Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = ω6-DPA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1053 KiB  
Article
Sn1,3 Regiospecificity of DHA (22:6ω-3) of Plant Origin (DHA-Canola®) Facilitates Its Preferential Tissue Incorporation in Rats Compared to sn2 DHA in Algal Oil at Low Dietary Inclusion Levels
by Damien P. Belobrajdic, Julie A. Dallimore, Michael J. Adams, Surinder P. Singh and Mahinda Y. Abeywardena
Nutrients 2025, 17(8), 1306; https://doi.org/10.3390/nu17081306 - 9 Apr 2025
Viewed by 762
Abstract
Background/Objectives: Regiospecificity in triacylglycerols (TAGs) influences absorption/bioavailability of dietary fatty acids. We evaluated whether sn1,3 located DHA (22:6ω3) of a transgenic higher plant (DHA-Canola®) preferentially facilitates its tissue incorporation as compared to sn2 positioned DHA (DHASCO® of algal origin). Methods: [...] Read more.
Background/Objectives: Regiospecificity in triacylglycerols (TAGs) influences absorption/bioavailability of dietary fatty acids. We evaluated whether sn1,3 located DHA (22:6ω3) of a transgenic higher plant (DHA-Canola®) preferentially facilitates its tissue incorporation as compared to sn2 positioned DHA (DHASCO® of algal origin). Methods: Sprague Dawley rats were fed diets (12 weeks) containing DHA-Canola or DHA-Control (a blend of DHASCO® and high oleic sunflower seed oil (HOSO)) at 0.3%, 1%, 3%, and 6% (w/w), or 7% HOSO prior to determination of tissue fatty acids. Results: At 0.3 and 1% w/w supplementation, plasma, liver and cardiac tissue DHA incorporation was higher in the plant-based oil (DHA-Canola vs. DHA-Control; p < 0.05), whilst sn2 enriched algal oil yielded better outcomes at higher doses (at 3% inclusion, plasma values were 7.8 vs. 5.9%, and at 6% supplementation, 10.0 vs. 7.9 in favor of DHA-Control, p < 0.05) At lower intakes, sn1,3 regiospecificity (DHA-Canola) increased the omega-3 index, a clinically relevant biomarker, compared to DHA-Control (p < 0.05). Similarly, a build-up of 20:5ω3 and 22:5ω3 occurred with DHA-Canola. Consequently, total omega3s were higher in this latter group. Conclusions: At lower intakes, sn1,3 regiospecificity of DHA leads to its preferential tissue incorporation compared to sn2 DHA. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

10 pages, 628 KiB  
Article
Erythrocyte Phospholipid Fatty Acid Profile in High-Level Endurance Runners
by Francisco Javier Alves-Vas, Víctor Toro-Román, Ignacio Bartolomé Sánchez, Francisco Javier Grijota Pérez, Marcos Maynar-Mariño and Gema Barrientos Vicho
Appl. Sci. 2024, 14(10), 3965; https://doi.org/10.3390/app14103965 - 7 May 2024
Cited by 2 | Viewed by 1111
Abstract
Fatty acids (FAs) are the major structural component of erythrocyte membranes. Diet and physical exercise directly influence their incorporation and function. Endurance runners engage in high volumes of weekly aerobic training, alternating between low-intensity and high-intensity sessions. The aim of the study was [...] Read more.
Fatty acids (FAs) are the major structural component of erythrocyte membranes. Diet and physical exercise directly influence their incorporation and function. Endurance runners engage in high volumes of weekly aerobic training, alternating between low-intensity and high-intensity sessions. The aim of the study was to assess and compare the erythrocyte FA profile in a group of high-level male endurance runners (EG) with a control group of non-athlete subjects (CG). This observational study was conducted on 85 subjects, 63 high-level male endurance runners (23 ± 3 years; height: 1.76 ± 0.05) and 22 subjects who did not engage in regular physical exercise (21 ± 0.5 years; height: 1.68 ± 0.39). Runners had at least five years of training experience, and all of them were participants in national and international tournaments. FAs determination was performed using gas chromatography. Higher percentages of Palmitic Acid (PA), Stearic Acid (SA), Oleic Acid (OA), Calendic Acid (CA), Eicosapentaenoic Acid (EPA) and Docosapentaenoic Acid (DPA), and lower percentages of Docosahexaenoic Acid (DHA) were found in the EG compared to the CG. High-level endurance runners exhibit altered erythrocyte FA profiles with low percentages of omega-3 index (ω-3 index) and DHA, which may affect erythrocyte membrane function as well as their performance. Full article
(This article belongs to the Special Issue Motor Control and Movement Biomechanics)
Show Figures

