Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = π-GST

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 603 KiB  
Article
Comparative Evaluation of Urinary Biomarkers in Wilms Tumor Survivors and Children with Chronic Kidney Disease
by Pawel Dubiela, Katarzyna Taranta-Janusz, Katarzyna Konończuk, Karolina Konstantynowicz-Nowicka, Adrian Chabowski, Paulina Szymanska-Rozek and Eryk Latoch
Int. J. Mol. Sci. 2025, 26(13), 6238; https://doi.org/10.3390/ijms26136238 - 27 Jun 2025
Viewed by 305
Abstract
Wilms tumor (WT), the most common pediatric renal malignancy, shares some clinical and pathological features with chronic kidney disease (CKD). Understanding biomarkers of kidney injury among CKD and WT patients is of high interest due to its potential implications for diagnosis, prognosis, and [...] Read more.
Wilms tumor (WT), the most common pediatric renal malignancy, shares some clinical and pathological features with chronic kidney disease (CKD). Understanding biomarkers of kidney injury among CKD and WT patients is of high interest due to its potential implications for diagnosis, prognosis, and treatment strategies. This study enrolled twenty pediatric patients with WT (stage I–IV), forty with CKD (stage I–V), and twenty healthy volunteers. Urine samples were collected and six urine biomarkers (calbindin, clusterin, GST-π, IL-18, KIM-1, MCP-1) associated with kidney injury were assessed using the Bio-Plex Pro RBM Human Kidney Toxicity Assays kit (Bio-Plex Manager software 4.0). A comparative analysis of biomarker levels across the three groups revealed distinct patterns. Creatinine levels were notably elevated in CKD (1.32 ± 1.9) compared to WT (0.64 ± 0.26) and the control group. Tested biomarkers were calculated per milligram of urine creatinine, and all the differences among the groups were statistically significant. Pearson’s correlation coefficients showed strong interplay among CKD biomarkers. This study identified variations in biomarker patterns among WT and CKD patients. Understanding biomarker interactions may provide future diagnostic approaches for pediatric kidney conditions. Full article
(This article belongs to the Special Issue Molecular Research in Chronic Kidney Disease)
Show Figures

Figure 1

15 pages, 3785 KiB  
Article
Organic Sunscreens—Is Their Placenta Permeability the Only Issue Associated with Exposure During Pregnancy? In Silico Studies of Sunscreens’ Placenta Permeability and Interactions with Selected Placental Enzymes
by Anna W. Sobańska and Andrzej M. Sobański
Molecules 2024, 29(24), 5836; https://doi.org/10.3390/molecules29245836 - 11 Dec 2024
Cited by 1 | Viewed by 1333
Abstract
One of the functions of placenta is to protect the fetus against harmful xenobiotics. Protective mechanisms of placenta are based on enzymes, e.g., antioxidant enzymes from the glutathione S-transferases group (GST) or human N-acetyltransferase 2 (NAT2). Many organic sunscreens are known to [...] Read more.
One of the functions of placenta is to protect the fetus against harmful xenobiotics. Protective mechanisms of placenta are based on enzymes, e.g., antioxidant enzymes from the glutathione S-transferases group (GST) or human N-acetyltransferase 2 (NAT2). Many organic sunscreens are known to cross biological barriers—they are detected in mother’s milk, semen, umbilical cord blood or placental tissues. Some organic sunscreens are able to cross the placenta and to interfere with fetal development; they are known or suspected endocrine disruptors or neurotoxins. In this study, 16 organic sunscreens were investigated in the context of their placenta permeability and interactions with gluthatione S-transferase and human N-acetyltransferase 2 enzymes present in the human placenta. Binary permeability models based on discriminant analysis and artificial neural networks proved that the majority of studied compounds are likely to cross the placenta by passive diffusion. Molecular docking analysis suggested that some sunscreens show stronger affinity for glutathione S-transferase and human N-acetyltransferase 2 that native ligands (glutathione and Coenzyme A for GST and NAT2, respectively)—it is therefore possible that they are able to reduce the enzyme’s protective activity. It was established that sunscreens bind to the studied enzymes mainly by alkyl, hydrogen bonds, van der Waals, π-π, π-alkyl and π-sulfur interactions. To conclude, sunscreens may become stressors affecting humans by different mechanisms and at different stages of development. Full article
Show Figures

