New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Dam, M.J.C.M.; Pottel, H.; Vreugdenhil, A.C.E. Relation between obesity-related comorbidities and kidney function estimation in children. Pediatr. Nephrol. 2023, 38, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Ahmadi, S.F.; Kalantar-Zadeh, K. The dual roles of obesity in chronic kidney disease: A review of the current literature. Curr. Opin. Nephrol. Hypertens 2016, 25, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Sandino, J.; Luzardo, L.; Morales, E.; Praga, M. Which Patients with Obesity Are at Risk for Renal Disease? Nephron 2021, 145, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Assadi, F. The Growing Epidemic of Chronic Kidney Disease: Preventive Strategies to Delay the Risk for Progression to ESRD. Adv. Exp. Med. Biol. 2019, 1121, 57–59. [Google Scholar]
- Czaja-Stolc, S.; Potrykus, M.; Stankiewicz, M.; Kaska, Ł.; Małgorzewicz, S. Pro-Inflammatory Profile of Adipokines in Obesity Contributes to Pathogenesis, Nutritional Disorders, and Cardiovascular Risk in Chronic Kidney Disease. Nutrients 2022, 14, 1457. [Google Scholar] [CrossRef]
- Vivante, A.; Golan, E.; Tzur, D.; Leiba, A.; Tirosh, A.; Skorecki, K.; Calderon-Margalit, R. Body Mass Index in 1.2 Million Adolescents and Risk for End-Stage Renal Disease. Arch. Intern. Med. 2012, 172, 1644–1650. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Haycock, G.B.; Edelmann, C.M., Jr.; Spiter, A. Asimple estimate of glomerular filtration rate in children derived from body length and plasma creatinin. Pediatrics 1976, 58, 259–263. [Google Scholar] [CrossRef]
- Naour, N.; Fellahi, S.; Renucci, J.F.; Poitou, C.; Rouault, C.; Basdevant, A.; Dutour, A.; Alessi, M.C.; Bastard, J.P.; Clément, K.; et al. Potential contribution of adipose tissue to elevated serum cystatin C in human obesity. Obesity (Silver Spring) 2009, 17, 2121–2126. [Google Scholar] [CrossRef] [PubMed]
- Csernus, K.; Lanyi, E.; Erhardt, E.; Molnar, D. Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur. J. Pediatr. 2005, 164, 44–49. [Google Scholar] [CrossRef]
- Polidori, N.; Giannini, C.; Salvatore, R.; Pelliccia, P.; Parisi, A.; Chiarelli, F.; Mohn, A. Role of urinary NGAL and KIM-1 as biomarkers of early kidney injury in obese prepubertal children. J. Pediatr. Endocrinol. Metab. 2020, 33, 1183–1189. [Google Scholar] [CrossRef]
- Gul, A.; Yilmaz, R.; Ozmen, Z.C.; Gumuser, R.; Demir, O.; Unsal, V. Assessment of renal function in obese and overweight children with NGAL and KIM-1 biomarkers. Nutr. Hosp. 2020, 34, 434–442. [Google Scholar]
- Medyńska, A.; Chrzanowska, J.; Kościelska-Kasprzak, K.; Bartoszek, D.; Żabińska, M.; Zwolińska, D. Alpha-1 Acid Glycoprotein and Podocin mRNA as Novel Biomarkers for Early Glomerular Injury in Obese Children. J. Clin. Med. 2021, 10, 4129. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, S.; Chalikias, G.; Devetzis, V.; Konstantinides, S.; Huynh-Do, U.; Tziakas, D. C-terminal fragment of agrin (CAF) levels predict acute kidney injury after acute myocardial infarction. BMC Nephrol. 2017, 18, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Daryadel, A.; Haubitz, M.; Figueiredo, M.; Steubl, D.; Roos, M.; Mäder, A.; Hettwer, S.; Wagner, C.A. The C-terminal fragment of agrin (CAF), a novel marker of renal function, is filtered by the kidney and reabsorbed by the proximal tubule. PLoS ONE 2016, 5, e0157905. [Google Scholar] [CrossRef]