Figure 1

14 pages, 970 KiB  
Review
New Sustainable Oil Seed Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids: A Journey from the Ocean to the Field
by Xue-Rong Zhou, Zhuyun June Yao, Katrina Benedicto, Peter D. Nichols, Allan Green and Surinder Singh
Sustainability 2023, 15(14), 11327; https://doi.org/10.3390/su151411327 - 20 Jul 2023
Cited by 10 | Viewed by 6255
Abstract
Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) play a critical physiological role in health and are nutritionally important for both humans and animals. The abundance of marine-derived resources of the health-benefitting ω3 LC-PUFA is either static or in some cases [...] Read more.
Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) play a critical physiological role in health and are nutritionally important for both humans and animals. The abundance of marine-derived resources of the health-benefitting ω3 LC-PUFA is either static or in some cases declining. This review focuses on the development and deregulation of novel oilseed crops producing ω3 LC-PUFA and their market applications. Genetic engineering of ω3 LC-PUFA into sustainable oilseed crops involving multiple-gene pathways to reach fish oil-like levels of these key nutrients has been extremely challenging. After two decades of collaborative effort, oilseed crops containing fish oil-levels of ω3 LC-PUFA and importantly also containing a high ω3/ω6 ratio have been developed. Deregulation of genetically engineered crops with such novel nutritional traits is also challenging and more trait-based regulations should be adopted. Some ω3 LC-PUFA-producing oilseed crops have been approved for large-scale cultivation, and for applications into feed and food. These genetically engineered oilseed crops can and will help meet the increasing market demand for aquaculture and human nutrition. These new oil seed sources of ω3 LC-PUFA offer a sustainable, safe, cost-effective, and scalable land-based solution, which can have critical and positive health, economic, and environmental impacts. Full article
Show Figures

Figure 1

13 pages, 6795 KiB  
Article
Schizochytrium spp. Dietary Supplementation Modulates Immune-Oxidative Transcriptional Signatures in Monocytes and Neutrophils of Dairy Goats
by Panagiota Kyriakaki, Alexandros Mavrommatis and Eleni Tsiplakou
Antioxidants 2023, 12(2), 497; https://doi.org/10.3390/antiox12020497 - 16 Feb 2023
Cited by 4 | Viewed by 2096
Abstract
The high propensity of dietary polyunsaturated fatty acids (PUFA) to oxidation can induce a cascade of cellular immune-oxidative imbalances. On the other hand, PUFA, namely docosapentaenoic acid (ω6-DPA) and docosahexaenoic acid (DHA) can exert immunomodulatory effects by suppressing a pro-inflammatory response. Thus, the [...] Read more.
The high propensity of dietary polyunsaturated fatty acids (PUFA) to oxidation can induce a cascade of cellular immune-oxidative imbalances. On the other hand, PUFA, namely docosapentaenoic acid (ω6-DPA) and docosahexaenoic acid (DHA) can exert immunomodulatory effects by suppressing a pro-inflammatory response. Thus, the objective of this study was to investigate the effect of dietary supplementation with Schizochytrium spp. levels, rich in both ω6-DPA and DHA on the transcriptional profiling of genes involved in oxidative homeostasis and innate immunity of dairy goats’ monocytes and neutrophils. Twenty-four dairy goats were divided into four homogeneous sub-groups; the diet of the control group (CON) had no Schizochytrium spp. while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 (ALG60) g/goat/day. The mRNA levels of MGST1 in neutrophils were downregulated (p = 0.037), while in monocytes, SOD2 and SOD3 were downregulated (p = 0.010 and p = 0.044, respectively) in ALG60 compared to the CON group. GPX2 mRNA levels were downregulated (p = 0.036) in ALG20 and ALG60 compared to the CON group in neutrophils. NOX1 was upregulated (p = 0.043) in the neutrophiles of ALG60-goats. NOX2 was upregulated (p = 0.042) in the monocytes of ALG40-fed goats, while higher (p = 0.045) levels were also found in the ALG60 group in neutrophils. The mRNA levels of COX2 were downregulated (p = 0.035) in monocytes of the ALG40 and ALG60 groups. The mRNA levels of PTGER2 were also downregulated (p = 0.004) in monocytes of Schizochytrium-fed goats, while in neutrophils, significant downregulation (p = 0.024) was only found for ALG60 compared to the CON group. ALOX5AP mRNA levels were significantly decreased (p = 0.033) in ALG60 compared to the CON group in monocytes. LTA4H mRNA levels were increased (p = 0.015) in ALG60 compared to ALG20 and ALG40 groups in monocytes, while in neutrophils, a significant downregulation (p = 0.028) was observed in ALG20 compared to the CON group. The inclusion of more than 20 g Schizochytrium spp./day in goats’ diet induced imbalances in mechanisms that regulate the antioxidant system, while downregulated the expression of pro-inflammatory pathways in monocytes and neutrophils. Full article
(This article belongs to the Special Issue The 10th Anniversary of Antioxidants: Past, Present and Future)
Show Figures