Figure 1

12 pages, 254 KiB  
Article
New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity
by Anna Medyńska, Joanna Chrzanowska, Agnieszka Zubkiewicz-Kucharska and Danuta Zwolińska
Int. J. Mol. Sci. 2024, 25(19), 10769; https://doi.org/10.3390/ijms251910769 - 7 Oct 2024
Cited by 2 | Viewed by 1196
Abstract
The impact of obesity on kidney injury and the development of chronic kidney disease (CKD) is well documented. Unfortunately, the early stages of CKD are asymptomatic, leading to a delayed diagnosis and a worse prognosis. There is a need for more sensitive indicators [...] Read more.
The impact of obesity on kidney injury and the development of chronic kidney disease (CKD) is well documented. Unfortunately, the early stages of CKD are asymptomatic, leading to a delayed diagnosis and a worse prognosis. There is a need for more sensitive indicators of kidney damage than those currently used. We aimed to assess the usefulness of serum t-CAF, urinary netrin-1, α-GST, π-GST, calbindin, and calprotectin as biomarkers of early kidney damage in obese children and to investigate the relationship between these indicators and the degree of obesity. A total of 125 simple obese, normoalbuminuric children and 33 non-obese children as controls were selected. Patients were divided into 2 subgroups according to SDS BMI (I: 2 ≤ 4, II: >4). Serum t-CAF was significantly higher in the obese group compared to the controls, as were urinary α-GST, netrin-1, π-GST, and calprotectin. No difference was found between the two obese groups. In normoalbuminuric obese children and adolescents without significant metabolic disorders, serum t-CAF may be a new biomarker for the early detection of renal dysfunction, and urinary netrin-1, α-GST, π-GST, and calprotectin may be better indicators for the detection of early tubular damage, independent of the severity of obesity. Full article
(This article belongs to the Special Issue Adipose Tissue in Human Health and Disease 2.0)
13 pages, 1074 KiB  
Article
Urinary Markers of Tubular Injury and Renal Fibrosis in Patients with Type 2 Diabetes and Different Phenotypes of Chronic Kidney Disease
by Anton I. Korbut, Vyacheslav V. Romanov and Vadim V. Klimontov
Life 2023, 13(2), 343; https://doi.org/10.3390/life13020343 - 27 Jan 2023
Cited by 7 | Viewed by 2664
Abstract
This study assessed the urinary excretion of markers and mediators of tubular injury and renal fibrosis in patients with type 2 diabetes (T2D) and non-albuminuric and albuminuric patterns of chronic kidney disease (CKD). One hundred and forty patients with long-term T2D and different [...] Read more.
This study assessed the urinary excretion of markers and mediators of tubular injury and renal fibrosis in patients with type 2 diabetes (T2D) and non-albuminuric and albuminuric patterns of chronic kidney disease (CKD). One hundred and forty patients with long-term T2D and different patterns of CKD and twenty non-diabetic individuals were included. Urinary retinol-binding protein 4 (RBP-4), glutathione-S-transferase α1 and π (GST-α1 and GST-π), transforming growth factor β (TGF-β), type I and type IV collagen (Col1 and Col4), bone morphogenic protein 7 (BMP-7), and hepatocyte growth factor (HGF) were assessed by ELISA. Patients with T2D demonstrated increased urinary excretion of RBP-4, GST-π, Col4, BMP-7, and HGF (all p < 0.05 vs. control). The excretion of RBP-4, GST-π, Col1, and Col4 was increased in patients with elevated albumin-to-creatinine ratio (UACR; all p < 0.05 vs. control), while BMP-7 and HGF were increased innormoalbuminuric patients also (p < 0.05). Urinary RBP-4, GST-α1, Col1, Col4, and HGF correlated positively with UACR; meanwhile, no correlations with glomerular filtration rate were found. The results demonstrate that elevated urinary excretions of the markers of tubular injury (RBP-4, GST-π) and renal fibrosis (Col1, Col4), as well as HGF, an antifibrotic regulator, are associated with the albuminuric pattern of CKD in subjects with T2D. Full article
(This article belongs to the Special Issue Diabetes Metabolism: Molecular and Integrative Approaches)
Show Figures

