Thermal Stability, Blocking Regime and Superparamagnetic Behavior in Mn-Al-C Melt Spun Ribbons
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SEM Results
3.2. XRD Results
3.3. Magnetic Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popov, V.V.; Maccari, F.; Radulov, I.A.; Kovalevsky, A.; Katz-Demyanetz, A.; Bamberger, M. Microstructure and magnetic properties of Mn-Al-C permanent magnets produced by various techniques. Manuf. Rev. 2021, 8, 10. [Google Scholar] [CrossRef]
- Thongsamrit, W.; Charoensuk, T.; Saetang, P.; Jantaratana, P.; Ruttanapun, C.; Sirisathitkul, C. Effects of Carbon Doping and Annealing Temperature on Magnetic MnAl Powders and MnAl Polymeric Composites. Appl. Sci. 2021, 11, 2067. [Google Scholar] [CrossRef]
- Tyrman, M.; Ahmim, S.; Pasko, A.; Etgens, V.; Mazaleyrat, F.; Quetel-Weben, S.; Perrière, L.; Guillot, I. Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering. AIP Adv. 2018, 8, 056217. [Google Scholar] [CrossRef]
- Zeng, Q.; Baker, I.; Cui, J.B.; Yan, Z.C. Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials. J. Magn. Magn. Mater. 2007, 308, 214–226. [Google Scholar] [CrossRef]
- Liu, Z.W.; Chen, C.; Zheng, Z.G.; Tan, B.H.; Ramanujan, R.V. Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements. J. Mater. Sci. 2012, 47, 2333–2338. [Google Scholar] [CrossRef]
- Crisan, A.D.; Vasiliu, F.; Mercioniu, I.; Crisan, O. Role of Ag addition in L1(0) ordering of FePt-based nanocomposite magnets. Philos. Mag. 2014, 94, 174–189. [Google Scholar] [CrossRef]
- Lee, J.G.; Wang, X.L.; Zhang, Z.D.; Choi, C.J. Effect of mechanical milling and heat treatment on the structure and magnetic properties of gas atomized Mn–Al alloy powders. Thin Solid Films 2011, 519, 8312–8316. [Google Scholar] [CrossRef]
- Saravanan, P.; Vinod, V.T.P.; Černík, M.; Selvapriya, A.; Chakravarty, D.; Kamat, S.V. Processing of Mn–Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing. J. Magn. Magn. Mater. 2015, 374, 427–432. [Google Scholar] [CrossRef]
- Coey, J.M.D. Permanent magnets: Plugging the gap. Scr. Mater. 2012, 67, 524. [Google Scholar] [CrossRef]
- Coey, J.M.D. New permanent magnets; manganese compounds. J. Phys. Condens. Matter 2014, 26, 064211. [Google Scholar] [CrossRef]
- Umetsu, R.Y.; Sakuma, A.; Fukamichi, K. Magnetic anisotropy energy of antiferromagnetic L10-type equiatomic Mn alloys. Appl. Phys. Lett. 2006, 89, 052504. [Google Scholar] [CrossRef]
- Ohtani, T.; Kato, N.; Kojima, S.; Kojima, K.; Sakamoto, Y.; Konno, I.; Tsukahara, M.; Kubo, T. Magnetic properties of Mn-Al-C permanent magnet alloys. IEEE Trans. Magn. 1977, 13, 1328–1330. [Google Scholar] [CrossRef]
- Kōno, H. On the Ferromagnetic Phase in Manganese-Aluminum System. J. Phys. Soc. Jpn. 1958, 13, 1444–1451. [Google Scholar] [CrossRef]
- Koch, A.J.J.; Hokkeling, P.; Steeg, M.G.V.D.; De Vos, K.J. New Material for Permanent Magnets on a Base of Mn and Al. J. Appl. Phys. 1960, 31, S75–S77. [Google Scholar] [CrossRef]
- Shukla, A.; Pelton, A.D. Thermodynamic Assessment of the Al-Mn and Mg-Al-Mn Systems. J. Phase Equilibria Diffus. 2008, 30, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Pareti, L.; Bolzoni, F.; Leccabue, F.; Yermakov, A. Magnetic anisotropy of MnAl and MnAlC permanent magnet materials. J. Appl. Phys. 1986, 59, 3824–3828. [Google Scholar] [CrossRef]
