Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ε-τ phase transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 6886 KiB  
Article
Additive Manufacturing of MnAl(C)-Magnets
by Victor Pacheco, Björn Skårman, Fredrik Olsson, Dennis Karlsson, Hilmar Vidarsson and Martin Sahlberg
Alloys 2023, 2(2), 100-109; https://doi.org/10.3390/alloys2020007 - 15 May 2023
Cited by 4 | Viewed by 2880
Abstract
Permanent magnets are becoming more and more relevant for modern society. As the most widely used permanent magnets contain rare-earth elements, the increased dependence on these strategic elements is worrisome, and the pursuit for rare-earth free alternatives has become a strategic goal in [...] Read more.
Permanent magnets are becoming more and more relevant for modern society. As the most widely used permanent magnets contain rare-earth elements, the increased dependence on these strategic elements is worrisome, and the pursuit for rare-earth free alternatives has become a strategic goal in many countries. The metastable and ferromagnetic τ-phase that forms in the MnAl(C) system is one of the most promising alternatives, and since its discovery, major efforts have been made to improve its performance and realize its full potential. One major factor that has prevented a widespread commercialization of MnAl(C) permanent magnets is their relatively low coercivity. Here, we demonstrate that additive manufacturing, using laser powder bed fusion, can be used to produce MnAl in its high-temperature polymorph (ε, hcp), which can be subsequently transformed, through post-heat treatments to the ferromagnetic τ-phase. Although we successfully obtained a preferential orientation of the ε-phase with <001> parallel to the build direction, this did not translate into a strong preferential orientation in the τ-phase, thus indicating that the phase transformation occurs by the migration of incoherent interfaces. The MnAl(C) samples are characterized by a density of ≈4.4 g/cm3, a saturation magnetization of 39.3 Am2/kg, a coercivity of 168 kA/m, and a remanence of 17.5 Am2/kg. Full article
(This article belongs to the Special Issue Design of New Metallic Alloys for AM)
Show Figures

Figure 1

11 pages, 3405 KiB  
Article
Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting
by Hugo Martínez-Sánchez, Juan David Gámez, José Luis Valenzuela, Hernan Dario Colorado, Lorena Marín, Luis Alfredo Rodríguez, Etienne Snoeck, Christophe Gatel, Ligia Edith Zamora, Germán Antonio Pérez Alcázar and Jesús Anselmo Tabares
Molecules 2022, 27(23), 8347; https://doi.org/10.3390/molecules27238347 - 30 Nov 2022
Cited by 2 | Viewed by 2582
Abstract
The rare-earth-free MnAlC alloy is currently considered a very promising candidate for permanent magnet applications due to its high anisotropy field and relatively high saturation magnetization and Curie temperature, besides being a low-cost material. In this work, we presented a simple fabrication route [...] Read more.
The rare-earth-free MnAlC alloy is currently considered a very promising candidate for permanent magnet applications due to its high anisotropy field and relatively high saturation magnetization and Curie temperature, besides being a low-cost material. In this work, we presented a simple fabrication route that allows for obtaining a magnetically enhanced bulk τ-MnAlC magnet. In the fabrication process, an electric arc-melting method was carried out to melt ingots of MnAlC alloys. A two-step solution treatment at 1200 °C and 1100 °C allowed us to synthesize a pure room-temperature ε-MnAlC ingot that completely transformed into τ-MnAlC alloy, free of secondary phases, after an annealing treatment at 550 °C for 30 min. The Rietveld refinements and magnetization measurements demonstrated that the quenched process produces a phase-segregated ε-MnAlC alloy that is formed by two types of ε-phases due to local fluctuation of the Mn. Room-temperature hysteresis loops showed that our improved τ-MnAlC alloy exhibited a remanent magnetization of 42 Am2/kg, a coercive field of 0.2 T and a maximum energy product, (BH)max, of 6.07 kJ/m3, which is higher than those reported in previous works using a similar preparation route. Experimental evidence demonstrated that the synthesis of a pure room-temperature ε-MnAlC played an important role in the suppression of undesirable phases that deteriorate the permanent magnet properties of the τ-MnAlC. Finally, magnetic images recorded by Lorentz microscopy allowed us to observe the microstructure and magnetic domain walls of the optimized τ-MnAlC. The presence of magnetic contrasts in all the observed grains allowed us to confirm the high-quality ferromagnetic behavior of the system. Full article
Show Figures

Figure 1

12 pages, 2307 KiB  
Article
Thermal Stability, Blocking Regime and Superparamagnetic Behavior in Mn-Al-C Melt Spun Ribbons
by Alina Daniela Crisan, Aurel Leca, Ioan Dan and Ovidiu Crisan
Nanomaterials 2021, 11(11), 2898; https://doi.org/10.3390/nano11112898 - 29 Oct 2021
Cited by 3 | Viewed by 3100
Abstract
Alloys possessing nominal compositions Mn53Al45C2 and Mn52Al46C2 were prepared by the melt spinning method and were subjected to complex structural, morphological and magnetic investigations. As these alloys can exhibit tetragonal L10-type [...] Read more.
Alloys possessing nominal compositions Mn53Al45C2 and Mn52Al46C2 were prepared by the melt spinning method and were subjected to complex structural, morphological and magnetic investigations. As these alloys can exhibit tetragonal L10-type and τ phase, they have good potential as rare earth (RE)—free magnets. It is, therefore, important to monitor the ε–τ phase transformation and the stability and the magnetic features of the tetragonal phase in an entire temperature interval. By using synchrotron X-ray diffraction, it has been proven that the ε–τ phase transformation occurs gradually, with the τ phase becoming predominant only after 450 °C. Moreover, this phase has been proven to be quite stable without any grain growth even at the highest temperature investigated at 800 °C. Low temperature behavior was thoroughly investigated by using a complex combination of major and minor hysteresis loops combined with the zero field cooled-field cooled magnetization protocols (ZFC-FC). Two different regimes, blocking and superparamagnetic, were documented. A spin reorientation transition was proven to occur at 55 K while a maximum magnetization observed in ZFC-FC curves proved that at about 75 K, a transition from ferro to superparamagnetic state occurs. The existence of a blocking regime below 55 K that is characteristic to nanogranular systems with superparamagnetic behavior has shown further development towards obtaining RE-free magnets. Full article
Show Figures