Figure 1

24 pages, 3614 KiB  
Article
Monocarbonyl Curcumin Analogues as Potent Inhibitors against Human Glutathione Transferase P1-1
by Panagiota Pantiora, Veronika Furlan, Dimitris Matiadis, Barbara Mavroidi, Fereniki Perperopoulou, Anastassios C. Papageorgiou, Marina Sagnou, Urban Bren, Maria Pelecanou and Nikolaos E. Labrou
Antioxidants 2023, 12(1), 63; https://doi.org/10.3390/antiox12010063 - 28 Dec 2022
Cited by 22 | Viewed by 3547
Abstract
The isoenzyme of human glutathione transferase P1-1 (hGSTP1-1) is involved in multi-drug resistance (MDR) mechanisms in numerous cancer cell lines. In the present study, the inhibition potency of two curcuminoids and eleven monocarbonyl curcumin analogues against hGSTP1-1 was investigated. Demethoxycurcumin (Curcumin II) and [...] Read more.
The isoenzyme of human glutathione transferase P1-1 (hGSTP1-1) is involved in multi-drug resistance (MDR) mechanisms in numerous cancer cell lines. In the present study, the inhibition potency of two curcuminoids and eleven monocarbonyl curcumin analogues against hGSTP1-1 was investigated. Demethoxycurcumin (Curcumin II) and three of the monocarbonyl curcumin analogues exhibited the highest inhibitory activity towards hGSTP1-1 with IC50 values ranging between 5.45 ± 1.08 and 37.72 ± 1.02 μM. Kinetic inhibition studies of the most potent inhibitors demonstrated that they function as non-competitive/mixed-type inhibitors. These compounds were also evaluated for their toxicity against the prostate cancer cells DU-145. Interestingly, the strongest hGSTP1-1 inhibitor, (DM96), exhibited the highest cytotoxicity with an IC50 of 8.60 ± 1.07 μΜ, while the IC50 values of the rest of the compounds ranged between 44.59–48.52 μΜ. Structural analysis employing molecular docking, molecular dynamics (MD) simulations, and binding-free-energy calculations was performed to study the four most potent curcumin analogues as hGSTP1-1 inhibitors. According to the obtained computational results, DM96 exhibited the lowest binding free energy, which is in agreement with the experimental data. All studied curcumin analogues were found to form hydrophobic interactions with the residue Gln52, as well as hydrogen bonds with the nearby residues Gln65 and Asn67. Additional hydrophobic interactions with the residues Phe9 and Val36 as well as π–π stacking interaction with Phe9 contributed to the superior inhibitory activity of DM96. The van der Waals component through shape complementarity was found to play the most important role in DM96-inhibitory activity. Overall, our results revealed that the monocarbonyl curcumin derivative DM96 acts as a strong hGSTP1-1 inhibitor, exerts high prostate cancer cell cytotoxicity, and may, therefore, be exploited for the suppression and chemosensitization of cancer cells. This study provides new insights into the development of safe and effective GST-targeted cancer chemosensitizers. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