Figure 1

16 pages, 526 KiB  
Article
The Effect of Dietary Inclusion of Microalgae Schizochytrium spp. on Ewes’ Milk Quality and Oxidative Status
by Foivos Zisis, Panagiota Kyriakaki, Fotis F. Satolias, Alexandros Mavrommatis, Panagiotis E. Simitzis, Athanasios C. Pappas, Peter F. Surai and Eleni Tsiplakou
Foods 2022, 11(19), 2950; https://doi.org/10.3390/foods11192950 - 21 Sep 2022
Cited by 14 | Viewed by 3263
Abstract
An unprecedented challenge for nutritionists arises during the 21st century in order to produce highly nutritious and functional food which promotes human health. Polyunsaturated fatty acids (PUFA) that are highly contained in microalgae have broadly been confirmed for preventing cardiovascular diseases and regulating [...] Read more.
An unprecedented challenge for nutritionists arises during the 21st century in order to produce highly nutritious and functional food which promotes human health. Polyunsaturated fatty acids (PUFA) that are highly contained in microalgae have broadly been confirmed for preventing cardiovascular diseases and regulating immune-oxidative status. However, their optimum dietary inclusion level needs to be defined since PUFA are prone to oxidation. For this purpose, 24 cross-bred dairy ewes, were separated into four groups (n = 6) and were fed with different levels of microalgae Schizochytrium spp. [0 (CON, no microalgae), 20 (SC20), 30 (SC30) and 40 (SC40) g/ewe/day] for 60 days. The results showed that although the production parameters were not impaired, milk fat content was decreased in medium and high-level supplemented groups while protein content was suppressed only for the medium one. Concerning the fatty acids (FA) profile, the proportions of C14:0, trans C18:1, trans-11 C18:1, cis-9, trans-11 C18:2, trans-10, cis-12 C18:2, C20:5 (EPA), C22:5n-6 (DPA), C22:6n-3 (DHA), the total ω3 FA and PUFA were significantly increased, while those of C18:0, cis-9 C18:1 and C18:2n-6c were decreased in the milk of treated ewes. Additionally, in the S40 group an oxidative response was induced, observed by the increased malondialdehyde (MDA) levels in milk and blood plasma. In conclusion, the dietary inclusion of 20 g Schizochytrium spp./ewe/day, improves milks’ fatty acid profile and seems to be a promising way for producing ω3 fatty acid-enriched dairy products. Full article
11 pages, 789 KiB  
Article
Alteration of Fatty Acid Profile in Fragile X Syndrome
by Armita Abolghasemi, Maria Paulina Carullo, Ester Cisneros Aguilera, Asma Laroui, Rosalie Plantefeve, Daniela Rojas, Serine Benachenhou, María Victoria Ramírez, Mélodie Proteau-Lemieux, Jean-François Lepage, François Corbin, Mélanie Plourde, Mauricio Farez, Patricia Cogram and Artuela Çaku
Int. J. Mol. Sci. 2022, 23(18), 10815; https://doi.org/10.3390/ijms231810815 - 16 Sep 2022
Cited by 6 | Viewed by 2519
Abstract
Fragile X Syndrome (FXS) is the most prevalent monogenic cause of Autism Spectrum Disorders (ASDs). Despite a common genetic etiology, the affected individuals display heterogenous metabolic abnormalities including hypocholesterolemia. Although changes in the metabolism of fatty acids (FAs) have been reported in various [...] Read more.
Fragile X Syndrome (FXS) is the most prevalent monogenic cause of Autism Spectrum Disorders (ASDs). Despite a common genetic etiology, the affected individuals display heterogenous metabolic abnormalities including hypocholesterolemia. Although changes in the metabolism of fatty acids (FAs) have been reported in various neuropsychiatric disorders, it has not been explored in humans with FXS. In this study, we investigated the FA profiles of two different groups: (1) an Argentinian group, including FXS individuals and age- and sex-matched controls, and (2) a French-Canadian group, including FXS individuals and their age- and sex-matched controls. Since phospholipid FAs are an indicator of medium-term diet and endogenous metabolism, we quantified the FA profile in plasma phospholipids using gas chromatography. Our results showed significantly lower levels in various plasma FAs including saturated, monosaturated, ω-6 polyunsaturated, and ω-3 polyunsaturated FAs in FXS individuals compared to the controls. A decrease in the EPA/ALA (eicosapentaenoic acid/alpha linoleic acid) ratio and an increase in the DPA/EPA (docosapentaenoic acid/eicosapentaenoic acid) ratio suggest an alteration associated with desaturase and elongase activity, respectively. We conclude that FXS individuals present an abnormal profile of FAs, specifically FAs belonging to the ω-3 family, that might open new avenues of treatment to improve core symptoms of the disorder. Full article
(This article belongs to the Special Issue Emerging Role of Lipids in Metabolism and Disease – 3rd Edition)
Show Figures