Figure 1

13 pages, 1731 KiB  
Article
Magnetism and ε-τ Phase Transformation in MnAl-Based Nanocomposite Magnets
by Alina Daniela Crisan, Aurel Leca, Cristina Bartha, Ioan Dan and Ovidiu Crisan
Nanomaterials 2021, 11(4), 896; https://doi.org/10.3390/nano11040896 - 31 Mar 2021
Cited by 5 | Viewed by 2681
Abstract
Melt spun ribbons of Mn53Al45C2 and Mn52Al46C2 have been synthesized by rapid quenching of the melt with the purpose of monitoring the ε-τ phase transformation to show technologically feasible ways to increase magnetic [...] Read more.
Melt spun ribbons of Mn53Al45C2 and Mn52Al46C2 have been synthesized by rapid quenching of the melt with the purpose of monitoring the ε-τ phase transformation to show technologically feasible ways to increase magnetic parameters and to illustrate the viability of these alloys as the next generation of rare earth (RE)-free magnets. By differential scanning calorimetry (DSC), activation energies and temperatures of onset of the ε-τ phase transformation were obtained. Structural analysis was performed using X-ray diffraction (XRD) and the resulting XRD patterns were quantitatively assessed using full profile Rietveld-type analysis. Appropriate annealing was performed in order to enable the ε-τ phase transformation. While hcp ε-phase was found to be predominant in the as-cast samples, after appropriate annealing, the tetragonal τ-phase, the one that furnishes the relevant magnetic response, was found to be predominant with an abundance of about 90%. The data suggested a mechanism of hcp ε-phase decomposition controlled by the segregation towards the interfacial regions, having the rate of transformation governed by antiphase boundary diffusion processes. Magnetic measurements of annealed sample Mn53Al45C2, consisting of predominant tetragonal τ-phase, showed high values of magnetization and increased coercivity, consistent with an energy product of about 10 MGOe, similar with previously reported magnetization measurements, providing further insight into the realization of future class of RE-free low-cost permanent magnets. Full article
Show Figures

Figure 1

10 pages, 5395 KiB  
Article
In situ Observation of Phase Transformation in MnAl(C) Magnetic Materials
by Ping-Zhan Si, Hui-Dong Qian, Chul-Jin Choi, Jihoon Park, Sangho Han, Hong-Liang Ge and Kiran P. Shinde
Materials 2017, 10(9), 1016; https://doi.org/10.3390/ma10091016 - 31 Aug 2017
Cited by 28 | Viewed by 5944
Abstract
The phase transformation in two modes, including both displacive and massive growth of τ-phase from ε-MnAl(C), was observed by in situ transmission electron microscopy. The exact temperature range for different phase transformation modes was determined by magnetic measurements. The displacive growth of ε→τ [...] Read more.
The phase transformation in two modes, including both displacive and massive growth of τ-phase from ε-MnAl(C), was observed by in situ transmission electron microscopy. The exact temperature range for different phase transformation modes was determined by magnetic measurements. The displacive growth of ε→τ in Mn54Al46 (or Mn54Al46C2.44) occurs at temperatures below 650 K (or 766 K), above which both modes coexist. One-third or less of the ε-phase can be transformed into τ-phase via displacive mode while the remaining two-thirds or more via massive mode. In bulk τ-phase, most τ-nanocrystals formed via displacive mode are distributed in the matrix of large τ-grains that formed via massive mode. The typical massive growth rate of the τ-phase is 8–60 nm/s, while the displacive growth rate is low. A more complete understanding of the ε→τ phase transformations in the MnAl-based magnets was provided in this work, based on which the annealing process for ε→τ was optimized and thus high purity τ-phase with high saturation magnetization was obtained. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

12 pages, 606 KiB  
Article
Magnetism-Structure Correlations during the ε→τ Transformation in Rapidly-Solidified MnAl Nanostructured Alloys
by Felix Jiménez-Villacorta, Joshua L. Marion, John T. Oldham, Maria. Daniil, Matthew A. Willard and Laura H. Lewis
Metals 2014, 4(1), 8-19; https://doi.org/10.3390/met4010008 - 21 Jan 2014
Cited by 43 | Viewed by 8504
Abstract
Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF) ε-phase to the target ferromagnetic (FM) L10 τ-phase are investigated. The as-solidified material exhibits a majority hexagonal ε-MnAl phase revealing [...] Read more.
Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF) ε-phase to the target ferromagnetic (FM) L10 τ-phase are investigated. The as-solidified material exhibits a majority hexagonal ε-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature TB~95 K (Hex~13 kOe at 10 K), ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature Tanneal ≈ 568 K (295 °C) promotes the nucleation of the metastable L10 τ-MnAl phase at the expense of the parent ε-phase, donating an increasingly hard ferromagnetic character. The onset of the ε→τ transformation occurs at a temperature that is ~100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy. Full article
(This article belongs to the Special Issue Manganese-based Permanent Magnets)
Show Figures

Figure 1

Back to TopTop