17 pages, 6074 KiB  
Article
The Role of Phospholipase Activity of Peroxiredoxin 6 in Its Transmembrane Transport and Protective Properties
by Mars G. Sharapov, Ruslan G. Goncharov, Svetlana B. Parfenyuk, Olga V. Glushkova and Vladimir I. Novoselov
Int. J. Mol. Sci. 2022, 23(23), 15265; https://doi.org/10.3390/ijms232315265 - 3 Dec 2022
Cited by 9 | Viewed by 1980
Abstract
Peroxiredoxin 6 (Prdx6) is a multifunctional eukaryotic antioxidant enzyme. Mammalian Prdx6 possesses peroxidase activity against a wide range of organic and inorganic hydroperoxides, as well as exhibits phospholipase A2 (aiPLA2) activity, which plays an important role in the reduction of oxidized phospholipids and [...] Read more.
Peroxiredoxin 6 (Prdx6) is a multifunctional eukaryotic antioxidant enzyme. Mammalian Prdx6 possesses peroxidase activity against a wide range of organic and inorganic hydroperoxides, as well as exhibits phospholipase A2 (aiPLA2) activity, which plays an important role in the reduction of oxidized phospholipids and cell membrane remodeling. Exogenous Prdx6 has recently been shown to be able to penetrate inside the cell. We hypothesized that this entry may be due to the phospholipase activity of Prdx6. Experiments using exogenous Prdx6 in three cell lines (3T3, A549, RAW 264.7) demonstrated that it is the phospholipase activity that promotes its penetration into the cell. Overoxidation of Prdx6 led to a suppression of the peroxidase activity and a 3-to-4-fold growth of aiPLA2, which enhanced the efficiency of its transmembrane transport into the cells by up to 15 times. A mutant form of Prdx6-S32A with an inactivated phospholipase center turned out to be unable to enter the cells in both the reduced and oxidized state of the peroxidase active center. Previously, we have shown that exogenous Prdx6 has a significant radioprotective action. However, the role of phospholipase activity in the radioprotective effects of Prdx6 remained unstudied. Trials with the mutant Prdx6-S32A form, with the use of a total irradiation model in mice, showed a nearly 50% reduction of the radioprotective effect upon aiPLA2 loss. Such a significant decrease in the radioprotective action may be due to the inability of Prdx6-S32A to penetrate animal cells, which prevents its reduction by the natural intracellular reducing agent glutathione S-transferase (πGST) and lowers the efficiency of elimination of peroxides formed from the effect of ionizing radiation. Thus, phospholipase activity may play an important role in the reduction of oxidized Prdx6 and manifestation of its antioxidant properties. Full article
Show Figures

Graphical abstract

17 pages, 964 KiB  
Article
Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide
by Supakit Khacha-ananda, Unchisa Intayoung, Klintean Wunnapuk, Kanyapak Kohsuwan, Pitchayuth Srisai and Ratana Sapbamrer
Toxics 2022, 10(5), 252; https://doi.org/10.3390/toxics10050252 - 17 May 2022
Cited by 1 | Viewed by 2541
Abstract
Epidemiologic studies have suggested an association between agrochemical exposure and risk of renal injury. Farmers face great risks to developing adverse effects. The most appropriate biomarker related to renal injury needs to be developed to encounter earlier detection. We aim to study the [...] Read more.
Epidemiologic studies have suggested an association between agrochemical exposure and risk of renal injury. Farmers face great risks to developing adverse effects. The most appropriate biomarker related to renal injury needs to be developed to encounter earlier detection. We aim to study the association between early renal biomarker and occupational herbicide exposure in maize farmers, Thailand. Sixty-four farmers were recruited and interviewed concerning demographic data, herbicide usage, and protective behavior. Two spot urines before (pre-work task) and after (post-work task) herbicide spraying were collected. To estimate the intensity of exposure, the cumulative herbicide exposure intensity index (cumulative EII) was also calculated from activities on the farm, type of personal protective equipment (PPE) use, as well as duration and frequency of exposure. Four candidate renal biomarkers including π-GST, sirtuin-1, mitochondrial DNA (mtDNA) were measured. Most subjects were male and mostly sprayed three herbicides including glyphosate-based herbicides (GBH), paraquat, and 2,4-dichlorophenoxyacetic acid (2,4-D). A type of activity in farm was mixing and spraying herbicide. Our finding demonstrated no statistical significance of all biomarker levels between pre- and post-work task urine. To compare between single and cocktail use of herbicide, there was no statistical difference in all biomarker levels between pre- and post-work task urine. However, the urinary mtDNA seems to be increased in post-work task urine. Moreover, the cumulative EII was strongly associated with change in mtDNA content in both ND-1 and COX-3 gene. The possibility of urinary mtDNA as a valuable biomarker was promising as a noninvasive benchmark for early detection of the risk of developing renal injury from herbicide exposure. Full article
(This article belongs to the Topic Air Pollution and Occupational Exposure)
Show Figures