- Steubl, D.; Roos, M.; Hettwer, S.; Satanovskij, R.; Tholen, S.; Wen, M.; Schmaderer, C.; Hasenau, A.L.; Luppa, P.; Stecher, L.; et al. Plasma total C-terminal agrin fragment (tCAF) as a marker for kidney function in patients with chronic kidney disease. Clin. Chem. Lab. Med. 2016, 54, 1487–1495. [Google Scholar] [CrossRef]
- Steubl, D.; Hettwer, S.; Vrijbloed, W.; Dahinden, P.; Wolf, P.; Luppa, P.; Wagner, C.A.; Renders, L.; Heemann, U.; Roos, M. C-terminal agrin fragment—A new fast biomarker for kidney function in renal transplant recipients. Am. J. Nephrol. 2013, 38, 501–508. [Google Scholar] [CrossRef]
- Laisalmi, M.; Teppo, A.M.; Koivusalo, A.M.; Honkanen, E.; Valta, P.; Lindgren, L. The effect of ketorolac and sevoflurane anesthesia on renal glomerular and tubular function. Anesth. Analg. 2001, 93, 1210–1213. [Google Scholar] [CrossRef]
- Branten, A.J.; Mulder, T.P.; Peters, W.H.; Assmann, K.J.; Wetzels, J.F. Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: Reflection of the site of tubular injury. Nephron 2000, 85, 120–126. [Google Scholar] [CrossRef]
- Cawood, T.J.; Bashir, M.; Brady, J.; Murray, B.; Murray, P.T.; O’Shea, D. Urinary collagen IV and πGST: Potential biomarkers for detecting localized kidney injury in diabetes—A pilot study. Am. J. Nephrol. 2010, 32, 219–225. [Google Scholar] [CrossRef]
- Layne, K.; Ferro, A.; Passacquale, G. Netrin-1 as a novel therapeutic target in cardiovascular disease: To activate or inhibit? Cardiovasc. Res. 2015, 107, 410–419. [Google Scholar] [CrossRef]
- Ziegon, L.; Schlegel, M. Netrin-1: A Modulator of Macrophage Driven Acute and Chronic Inflammation. Int. J. Mol. Sci. 2021, 23, 275. [Google Scholar] [CrossRef] [PubMed]
- ÖvünçHacıhamdioğlu, D.; Hacıhamdioğlu, B.; Altun, D.; Müftüoğlu, T.; Karademir, F.; Süleymanoğlu, S. Urinary Netrin-1: A New Biomarker for the Early Diagnosis of Renal Damage in Obese Children. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 282–287. [Google Scholar] [CrossRef]
- Eltounali, S.A.; Moodley, J.; Naicker, T. Role of kidney biomarkers [Kidney injury molecule-1, Calbindin, Interleukin-18 and Monocyte chemoattractant protein-1] in HIV associated pre-eclampsia. Hypertens. Pregnancy 2017, 36, 288–294. [Google Scholar] [CrossRef]
- Lane, B.R.; Babitz, S.K.; Vlasakova, K.; Wong, A.; Noyes, S.L.; Boshoven, W.; Grady, P.; Zimmerman, C.; Engerman, S.; Gebben, M.; et al. Evaluation of Urinary Renal Biomarkers for Early Prediction of Acute Kidney Injury Following Partial Nephrectomy: A Feasibility Study. Eur. Urol. Focus 2018, 6, 1240–1247. [Google Scholar] [CrossRef]