Figure 1

16 pages, 1359 KiB  
Article
Associations of Dietary Fats with All-Cause Mortality and Cardiovascular Disease Mortality among Patients with Cardiometabolic Disease
by Tingting Yang, Jing Yi, Yangting He, Jia Zhang, Xinying Li, Songqing Ke, Lu Xia and Li Liu
Nutrients 2022, 14(17), 3608; https://doi.org/10.3390/nu14173608 - 31 Aug 2022
Cited by 33 | Viewed by 4466
Abstract
Previous studies have shown distinct associations between specific dietary fats and mortality. However, evidence on specific dietary fats and mortality among patients with cardiometabolic disease (CMD) remains unclear. The aim of this study was to estimate the association between consumption of specific fatty [...] Read more.
Previous studies have shown distinct associations between specific dietary fats and mortality. However, evidence on specific dietary fats and mortality among patients with cardiometabolic disease (CMD) remains unclear. The aim of this study was to estimate the association between consumption of specific fatty acids and survival of patients with CMD and examine whether cardiometabolic biomarkers can mediate the above effects. The study included 8537 participants with CMD, from the Third National Health and Nutrition Examination Survey (NHANES III) and NHANES 1999–2014. Cox proportional hazards regression, restricted cubic spline regression, and isocaloric substitution models were used to estimate the associations of dietary fats with all-cause mortality and cardiovascular disease (CVD) mortality among participants with CMD. Mediation analysis was performed to assess the potential mediating roles of cardiometabolic biomarkers. During a median follow-up of 10.3 years (0–27.1 years), 3506 all-cause deaths and 882 CVD deaths occurred. The hazard ratios (HRs) of all-cause mortality among patients with CMD were 0.85 (95% confidence interval (CI), 95% CI, 0.73–0.99; p trend = 0.03) for ω-6 polyunsaturated fatty acids (ω-6 PUFA), 0.86 (95% CI, 0.75–1.00; p trend = 0.05) for linoleic acid (LA), and 0.86 (95% CI, 0.75–0.98; p trend = 0.03) for docosapentaenoic acid (DPA). Isocalorically replacing energy from SFA with PUFA and LA were associated with 8% and 4% lower all-cause mortality respectively. The HRs of CVD mortality among CMD patients comparing extreme tertiles of specific dietary fats were 0.60 (95% CI, 0.48–0.75; p trend = 0.002) for eicosapentaenoic acid (EPA), and 0.64 (95% CI, 0.48–0.85; p trend = 0.002) for DPA and above effects were mediated by levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL), and high density lipoprotein cholesterol (HDL). Restricted cubic splines showed significant negative nonlinear associations between above specific dietary fats and mortality. These results suggest that intakes of ω-6 PUFA, LA, and DPA or replacing SFA with PUFA or LA might be associated with lower all-cause mortality for patients with CMD. Consumption of EPA and DPA could potentially reduce cardiovascular death for patients with CMD, and their effects might be regulated by cardiometabolic biomarkers indirectly. More precise and representative studies are further needed to validate our findings. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