- Crisan, O.; Crisan, A.D.; Mercioniu, I.; Nicula, R.; Vasiliu, F. Development and structural characterization of exchange-spring-like nanomagnets in (Fe, Co)-Pt bulk nanocrystalline alloys. J. Magn. Magn. Mater. 2016, 401, 711–715. [Google Scholar] [CrossRef]
- Cui, J.; Kramer, M.; Zhou, L.; Liu, F.; Gabay, A.; Hadjipanayis, G.; Balasubramanian, B.; Sellmyer, D. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018, 158, 118–137. [Google Scholar] [CrossRef]
- Crisan, O.; Crisan, A.D.; Mercioniu, I.; Pantelica, D.; Pantelica, A.; Vaucher, S.; Nicula, R.; Stir, M.; Vasiliu, F. Effect of Mn addition on the thermal stability and magnetic properties of rapidly-quenched L10 FePt alloys. Intermetallics 2015, 65, 81–87. [Google Scholar] [CrossRef]
- Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe–Pt–Ag–B bulk nanocomposite magnets. J. Alloys Compd. 2015, 622, 865–870. [Google Scholar] [CrossRef]
- Crisan, A.D.; Bednarcik, J.; Michalik, Š.; Crisan, O. In situ monitoring of disorder–order A1–L10 FePt phase transformation in nanocomposite FePt-based alloys. J. Alloys Compd. 2014, 615 (Suppl. S1), S188–S191. [Google Scholar] [CrossRef]
- Crisan, A.D.; Vasiliu, F.; Nicula, R.; Bartha, C.; Mercioniu, I.; Crisan, O. Thermodynamic, structural and magnetic studies of phase transformations in MnAl nanocomposite alloys. Mater. Charact. 2018, 140, 1–8. [Google Scholar] [CrossRef]
- Müllner, P.; Bürgler, B.E.; Heinrich, H.; Sologubenko, A.S.; Kostorz, G. Observation of the shear mode of the ε → τ phase transformation in a Mn-Al-C single crystal. Philos. Mag. Lett. 2002, 82, 71–79. [Google Scholar] [CrossRef]
- Yanar, C.; Wiezorek, J.M.K.; Soffa, W.A.; Radmilovic, V. Massive transformation and the formation of the ferromagnetic L10 phase in manganese-aluminum-based alloys. Metall. Mater. Trans. A 2002, 33, 2413–2423. [Google Scholar] [CrossRef]
- Kurtulus, Y.; Dronskowski, R. Electronic structure, chemical bonding, and spin polarization in ferromagnetic MnAl. J. Solid State Chem. 2003, 176, 390–399. [Google Scholar] [CrossRef]
- Sakuma, A. Electronic Structure and Magnetocrystalline Anisotropy Energy of MnAl. J. Phys. Soc. Jpn. 1994, 63, 1422–1428. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, Y.K.; Bae, S.; Lee, J.G.; Jalli, J.; Abo, G.S.; Neveu, N.; Kim, S.G.; Choi, C.J. Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet. J. Appl. Phys. 2010, 107, 09A731. [Google Scholar] [CrossRef]
- Manchanda, P.; Kashyap, A.; Shield, J.; Lewis, L.; Skomski, R. Magnetic properties of Fe-doped MnAl. J. Magn. Magn. Mater. 2014, 365, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Edström, A.; Chico, J.; Jakobsson, A.; Bergman, A.; Rusz, J. Electronic structure and magnetic properties of L10 binary alloys. Phys. Rev. B 2014, 90, 014402. [Google Scholar] [CrossRef] [Green Version]
- Houseman, E.L.; Jakubovics, J.P. Domain structure and magnetization processes in MnAl and MnAlC alloys. J. Magn. Magn. Mater. 1983, 31–34, 1005–1006. [Google Scholar] [CrossRef]