- Blessy, G.; Wen, X.; Mercke, N.; Gomez, M.; O’Bryant, C.; Bowles, D.W.; Hu, Y.; Hogan, S.L.; Joy, M.S.; Aleksunes, L.M. Profiling of Kidney Injury Biomarkers in Patients Receiving Cisplatin: Time-dependent Changes in the Absence of Clinical Nephrotoxicity. Clin. Pharmacol. Ther. 2017, 101, 510–518. [Google Scholar]
- Carnazzo, V.; Redi, S.; Basile, V.; Natali, P.; Gulli, F.; Equitani, F.; Marino, M.; Basile, U. Calprotectin: Two sides of the same coin. Rheumatology 2024, 63, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Fujiu, K.; Manabe, I.; Nagai, R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J. Clin. Investig. 2011, 121, 3425–3441. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Fan, P.-C.; Kou, G.; Chang, S.-W.; Chen, Y.-T.; Lee, C.-C.; Chang, C.-H. Meta-analysis: Urinary calprotectin for discrimination of intrinsic and prerenal acute kidney injury. J. Clin. Med. 2019, 8, 74. [Google Scholar] [CrossRef]
- John, J.S.; Deepthi, R.V.; Rebekah, G.; Prabhu, S.B.; Ajitkumar, P.; Mathew, G.; Agarwal, I. Usefulness of urinary calprotectin as a novel marker differentiating functional from structural acute kidney injury in the critical care setting. J. Nephrol. 2023, 36, 695–704. [Google Scholar] [CrossRef]
- Mishra, O.P.; Prasad, R. Microalbuminuria and serum cystatin C: Biomarkers for early detection of kidney injury in children with obesity. Indian J. Pediatr. 2020, 87, 991–992. [Google Scholar] [CrossRef]
- Bostan Gayret, Ö.; Taşdemir, M.; Erol, M.; Tekin Nacaroğlu, H.; Zengi, O.; Yiğit, Ö. Are there any new reliable markers to detect renal injury in obese children? Ren. Fail. 2018, 40, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Mak, R.H. Early markers of obesity-related injury in childhood. Pediatr. Nephrol. 2015, 30, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Marmarinos, A.; Garoufi, A.; Panagoulia, A.; Dimou, S.; Drakatos, A.; Paraskakis, I.; Gourgiotis, D. Cystatin-C levels in healthy children and adolescents: Influence of age, gender, body mass index and blood pressure. Clin. Biochem. 2016, 49, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Codoñer-Franch, P.; Ballester-Asensio, E.; Martínez-Pons, L.; Vallecillo-Hernández, J.; Navarro-Ruíz, A.; del Valle-Pérez, R. Cystatin C, cardiometabolic risk, and body composition in severely obese children. Pediatr. Nephrol. 2011, 26, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Önerli Salman, D.; Şıklar, Z.; Çullasİlarslan, E.N.; Özçakar, Z.B.; Kocaay, P.; Berberoğlu, M. Evaluation of Renal Function in Obese Children and Adolescents Using Serum Cystatin C Levels, Estimated Glomerular Filtration Rate Formulae and Proteinuria: Which is most Useful? J. Clin. Res. Pediatr. Endocrinol. 2019, 11, 46–54. [Google Scholar] [CrossRef]
- Oz-Sig, O.; Kara, O.; Erdogan, H. Microalbuminuria and serum cystatin C in prediction od early-renal insufficiency in children with obesity. Indian J. Pediatr. 2020, 87, 1009–1013. [Google Scholar] [CrossRef]