Figure 1

15 pages, 2894 KiB  
Article
Morphological, Gene, and Hormonal Changes in Gonads and In-Creased Micrococcal Nuclease Accessibility of Sperm Chromatin Induced by Mercury
by Gennaro Lettieri, Nadia Carusone, Rosaria Notariale, Marina Prisco, Alessia Ambrosino, Shana Perrella, Caterina Manna and Marina Piscopo
Biomolecules 2022, 12(1), 87; https://doi.org/10.3390/biom12010087 - 6 Jan 2022
Cited by 20 | Viewed by 2775
Abstract
Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three [...] Read more.
Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3β-HSD and 17β-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3β-HSD and 17β-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel. Full article
Show Figures

Figure 1

14 pages, 2683 KiB  
Article
Weaning Mice and Adult Mice Exhibit Differential Carbon Tetrachloride-Induced Acute Hepatotoxicity
by Tae Bin Jeong, Doyoung Kwon, Seung Won Son, Sou Hyun Kim, Yun-Hee Lee, Min-Soo Seo, Kil Soo Kim and Young-Suk Jung
Antioxidants 2020, 9(3), 201; https://doi.org/10.3390/antiox9030201 - 1 Mar 2020
Cited by 22 | Viewed by 5237
Abstract
Age is a risk factor for drug-induced liver injury (DILI). However, there is a limited understanding of pediatric DILI. Here, 2-week-old weaning and 8-week-old adult male ICR mice were intraperitoneally injected with CCl4 (0.1 mmol/kg equal to 15.4 mg/kg) to comparatively evaluate [...] Read more.
Age is a risk factor for drug-induced liver injury (DILI). However, there is a limited understanding of pediatric DILI. Here, 2-week-old weaning and 8-week-old adult male ICR mice were intraperitoneally injected with CCl4 (0.1 mmol/kg equal to 15.4 mg/kg) to comparatively evaluate the time-dependent liver damage and cellular events. CCl4 significantly enhanced the serum alanine aminotransferase/aspartate aminotransferase levels and hepatic centrilobular necrosis in the weaning mice, whereas it induced mild liver injury in the adult mice. CCl4-treated weaning mice exhibited higher hepatic levels of pro-apoptotic proteins (Bax, cleaved caspase-3, -7, and -9), activated MAPKs (p-JNK and p-Erk), and endoplasmic reticulum stress indicators (ATF6 and CHOP) and lower hepatic anti-apoptotic Bcl-2 levels than the adult mice. The weaning mice exhibited enhanced basal hepatic glutathione (GSH) levels due to high glutamate cysteine ligase (GCL) and low anti-cysteine dioxygenase (CDO) enzyme levels. However, CCl4 markedly reduced the hepatic GSH levels only in the weaning mice. Furthermore, higher hepatic levels of oxidative stress-induced malondialdehyde, 4-hydroxynonenal, nitrotyrosine-protein adducts, and oxidized proteins were observed in CCl4-treated weaning mice than in CCl4-treated adult mice. The enhanced levels of hepatic cytochrome P450 (CYP) 2E1 and CYP3A, and decreased hepatic GSH S-transferase (GST)-π and GSH reductase (GR) levels in the weaning mice may contribute to their enhanced susceptibility to liver damage. Full article
(This article belongs to the Special Issue Oxidative Stress in Human Toxicology)
Show Figures