- Fang, H.; Cedervall, J.; Casado, F.J.M.; Matej, Z.; Bednarcik, J.; Ångström, J.; Berastegui, P.; Sahlberg, M. Insights into formation and stability of τ-MnAlZx (Z = C and B). J. Alloys Compd. 2017, 692, 198–203. [Google Scholar] [CrossRef]
- Dreizler, W.; Menth, A. Transformation Kinetics of the Ferromagnetic Alloy Mn-Al-C. IEEE Trans. Magn. 1980, 16, 534–536. [Google Scholar] [CrossRef]
- Janotova, I.; Sr, P.S.; Svec, P.; Mat’ko, I.; Janickovic, D.; Zigo, J.; Mihalkovic, M.; Marcin, J.; Skorvanek, I. Phase analysis and structure of rapidly quenched Al-Mn systems. J. Alloys Compd. 2017, 707, 137. [Google Scholar] [CrossRef]
- Lu, W.; Niu, J.; Wang, T.; Xia, K.; Xiang, Z.; Song, Y.; Mi, Z.; Zhang, W.; Tian, W.; Yan, Y. Phase transformation kinetics and microstructural evolution of MnAl permanent magnet alloys. J. Alloys Compd. 2016, 685, 992–996. [Google Scholar] [CrossRef]
- Mican, S.; Benea, D.; Hirian, R.; Gavrea, R.; Isnard, O.; Pop, V.; Coldea, M. Structural, electronic and magnetic properties of the Mn50Al46Ni4 alloy. J. Magn. Magn. Mater. 2016, 401, 841–847. [Google Scholar] [CrossRef]
- Shao, Z.; Zhao, H.; Zeng, J.; Zhang, Y.; Yang, W.; Lai, Y.; Guo, S.; Du, H.; Wang, C.; Yang, Y.; et al. One step preparation of pure τ-MnAl phase with high magnetization using strip casting method. AIP Adv. 2017, 7, 056213. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Villacorta, F.; Marion, J.L.; Oldham, J.T.; Daniil, M.; Willard, M.A.; Lewis, L.H. Magnetism-Structure Correlations during the ε→τ Transformation in Rapidly-Solidified MnAl Nanostructured Alloys. Metals 2014, 4, 8–19. [Google Scholar] [CrossRef]
- Obi, O.; Burns, L.; Chen, Y.; Fitchorov, T.; Kim, S.; Hsu, K.; Heiman, D.; Lewis, L.H.; Harris, V.G. Magnetic and structural properties of heat-treated high-moment mechanically alloyed MnAlC powders. J. Alloys Compd. 2014, 582, 598–602. [Google Scholar] [CrossRef]
- Fazakas, E.; Varga, L.K.; Mazaleyrat, F. Preparation of nanocrystalline Mn–Al–C magnets by melt spinning and subsequent heat treatments. J. Alloys Compd. 2007, 434–435, 611–613. [Google Scholar] [CrossRef]
- Fang, H.; Kontos, S.; Ångström, J.; Cedervall, J.; Svedlindh, P.; Gunnarsson, K.; Sahlberg, M. Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets. J. Solid State Chem. 2016, 237, 300–306. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Zhao, J.; Schuster, J.C.; Weitzer, F.; Schmid-Fetzer, R. Reassessment of the Al-Mn system and a thermodynamic description of the Al-Mg-Mn system. Int. J. Mater. Res. 2007, 98, 855–871. [Google Scholar] [CrossRef]
- Mitsui, Y.; Kobayashi, R.; Takanaga, Y.; Takaki, A.; Umetsu, R.Y.; Takahashi, K.; Mizuguchi, M.; Koyama, K. Different Magnetic Field Effects on the ε−τ Phase Transformation Between (Mn, Zn)–Al and Mn–Al–C. IEEE Trans. Magn. 2019, 55, 2100704. [Google Scholar] [CrossRef]
- Dehghan, H.; Ebrahimi, S.A.S. Effect of hot deformation conditions on magnetic properties of rare earth free magnetic Mn-Al-C alloy. J. Magn. Magn. Mater. 2019, 477, 55–61. [Google Scholar] [CrossRef]