- Witzel, S.H.; Butts, K.; Filler, G. Elevated triglycerides may affect cystatin C recovery. Clin. Biochem. 2014, 47, 676–679. [Google Scholar] [CrossRef]
- Soliman, N.S.; Attia, G.F.; Ezat, S.E.; Hagras, M.M. Plasma C-Terminal Agrin Fragment (CAF) as an Early Marker for Kidney Function in Patients with Chronic Kidney Disease. Med. J. Cairo Univ. 2019, 87, 3297–3305. [Google Scholar]
- Rajeswari, M. Study of Serum C-Terminal Fragment of Agrin as a Marker for Kidney Function in Patients with Chronic Kidney Disease. Ph.D. Thesis, Dissertation for M.D Degree Branch—XIII (Biochemistry Department). Department of Biochemistry Thanjavur Medical College, Tamilnadu, India, May 2020. [Google Scholar]
- Devetzis, V.; Daryadel, A.; Roumeliotis, S.; Theodoridis, M.; Wagner, C.A.; Hettwer, S.; Huynh-Do, U.; Ploumis, P.; Arampatzis, S. C-Terminal Fragment of Agrin (CAF): A Novel Marker for Progression of Kidney Disease in Type 2 Diabetics. PLoS ONE 2015, 10, e0143524. [Google Scholar] [CrossRef]
- Jayakumar, C.; Nauta, F.L.; Bakker, S.J.; Bilo, H.; Gansevoort, R.T.; Johnson, M.H.; Ramesh, G. Netrin-1, a urinary proximal tubular injury marker, is elevated early in the time course of human diabetes. J. Nephrol. 2014, 27, 151–157. [Google Scholar] [CrossRef]
- Sarafidis, P.A.; Ruilope, L.M. Insulin resistance, hyperinsulinemia and renal injury: Mechanisms and implications. Am. J. Nephrol. 2006, 26, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Carullo, N.; Zicarelli, M.; Michael, A.; Faga, T.; Battaglia, Y.; Pisani, A.; Perticone, M.; Costa, D.; Ielapi, N.; Coppolino, G.; et al. Childhood Obesity: Insight into Kidney Involvement. Int. J. Mol. Sci. 2023, 24, 17400. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.J.; Sabater, M.; Moreno-Navarrete, J.M.; Pueyo, N.; Botas, P.; Delgado, E.; Ricart, W.; Frühbeck, G.; Fernández-Real, J.M. Serum and urinary concentrations of calprotectin as markers of insulin resistance and type 2 diabetes. Eur. J. Endocrinol. 2012, 167, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1892. [Google Scholar] [CrossRef]
Variable | Normal Weight Group F/M 18/15 | Obese Group F/M 68/57 | p | |
---|---|---|---|---|
Total cholesterol [mg/dL] | mean ± SD range (min–max) | 164.1 ± 14.8 133–188 | 179.2 ± 134.9 111–1611 | 0.537 |
HDL-cholesterol [mg/dL] | mean ± SD range (min–max) | 59 ± 9.6 34–78 | 42.2 ± 8.4 27–65 | # 5.7 × 10−6 |
LDL-cholesterol [mg/dL] | mean ± SD range (min–max) | 94.1 ± 14.9 65–121 | 100.4 ± 24.4 49–184 | 0.175 |
Triglycerides [mg/dL] | range (min–max) median quartile (25–75 Q) | 57–120 94 74–105 | 39–469 107 83.5–141 | * 0.00216 |
Creatinine [mg/dL] | mean ± SD range (min–max) | 0.736 ± 0.144 0.54–1.19 | 0.629 ± 0.123 0.37–0.89 | # 4.1 × 10−6 |
eGFR [mL/min/1.73 m2] | mean ± SD range (min–max) | 125 ± 13.2 96.0–160.0 | 154 ± 25.1 109–235 | # 4.3 × 10−6 |
Fasting glucose [mg/dL] | range (min–max) median quartile (25–75 Q) | 75–94 88 85–91 | 56–153 82 77–82 | * 0.0118 |
ACR [mg/g] | range (min–max) median quartile (25–75 Q) | 12.86–16.02 15.17 13.42–15.51 | 12.78–18.03 14.7 12–15.64 | * 0.168 |