Figure 1

11 pages, 1766 KiB  
Article
Urinary Biomarkers α-GST and π-GST for Evaluation and Monitoring in Living and Deceased Donor Kidney Grafts
by Shadi Katou, Brigitta Globke, M. Haluk Morgul, Thomas Vogel, Benjamin Struecker, Natalie Maureen Otto, Anja Reutzel-Selke, Marion Marksteiner, Jens G. Brockmann, Andreas Pascher and Volker Schmitz
J. Clin. Med. 2019, 8(11), 1899; https://doi.org/10.3390/jcm8111899 - 7 Nov 2019
Cited by 7 | Viewed by 3006
Abstract
The aim of this study was to analyze the value of urine α- and π-GST in monitoring and predicting kidney graft function following transplantation. In addition, urine samples from corresponding organ donors was analyzed and compared with graft function after organ donation from [...] Read more.
The aim of this study was to analyze the value of urine α- and π-GST in monitoring and predicting kidney graft function following transplantation. In addition, urine samples from corresponding organ donors was analyzed and compared with graft function after organ donation from brain-dead and living donors. Urine samples from brain-dead (n = 30) and living related (n = 50) donors and their corresponding recipients were analyzed before and after kidney transplantation. Urine α- and π-GST values were measured. Kidney recipients were grouped into patients with acute graft rejection (AGR), calcineurin inhibitor toxicity (CNI), and delayed graft function (DGF), and compared to those with unimpaired graft function. Urinary π-GST revealed significant differences in deceased kidney donor recipients with episodes of AGR or DGF at day one after transplantation (p = 0.0023 and p = 0.036, respectively). High π-GST values at postoperative day 1 (cutoff: >21.4 ng/mg urine creatinine (uCrea) or >18.3 ng/mg uCrea for AGR or DGF, respectively) distinguished between rejection and no rejection (sensitivity, 100%; specificity, 66.6%) as well as between DGF and normal-functioning grafts (sensitivity, 100%; specificity, 62.6%). In living donor recipients, urine levels of α- and π-GST were about 10 times lower than in deceased donor recipients. In deceased donors with impaired graft function in corresponding recipients, urinary α- and π-GST were elevated. α-GST values >33.97 ng/mg uCrea were indicative of AGR with a sensitivity and specificity of 77.7% and 100%, respectively. In deceased donor kidney transplantation, evaluation of urinary α- and π-GST seems to predict different events that deteriorate graft function. To elucidate the potential advantages of such biomarkers, further analysis is warranted. Full article
(This article belongs to the Special Issue Recent Advances and Clinical Outcomes of Kidney Transplantation)
Show Figures

Figure 1

15 pages, 434 KiB  
Article
Preventive Effect of Lactobacillus fermentum CQPC08 on 4-Nitroquineline-1-Oxide Induced Tongue Cancer in C57BL/6 Mice
by Bihui Liu, Jing Zhang, Ruokun Yi, Xianrong Zhou, Xingyao Long, Yanni Pan and Xin Zhao
Foods 2019, 8(3), 93; https://doi.org/10.3390/foods8030093 - 11 Mar 2019
Cited by 18 | Viewed by 5750
Abstract
Lactobacillus fermentum CQPC08 (LF-CQPC08) is a newly discovered strain of bacteria isolated and identified from traditional pickled vegetables in Sichuan, China. We used 4-nitroquinoline 1-oxide to establish an experimental tongue cancer mouse model to evaluate the preventive effect of LF-CQPC08 on tongue cancer [...] Read more.
Lactobacillus fermentum CQPC08 (LF-CQPC08) is a newly discovered strain of bacteria isolated and identified from traditional pickled vegetables in Sichuan, China. We used 4-nitroquinoline 1-oxide to establish an experimental tongue cancer mouse model to evaluate the preventive effect of LF-CQPC08 on tongue cancer in vivo. Lactobacillus delbruechii subsp. bulgaricus, is a common commercial strain and is used as a positive control to compare the effect with LF-CQPC08. The preventive strength and mechanism of LF-CQPC08 on tongue cancer were determined by measuring the biochemical indicators in mouse serum and tissues. Our results showed LF-CQPC08 inhibits the decline of splenic index, thymus index, percentage of phagocytic macrophages, and phagocytic index effectively. LF-CQPC08 also increased levels of mouse serum granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), immunoglobulin (Ig)G, IgM levels of serum interleukin (IL)-4, IL-12, tumor necrosis factor-alpha, and interferon-gamma levels, thereby inhibiting the decline in immunity caused by tongue cancer. It also increased the activity levels of superoxide dismutase and glutathione peroxidase and decreased the levels of malondialdehyde in the tissues of the tongue cancer mouse model, thereby suppressing the oxidative stress damage in the tissue caused by tongue cancer. Through quantitative PCR, LF-CQPC08 upregulated the mRNA expression of nuclear factor-erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), glutathione-S-transferases-π (GST-π), and Bcl-2-associated X protein (Bax), and downregulated the mRNA expression of p53, p63, p73, phosphatase and tensin homolog (PTEN), B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL) in the tongue tissues of the tongue cancer mouse. These results indicated that LF-CQPC08 reduced the influence of tongue cancer on the immune system and oxidative balance and improved the immunity and enhanced antioxidant capacity of the mouse model, thereby preventing tongue cancer. LF-CQPC08 could be used as a microbial resource with a preventive effect on tongue cancer. Full article
(This article belongs to the Special Issue Probiotics and Functional Foods)
Show Figures