15 pages, 3111 KiB  
Article
ω-3 DPA Protected Neurons from Neuroinflammation by Balancing Microglia M1/M2 Polarizations through Inhibiting NF-κB/MAPK p38 Signaling and Activating Neuron-BDNF-PI3K/AKT Pathways
by Baiping Liu, Yongping Zhang, Zhiyou Yang, Meijun Liu, Cai Zhang, Yuntao Zhao and Cai Song
Mar. Drugs 2021, 19(11), 587; https://doi.org/10.3390/md19110587 - 20 Oct 2021
Cited by 90 | Viewed by 6619
Abstract
Microglia M1 phenotype causes HPA axis hyperactivity, neurotransmitter dysfunction, and production of proinflammatory mediators and oxidants, which may contribute to the etiology of depression and neurodegenerative diseases. Eicosapentaenoic acid (EPA) may counteract neuroinflammation by increasing n-3 docosapentaenoic acid (DPA). However, the cellular and [...] Read more.
Microglia M1 phenotype causes HPA axis hyperactivity, neurotransmitter dysfunction, and production of proinflammatory mediators and oxidants, which may contribute to the etiology of depression and neurodegenerative diseases. Eicosapentaenoic acid (EPA) may counteract neuroinflammation by increasing n-3 docosapentaenoic acid (DPA). However, the cellular and molecular mechanisms of DPA, as well as whether it can exert antineuroinflammatory and neuroprotective effects, are unknown. The present study first evaluated DPA’s antineuroinflammatory effects in lipopolysaccharide (LPS)-activated BV2 microglia. The results showed that 50 μM DPA significantly decreased BV2 cell viability after 100 ng/mL LPS stimulation, which was associated with significant downregulation of microglia M1 phenotype markers and proinflammatory cytokines but upregulation of M2 markers and anti-inflammatory cytokine. Then, DPA inhibited the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65 pathways, which results were similar to the effects of NF-κB inhibitor, a positive control. Second, BV2 cell supernatant was cultured with differentiated SH-SY5Y neurons. The results showed that the supernatant from LPS-activated BV2 cells significantly decreased SH-SY5Y cell viability and brain-derived neurotrophic factor (BDNF), TrkB, p-AKT, and PI3K expression, which were significantly reversed by DPA pretreatment. Furthermore, DPA neuroprotection was abrogated by BDNF-SiRNA. Therefore, n-3 DPA may protect neurons from neuroinflammation-induced damage by balancing microglia M1 and M2 polarizations, inhibiting microglia-NF-κB and MAPK p38 while activating neuron-BDNF/TrkB-PI3K/AKT pathways. Full article
(This article belongs to the Special Issue Pre-clinical Marine Drug Discovery Ⅱ)
Show Figures

Figure 1

17 pages, 4031 KiB  
Article
Diets with Higher ω-6/ω-3 Ratios Show Differences in Ceramides and Fatty Acid Levels Accompanied by Increased Amyloid-Beta in the Brains of Male APP/PS1 Transgenic Mice
by Lara Ordóñez-Gutiérrez, Gemma Fábrias, Josefina Casas and Francisco Wandosell
Int. J. Mol. Sci. 2021, 22(20), 10907; https://doi.org/10.3390/ijms222010907 - 9 Oct 2021
Cited by 10 | Viewed by 2599
Abstract
Senile plaque formation as a consequence of amyloid-β peptide (Aβ) aggregation constitutes one of the main hallmarks of Alzheimer’s disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have [...] Read more.
Senile plaque formation as a consequence of amyloid-β peptide (Aβ) aggregation constitutes one of the main hallmarks of Alzheimer’s disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aβ production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice). Full article
(This article belongs to the Special Issue Sphingolipid Metabolism and Signaling in Diseases)
Show Figures