Variable | Normal Weight Group F/M 18/15 | Obese Group F/M 68/57 | p | |
---|---|---|---|---|
Serum Cystatin C [ng/mL] n = 158 (33/125) | range (min–max) median quartile (25–75 Q) | 257.2–498.9 320.4 276.6–455.8 | 427.8–848.2 532.4 496.2–729.8 | #* 2.6 × 10−6 |
Serum t-CAF [pM] n = 72 (15/57) | range (min–max) median quartile (25–75 Q) | 92.2–137 107.1 99.7–117.1 | 398.3–585.8 482.3 450.7–516.7 | #* 1.6 × 10−6 |
Urine netrin-1 [ng/mg] | range (min–max) median quartile (25–75 Q) | 2.97–4.57 3.97 3.63–4.27 | 3.24–35.67 6.56 4.76–7.03 | #* 3.1 × 10−6 |
Urine α-GST [mLU/mg] | range (min–max) median quartile (25–75 Q) | 16–21.5 20 17.5–20.8 | 3.6–40 33.8 25.3–36.6 | #* 6.3 × 10−6 |
Urine π-GST [ng/mg] | range (min–max) median quartile (25–75 Q) | 1.46–2.2 1.99 1.8–2.08 | 0.54–4.01 3.5 2.34–3.72 | #* 4.2 × 10−6 |
Urine calbindin [pg/mg] | mean ± SD range (min–max) | 75.7 ± 5.9 57.7–83.4 | 113.2 ± 126 62.4–1505.5 | 0.0904 |
Urine calprotectin [ng/mg] | range (min–max) median quartile (25–75 Q) | 32.8–57.3 45.2 39.6–49.8 | 18.3–111,1 91.6 66.5–98.7 | #* 2.4 × 10−6 |
Variable | 2 ≤ SDS BMI ≤ 4 n = 65 F/M 31/34 | SDS BMI > 4 n = 60 F/M 34/26 | p | |
---|---|---|---|---|
Total cholesterol [mg/dL] | mean ± SD range (min–max) | 170.5 ± 30.9 121–259 | 193 ± 208.8 111–1611 | 0.414 |
HDL-cholesterol [mg/dL] | mean ± SD range (min–max) | 42.8 ± 8.2 27–64 | 40.1 ± 8.8 27–65 | 0.111 |
LDL-cholesterol [mg/dL] | range (min–max) median quartile (25–75 Q) | 49–184 101 81–123 | 58–142 99 82–115 | * 0.314 |
Triglycerides [mg/dL] | mean ± SD range (min–max) | 119.2 ± 57.8 52–369 | 131.8 ± 70.1 39–469 | 0.312 |
Fasting glucose [mg/dL] | mean ± SD range (min–max) | 82.5 ± 11.9 65–153 | 82.6 ± 9.1 56–105 | 0.952 |
eGFR [ml/min/1.73 m2] | mean ± SD range (min–max) | 152.9 ± 25.4 109.2–235.0 | 157.2 ± 26.3 117–223 | 0.398 |
ACR [mg/g] | mean ± SD range (min–max) | 13.6 ± 2.6 1.89–6.4 | 13.7 ± 3.2 1.8–18 | 0.945 |
Variable | 2 ≤ SDS BMI ≤ 4 n = 65 F/M 31/34 | SDS BMI > 4 n = 60 F/M 34/26 | p | |
---|---|---|---|---|
Serum Cystatin C [ng/mL] n = 110 (60/50) | mean ± SD range (min–max) | 602.4 ± 124.4 427.8–848.2 | 612.9 ± 123.1 447.1–793.9 | 0.659 |
Serum t-CAF [pM] n = 52 (28/24) | range (min–max) median quartile (25–75 Q) | 398.3–585.8 475.7 449.4–510.1 | 424.5–569.8 485 450.7–518 | * 0.417 |
Urine netrin-1 [ng/mg] | mean ± SD range (min–max) | 6.51 ± 4.04 3.78–35.67 | 6.88 ± 5.01 3.24–31.83 | 0.672 |
Urine α-GST [mlU/mg] | mean ± SD range (min–max) | 30.9 ± 6.7 7.9–39.7 | 30.5 ± 7.6 3.6–40 | 0.781 |
Urine π-GST [ng/mg] | mean ± SD range (min–max) | 3.11 ± 0.74 0.72–3.97 | 3.02 ± 0.85 0.54–4.01 | 0.548 |
Urine calbindin [pg/mg] | mean ± SD range (min–max) | 126 ± 181.4 67.1–1505.5 | 102 ± 13.4 62.4–127.5 | 0.354 |
Urine calprotectin [ng/mg] | mean ± SD range (min–max) | 83 ± 18.2 18.4–108.2 | 81.8 ± 21.3 18.3–111.1 | 0.767 |
r | p | |
---|---|---|
serum t-CAF—urine calbindin | 0.3 | 0.024 |
serum t-CAF—urine π-GST | 0.29 | 0.029 |