Figure 1

15 pages, 5530 KiB  
Article
The Effects and Mechanisms of Periplaneta americana Extract Reversal of Multi-Drug Resistance in BEL-7402/5-FU Cells
by Falu Yuan, Junyong Liu, Tingting Qiao, Ting Li, Qi Shen and Fang Peng
Molecules 2016, 21(7), 852; https://doi.org/10.3390/molecules21070852 - 28 Jun 2016
Cited by 14 | Viewed by 6744
Abstract
The present study reports the reversing effects of extracts from P. americana on multidrug resistance of BEL-7402/5-FU cells, as well as a preliminary investigation on their mechanism of action. A methylthiazolyl tetrazolium (MTT) method was applied to determine the multidrug resistance of BEL-7402/5-FU, [...] Read more.
The present study reports the reversing effects of extracts from P. americana on multidrug resistance of BEL-7402/5-FU cells, as well as a preliminary investigation on their mechanism of action. A methylthiazolyl tetrazolium (MTT) method was applied to determine the multidrug resistance of BEL-7402/5-FU, while an intracellular drug accumulation assay was used to evaluate the effects of a column chromatography extract (PACC) and defatted extract (PADF) from P. americana on reversing multi-drug resistance. BEL-7402/5-FU reflected high resistance to 5-FU; PACC and PADF could promote drug accumulation in BEL-7402/5-FU cells, among which PADF was more effective than PACC. Moreover, results from the immunocytochemical method showed that PACC and PADF could downregulate the expression of drug resistance-associated proteins (P-gp, MRP, LRP); PACC and PADF had no effects on the expression of multidrug resistance-associated enzymes (GST-π), but PACC could increase the expression of multidrug resistance-associated enzymes (PKC). Results of real-time fluorescence quantitative PCR revealed that PACC and PADF were able to markedly inhibit the expression of multidrug resistance-associated genes (MDR1, LRP and MRP1); PACC presented a significant impact on the gene expression of multidrug resistance-associated enzymes, which increased the gene expression of GST-π and PKC. However, PADF had little impact on the expression of multidrug resistance-associated enzymes. These results demonstrated that PACC and PADF extracted from P. americana could effectively reverse MDR in BEL-7402/5-FU cells, whose mechanism was to inhibit the expression of P-gp, MRP, and LRP, and that PADF was more effective in the reversal of MDR than did PACC. In addition, some of extracts from P. americana altered (sometimes increasing) the expression of multidrug resistance-associated enzymes. Full article
(This article belongs to the Special Issue New Approaches to Counteract Drug Resistance in Cancer)
Show Figures

Figure 1

Back to TopTop