Graphical abstract

22 pages, 14347 KiB  
Article
Effects of Inclusion of Schizochytrium spp. and Forage-to-Concentrate Ratios on Goats’ Milk Quality and Oxidative Status
by Alexandros Mavrommatis, Kyriaki Sotirakoglou, Charalampos Kamilaris and Eleni Tsiplakou
Foods 2021, 10(6), 1322; https://doi.org/10.3390/foods10061322 - 8 Jun 2021
Cited by 12 | Viewed by 2764
Abstract
Although the dietary inclusion level of polyunsaturated fatty acids (PUFA) and the forage: concentrate (F:C) ratio affect milk quality, their interaction has not been broadly studied. To address such gaps and limitations a two-phase trial using twenty-two dairy goats was carried out. During [...] Read more.
Although the dietary inclusion level of polyunsaturated fatty acids (PUFA) and the forage: concentrate (F:C) ratio affect milk quality, their interaction has not been broadly studied. To address such gaps and limitations a two-phase trial using twenty-two dairy goats was carried out. During the first phase, both groups (20 HF n = 11; high forage and 20 HG n = 11; high grain) were supplemented with 20 g Schizochytrium spp./goat/day. The 20 HF group consumed a diet with F:C ratio 60:40 and the 20 HG-diet consisted of F:C = 40:60. In the second phase, the supplementation level of Schizochytrium spp. was increased to 40 g/day/goat while the F:C ratio between the two groups were remained identical (40 HF n = 11; high forage and 40 HG n = 11; high grain). Neither the Schizochytrium spp. supplementation levels (20 vs. 40) nor the F:C ratio (60:40 vs. 40:60) affected milk performance. The high microalgae level (40 g) in combination with high grain diet (40 HG) modified the proportions of docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and conjugated linoleic acid (CLA) and the ω3/ω6 ratio in milk, to a beneficial manner according to human health recommendation guidelines. However, the highest inclusion level of Schizochytrium spp. (40 g) and foremost in combination with the high grain diets (40 HG) induced an oxidative response as observed by the increased protein carbonyls (CP) and malondialdehyde (MDA) levels in milk and blood plasma indicating severe limitations for a long-term, on-farm application. In conclusion, the supplementation with 20 g Schizochytrium spp. and high forage diet (60:40) appears to be an ideal formula to enrich dairy products with essential biomolecules for human health without adversely affect milk oxidative stability. Full article
Show Figures

Figure 1

16 pages, 1166 KiB  
Article
Fatty Acid Reference Intervals in Red Blood Cells among Pregnant Women in Norway–Cross Sectional Data from the ‘Little in Norway’ Cohort
by Pedro Araujo, Marian Kjellevold, Ive Nerhus, Lisbeth Dahl, Inger Aakre, Vibeke Moe, Lars Smith and Maria Wik Markhus
Nutrients 2020, 12(10), 2950; https://doi.org/10.3390/nu12102950 - 25 Sep 2020
Cited by 13 | Viewed by 4871
Abstract
There is a growing interest in determining fatty acid reference intervals from pregnancy cohort, especially considering the lack of reference values for pregnant women in the literature and the generalized misconception of equating reference intervals for nonpregnant women as equivalent to pregnant women. [...] Read more.
There is a growing interest in determining fatty acid reference intervals from pregnancy cohort, especially considering the lack of reference values for pregnant women in the literature and the generalized misconception of equating reference intervals for nonpregnant women as equivalent to pregnant women. Seafood and supplements are important dietary sources for the omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFA), such as eicosapentaenoic acid (EPA, 20:5ω-3), docosapentaenoic acid (DPA, 22:55ω-3), and docosahexaenoic acid (DHA, 22:6ω-3). Sufficient intake of EPA and DHA is vital during pregnancy for the development of the fetus, as well as for maintaining adequate levels for the mother. This study describes the fatty acid status and suggests reference values and cut-offs for fatty acids in red blood cells (RBC) from pregnant women (n = 247). An electronic food frequency questionnaire (e-FFQ) mapped the dietary habits of the participants, and gas chromatography was used to determine the fatty acid levels in RBC. The association between e-FFQ variables and fatty acid concentrations was established using a principal component analysis (PCA). Twenty-nine-point-one percent (29.1%) of the participants reported eating seafood as dinner according to the Norwegian recommendations, and they added in their diet as well a high percentage (76.9%) intake of ω-3 supplements. The concentration levels of fatty acids in RBC were in agreement with those reported in similar populations from different countries. The reference interval 2.5/97.5 percentiles for EPA, DPA, DHA were 0.23/2.12, 0.56/2.80, 3.76/10.12 in relative concentration units (%), and 5.99/51.25, 11.08/61.97, 64.25/218.08 in absolute concentration units (µg/g), respectively. The number of participants and their selection from all over Norway vouch for the representativeness of the study and the validity of the proposed reference values, and therefore, the study may be a useful tool when studying associations between fatty acid status and health outcome in future studies. To the best of our knowledge, this is the first PCA study reporting a direct association between ω-3 LCPUFA and intake of seafood and ω-3 supplements in a pregnancy cohort. Full article
Show Figures