serum t-CAF—urine netrin-1 | 0.27 | 0.045 |
urine calbindin—urine netrin-1 | 0.67 | 0.000 |
urine calbindin—urine α-GST | 0.72 | 0.000 |
urine calbindin—urine π-GST | 0.83 | 0.000 |
urine calbindin—urine calprotectin | 0.69 | 0.000 |
urine calbindin—ACR | 0.72 | 0.000 |
urine netrin-1—urine α-GST | 0.72 | 0.000 |
urine netrin-1—urine π-GST | 0.78 | 0.000 |
urine netrin-1—urine calprotectin | 0.73 | 0.000 |
urine netrin-1—ACR | 0.74 | 0.000 |
urine α-GST—urine π-GST | 0.88 | 0.000 |
urine α-GST—urine calprotectin | 0.88 | 0.000 |
urine α-GST—ACR | 0.92 | 0.000 |
urine π-GST—urine calprotectin | 0.88 | 0.000 |
urine π-GST—ACR | 0.88 | 0.000 |
urine calprotectin—ACR | 0.87 | 0.000 |
Variable | Normal Weight Group F/M 18/15 | Obese Group F/M 68/57 | p | |
---|---|---|---|---|
Age [years] | mean ± SD range (min–max) | 12.9 ± 3.0 7.6–17.8 | 13.7 ± 2.84 8.0–17.9 | 0.172 |
Body weight [kg] | range (min–max) median quartile (25–75 Q) | 47.7 ± 11.9 48.1 38.6–55.4 | 85.7 ± 23.8 82.7 72.7–100 | #* 6.3 × 10−6 |
BMI | range (min–max) median quartile (25–75 Q) | 19.2 ± 2.3 19 17.7–20.3 | 32.1 ± 5.8 30.8 28.4–35.2 | #* 7.1 × 10−6 |
SDS BMI | range (min–max) median quartile (25–75 Q) | 0.061 ± 0.633 0.061 (−0.547)–0.563 | 4.02 ± 1.7 3.55 2.88–5.13 | #* 5.3 × 10−6 |
SBP [mmHg] | mean ± SD range (min–max) | 106.3 ± 8.9 85–120 | 117.2 ± 9.9 98–140 | # 1.4 × 10−6 |
DBP [mmHg] | mean ± SD range (min–max) | 65.3 ± 7.2 48–76 | 71.8 ± 8.0 50–92 | # 5.1 × 10−6 |
Variable | 2 ≤ SDS BMI ≤ 4 n = 65 F/M 31/34 | SDS BMI > 4 n = 60 F/M 34/26 | p | |
---|---|---|---|---|
Age [years] | mean ± SD range (min–max) | 13.7 ± 2.8 8–17.9 | 13.5 ± 2.9 8.2–17.8 | 0.729 |
Body weight [kg] | range (min–max) median quartile (25–75 Q) | 78.2 ± 17.1 78.2 70.5–88.4 | 98.6 ± 26.7 99.3 79.9–113.3 | #* 3.8 × 10−6 |
SBP [mmHg] | mean ± SD range (min–max) | 116.1 ± 9.4 98–140 | 119.3 ± 10.4 99–140 | 0.0959 |
DBP [mmHg] | mean ± SD range (min–max) | 70.3 ± 7.7 50–90 | 73.9 ± 7.9 59–92 | 0.0172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medyńska, A.; Chrzanowska, J.; Zubkiewicz-Kucharska, A.; Zwolińska, D. New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity. Int. J. Mol. Sci. 2024, 25, 10769. https://doi.org/10.3390/ijms251910769
Medyńska A, Chrzanowska J, Zubkiewicz-Kucharska A, Zwolińska D. New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity. International Journal of Molecular Sciences. 2024; 25(19):10769. https://doi.org/10.3390/ijms251910769
Chicago/Turabian StyleMedyńska, Anna, Joanna Chrzanowska, Agnieszka Zubkiewicz-Kucharska, and Danuta Zwolińska. 2024. "New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity" International Journal of Molecular Sciences 25, no. 19: 10769. https://doi.org/10.3390/ijms251910769
APA StyleMedyńska, A., Chrzanowska, J., Zubkiewicz-Kucharska, A., & Zwolińska, D. (2024). New Markers of Early Kidney Damage in Children and Adolescents with Simple Obesity. International Journal of Molecular Sciences, 25(19), 10769. https://doi.org/10.3390/ijms251910769