
Show Figures

Graphical abstract

9 pages, 835 KiB  
Article
Chemical Constituents from the Flower of Hosta plantaginea with Cyclooxygenases Inhibition and Antioxidant Activities and Their Chemotaxonomic Significance
by Li Yang, Shu-Tai Jiang, Qin-Guang Zhou, Guo-Yue Zhong and Jun-Wei He
Molecules 2017, 22(11), 1825; https://doi.org/10.3390/molecules22111825 - 26 Oct 2017
Cited by 43 | Viewed by 4139
Abstract
Two new phenolic glucosides, hostaflavanone A (1) and anti-1-phenylpropane-1,2-diol-2-O-β-d-glucopyranoside (2), together with six known compounds, anti-1-phenylpropane-1,2-diol (3), phenethyl-O-β-d-glucopyranoside (4), phenethanol-β-d-gentiobioside (5), [...] Read more.
Two new phenolic glucosides, hostaflavanone A (1) and anti-1-phenylpropane-1,2-diol-2-O-β-d-glucopyranoside (2), together with six known compounds, anti-1-phenylpropane-1,2-diol (3), phenethyl-O-β-d-glucopyranoside (4), phenethanol-β-d-gentiobioside (5), phenethyl-O-rutinoside (6), (1S, 3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (7), and (1R, 3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (8), were isolated from the flower of Hosta plantaginea, and their structures were elucidated by nuclear magnetic resonance (NMR), high resolution electrospray ionization mass spectroscopy (HRESIMS), and circular dichroism (CD) analyses. The cyclooxygenases (COX-1 and COX-2) inhibition and antioxidant activities of compounds 1 and 46 were investigated, and they showed moderate cyclooxygenases inhibition activities. Moreover, only compound 1 exhibited moderate antioxidant activity, with an IC50 value of 83.2 μM, while 46 showed insignificant activity with IC50 values of 282, 257, and 275 μM, respectively. This is the first report of compounds 3 and 58 from the Liliaceae family. The chemotaxonomic significance of the isolated compounds was also summarized. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 436 KiB  
Article
(3S)-1,2,3,4-Tetrahydro-β-carboline-3-carboxylic Acid from Cichorium endivia. L Induces Apoptosis of Human Colorectal Cancer HCT-8 Cells
by Fu-Xin Wang, An-Jun Deng, Ming Li, Jin-Feng Wei, Hai-Lin Qin and Ai-Ping Wang
Molecules 2013, 18(1), 418-429; https://doi.org/10.3390/molecules18010418 - 28 Dec 2012
Cited by 29 | Viewed by 6308
Abstract
Cichorium endivia. L, consumed either cooked or eaten raw in salads, is a popular kind of vegetable cultivated all around the World. Its components have been widely used in folk medicine in anti-inflammatory therapy. However, the anti-cancer activity of the components has [...] Read more.
Cichorium endivia. L, consumed either cooked or eaten raw in salads, is a popular kind of vegetable cultivated all around the World. Its components have been widely used in folk medicine in anti-inflammatory therapy. However, the anti-cancer activity of the components has never been reported. In this study, (3S)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (1), an amino acid isolated from C. endivia. L, was found for the first time to show cytotoxic activity in colorectal cancer cell line HCT-8. Compound 1 at concentrations of 0.5–4 μM induced apoptosis of HCT-8 cells in a dose-dependent manner. The compound 1-induced apoptosis in HCT-8 cells was accompanied by the loss of mitochondrial membrane potential, the activation of caspase-3, caspase-8 and caspase-9, the up-regulation of Bax and the down-regulation of Bcl-2. In addition, compound 1 suppressed the activation of NF-κB, which acts as an inhibitor of apoptosis. Taken together, these results suggested that compound 1 could significantly induce apoptosis of HCT-8 cells through the suppression of NF-κB signaling pathway, and thus can be considered as a potential candidate for developing chemotherapeutic drugs against cancer. Full article
Show Figures

Figure 1

17 pages, 247 KiB  
Article
Cytotoxic and Insecticidal Activities of Derivatives of Harmine, a Natural Insecticidal Component Isolated from Peganum harmala
by Yong Zeng, Yaomou Zhang, Qunfang Weng, Meiying Hu and Guohua Zhong
Molecules 2010, 15(11), 7775-7791; https://doi.org/10.3390/molecules15117775 - 2 Nov 2010
Cited by 46 | Viewed by 8900
Abstract
In a continuing effort to develop novel β-carbolines endowed with better insecticidal activity, a simple high-yielding method for the synthesis of harmine compounds starting from L-tryptophan has been developed and a series of 1,3-substituted β-carboline derivatives have been synthesized and evaluated for their [...] Read more.
In a continuing effort to develop novel β-carbolines endowed with better insecticidal activity, a simple high-yielding method for the synthesis of harmine compounds starting from L-tryptophan has been developed and a series of 1,3-substituted β-carboline derivatives have been synthesized and evaluated for their cytotoxicity against insect cultured Sf9 cell line in vitro and insecticidal activities against 4th instar larvae of mosquitos, Culex pipiens quinquefasciatus and mustard aphid, Lipaphis erysimi. The results demonstrated that 1-phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (compound 2) and methyl 1-phenyl-β-carboline-3-carboxylate (compound 13) represented the best potential compounds, with Sf9 cells inhibition rates of 71.55% and 60.21% after 24 h treatment at concentrations of 50–200 mg/L, respectively. Both compounds 2 and 13 also showed strong insecticidal activity towards 4th instar larvae of mosquitos with LC50 values of 20.82 mg/L and 23.98 mg/L, and their LC90 values were 88.29 mg/L and 295.13 mg/L, respectively. Furthermore, the LC50 values of compounds 2 and 13 against mustard aphids were 53.16 mg/L and 68.05 mg/L, and their LC90 values were 240.10 mg/L and 418.63 mg/L after 48 h treatment. The in vitro cytotoxicity of these compounds was consistent with the insecticidal activity in vivo. The results indicated that the 1- and 3-positions of the β-carboline ring deserve further investigation to develop biorational insecticides based on the natural compound harmine as a lead compound. Full article
Show Figures

Figure 1

Back to TopTop