Graphical abstract

20 pages, 4309 KiB  
Article
Optimal and Decentralized Control Strategies for Inverter-Based AC Microgrids
by Michael D. Cook, Eddy H. Trinklein, Gordon G. Parker, Rush D. Robinett and Wayne W. Weaver
Energies 2019, 12(18), 3529; https://doi.org/10.3390/en12183529 - 13 Sep 2019
Cited by 7 | Viewed by 3199
Abstract
This paper presents two control strategies: (i) An optimal exergy destruction (OXD) controller and (ii) a decentralized power apportionment (DPA) controller. The OXD controller is an analytical, closed-loop optimal feedforward controller developed utilizing exergy analysis to minimize exergy destruction in an AC inverter [...] Read more.
This paper presents two control strategies: (i) An optimal exergy destruction (OXD) controller and (ii) a decentralized power apportionment (DPA) controller. The OXD controller is an analytical, closed-loop optimal feedforward controller developed utilizing exergy analysis to minimize exergy destruction in an AC inverter microgrid. The OXD controller requires a star or fully connected topology, whereas the DPA operates with no communication among the inverters. The DPA presents a viable alternative to conventional P ω / Q V droop control, and does not suffer from fluctuations in bus frequency or steady-state voltage while taking advantage of distributed storage assets necessary for the high penetration of renewable sources. The performances of OXD-, DPA-, and P ω / Q V droop-controlled microgrids are compared by simulation. Full article
(This article belongs to the Special Issue Advanced Control in Microgrid Systems)
Show Figures

Figure 1

13 pages, 1697 KiB  
Article
Synthesis, Structural Confirmation, and Biosynthesis of 22-OH-PD1n-3 DPA
by Jannicke Irina Nesman, Karoline Gangestad Primdahl, Jørn Eivind Tungen, Fransesco Palmas, Jesmond Dalli and Trond Vidar Hansen
Molecules 2019, 24(18), 3228; https://doi.org/10.3390/molecules24183228 - 5 Sep 2019
Cited by 13 | Viewed by 4391
Abstract
PD1n-3 DPA belongs to the protectin family of specialized pro-resolving lipid mediators. The protectins are endogenously formed mediators that display potent anti-inflammatory properties and pro-resolving bioactivities and have attracted interest in drug discovery. However, few studies have been reported of the secondary [...] Read more.
PD1n-3 DPA belongs to the protectin family of specialized pro-resolving lipid mediators. The protectins are endogenously formed mediators that display potent anti-inflammatory properties and pro-resolving bioactivities and have attracted interest in drug discovery. However, few studies have been reported of the secondary metabolism of the protectins. To investigate the metabolic formation of the putative C22 mono-hydroxylated product, coined 22-OH-PD1n-3 DPA, a stereoselective synthesis was performed. LC/MS-MS data of synthetic 22-OH-PD1n-3 DPA matched the data for the biosynthetic formed product. Cellular studies revealed that 22-OH-PD1n-3 DPA is formed from n-3 docosapentaenoic acid in human serum, and we confirmed that 22-OH-PD1n-3 DPA is a secondary metabolite produced by ω-oxidation of PD1n-3 DPA in human neutrophils and in human monocytes. The results reported are of interest for enabling future structure–activity relationship studies and provide useful molecular insight of the metabolism of the protectin class of specialized pro-resolving mediators. Full article
Show Figures

Graphical abstract

16 pages, 1925 KiB  
Article
Fatty Acid, Lipid Classes and Phospholipid Molecular Species Composition of the Marine Clam Meretrix lyrata (Sowerby 1851) from Cua Lo Beach, Nghe An Province, Vietnam
by Quoc Toan Tran, Thi Thanh Tra Le, Minh Quan Pham, Tien Lam Do, Manh Hung Vu, Duy Chinh Nguyen, Long Giang Bach, Le Minh Bui and Quoc Long Pham
Molecules 2019, 24(5), 895; https://doi.org/10.3390/molecules24050895 - 4 Mar 2019
Cited by 30 | Viewed by 5671
Abstract
This study aims to analyze compositions of fatty acids and phospholipid molecular species in the hard clams Meretrix lyrata (Sowerby, 1851) harvested from Cua Lo beach, Nghe An province, Viet Nam. Total lipid of hard clams Meretrix lyrata occupied 1.7 ± 0.2% of [...] Read more.
This study aims to analyze compositions of fatty acids and phospholipid molecular species in the hard clams Meretrix lyrata (Sowerby, 1851) harvested from Cua Lo beach, Nghe An province, Viet Nam. Total lipid of hard clams Meretrix lyrata occupied 1.7 ± 0.2% of wet weight and contained six classes: hydrocarbon and wax (HW), triacylglycerol (TAG), free fatty acids (FFA), sterol (ST), polar lipid (PoL), and monoalkyl diacylglycerol (MADAG). Among the constituents, the proportion of PoL accounted was highest, at 45.7%. In contrast, the figures for MADAG were lowest, at 1.3%. Twenty-six fatty acids were identified with the ratios of USAFA/SAFA was 2. The percentage of n-3 PUFA (ω-3) and n-6 PUFA (ω-6) was high, occupying 38.4% of total FA. Among PUFAs, arachidonic acid (AA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) accounted for 3.8%, 7.8%, 2.2% and 12.0% of total lipid of the clam respectively. Phospholipid molecular species were identified in polar lipids of the clams consisting six types: phosphatidylethalnolamine (PE, with 28 molecular species), phosphatidylcholine (PC, with 26 molecular species), phosphatidylserine (PS, with 18 molecular species), phosphatidylinositol (PI, with 10 molecular species), phosphatidylglycerol (PG, with only one molecular species), and ceramide aminoethylphosphonate (CAEP, with 15 molecular species). This is the first time that the molecular species of sphingophospholipid were determined, in Meretrix lyrata in particular, and for clams in general. Phospholipid formula species of PE and PS were revealed to comprise two kinds: Alkenyl acyl glycerophosphoethanolamine and Alkenyl acyl glycerophosphoserine occupy 80.3% and 81.0% of total PE and PS species, respectively. In contrast, the percentage of diacyl glycero phosphatidylcholine was twice as high as that of PakCho in total PC, at 69.3, in comparison with 30.7%. In addition, phospholipid formula species of PI and PG comprised only diacyl glycoro phospholipids. PE 36:1 (p18:0/18:1), PC 38:6 (16:0/22:6), PS 38:1 (p18:0/20:1), PI 40:5 (20:1/20:4), PG 32:0 (16:0/16:0) and CAEP 34:2 (16:2/d18:0) were the major molecular species. Full article
(This article belongs to the Collection Advances in Food Analysis)
Show Figures

Figure 1

12 pages, 285 KiB  
Article
Omega 3 Consumption and Anxiety Disorders: A Cross-Sectional Analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
by Lara Natacci, Dirce M. Marchioni, Alessandra C. Goulart, Maria Angélica Nunes, Arlinda B. Moreno, Letícia O. Cardoso, Luana Giatti, Maria Del Carmen B. Molina, Itamar S. Santos, André R. Brunoni, Paulo A. Lotufo and Isabela M. Bensenor
Nutrients 2018, 10(6), 663; https://doi.org/10.3390/nu10060663 - 24 May 2018
Cited by 20 | Viewed by 8615
Abstract
Few studies have evaluated the association between diet and mental disorders, and it has been established that ω-3 (n-3) fatty acids may have a beneficial effect for sufferers of anxiety disorders. This study is part of the Brazilian Longitudinal Study of [...] Read more.
Few studies have evaluated the association between diet and mental disorders, and it has been established that ω-3 (n-3) fatty acids may have a beneficial effect for sufferers of anxiety disorders. This study is part of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)—a population-based cohort study on diet and mental health—and searched for associations between anxiety disorders and consumption of n-3 polyunsaturated fatty acids (PUFA). The study had a cross-sectional design, with a total sample of 12,268 adults. Dietary exposure was measured by a quantitative food-frequency questionnaire, and mental diagnoses were assessed by the Clinical Interview Schedule—Revised Version and diagnosed according to the International Classification of Diseases (ICD-10). Logistic regression models were built using quintiles of n-3, ω 6 (n-6), n-6/n-3 ratio, and PUFA, using the 1st quintile as reference. Anxiety disorders were identified in 15.4% of the sample. After adjusting for sociodemographic variables, cardiovascular risk factors, diet variables, and depression, intakes in the 5th quintile were inversely associated with anxiety disorders for EPA (OR = 0.82, 95% CI = 0.69–0.98), DHA (OR = 0.83, 95% CI = 0.69–0.98), and DPA (OR = 0.82, 95% CI = 0.69–0.98). Participants in the fifth quintile of n-6/n-3 ratio had a positive association with anxiety disorders. Although results suggest a possible protective effect of n-3 fatty acids against anxiety, all associations lost significance after adjustment for multiple comparisons. Full article
Back to TopTop