- Su, K.P.; Hu, S.L.; Wang, H.O.; Huang, S.; Chen, X.X.; Liu, J.J.; Huo, D.X.; Ma, L.; Liu, Z.W. Structural and magnetic properties of Mn50Al46Cu4C3 flakes obtained by surfactant-assisted ball milling. Mater. Res. Express 2019, 6, 106125. [Google Scholar] [CrossRef]
- Kobayashi, R.; Mitsui, Y.; Umetsu, R.Y.; Mizuguchi, M.; Koyama, K. Synthesis of Ferromagnetic τ-Mn-Al-C by Reactive Sintering. Mater. Trans. 2021, 62, 130–134. [Google Scholar] [CrossRef]
- Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.; Bahmad, L. Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure. Phys. B Condens. Matter 2015, 472, 19–24. [Google Scholar] [CrossRef]
- Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M. Magnetic properties of the Ising system on alternate layers of a hexagonal lattice. Phys. A Stat. Mech. Appl. 2018, 491, 1028–1039. [Google Scholar] [CrossRef]
- Crisan, A.D.; Leca, A.; Bartha, C.; Dan, I.; Crisan, O. Magnetism and ε-τ Phase Transformation in MnAl-Based Nanocomposite Magnets. Nanomaterials 2021, 11, 896. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures, 2nd ed.; John Wiley: New York, NY, USA, 1974. [Google Scholar]
- Balzar, D. Voigt-function model in diffraction line-broadening analysis. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 321. [Google Scholar] [CrossRef]
- Balzar, D. BREADTH-a program for analyzing diffraction line broadening. J. Appl. Cryst. 1995, 28, 244–245. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray Diffraction; Addison Wesley: Reading, MA, USA, 1969. [Google Scholar]
- Gamez, J.D.; Martínez-Sánchez, H.; Valenzuela, J.L.; Marín, L.; Rodríguez, L.A.; Snoeck, E.; Zamora, L.E.; Alcázar, G.A.P.; Tabares, J.A. Magnetic τ-MnAlC thin film fabrication by high-vacuum thermal evaporation. Mater. Lett. 2021, 293, 129657. [Google Scholar] [CrossRef]
- Crisan, A.D.; Nicula, R.; Crisan, O.; Burkel, E. Thermally and pressure activated phase evolution in Fe–Pt–Nb–B melt spun ribbons. Mater. Sci. Eng 2007, 27, 1280–1282. [Google Scholar] [CrossRef]
- Crisan, A.D.; Crisan, O.; Randrianantoandro, N.; Valeanu, M.; Morariu, M.; Burkel, E. Crystallization processes in Fe–Pt–Nb–B melt spun ribbons. Mater. Sci. Eng C 2007, 27, 1283–1285. [Google Scholar] [CrossRef]
- Von Haeften, K.; Binns, C.; Brewer, A.; Crisan, O.; Howes, P.B.; Lowe, M.P.; Sibbley-Allen, C.; Thornton, S.C. A novel approach towards the production of luminescent silicon nanoparticles: Sputtering, gas aggregation and co-deposition with H2O. Eur. Phys. J. D 2009, 52, 11–14. [Google Scholar] [CrossRef]
- Crisan, A.D.; Crisan, O. Direct formation of L10 FePt in as-cast FePt-based magnetic nanocomposite ribbons without post-synthesis annealing. J. Phys. D Appl. Phys. 2011, 44, 365002. [Google Scholar] [CrossRef]
- Crisan, O.; Le Breton, J.M.; Jianu, A.; Teillet, J.; Filoti, G. Structural properties of amorphous and nanocrystallized Fe-Cu-Nb-Si-B and Fe-Gd-Cu-Nb-Si-B ribbons. J. Alloys Compd. 1997, 262, 381–389. [Google Scholar] [CrossRef]
- Rosenberg, M.; Kuncser, V.; Crisan, O.; Hernando, A.; Navarro, E.; Filoti, G. A Mossbauer spectroscopy and magnetic study of FeRh. J. Magn. Magn. Mater. 1998, 177, 135–136. [Google Scholar] [CrossRef]
- Crisan, O.; Labaye, Y.; Berger, L.; Coey, J.M.D.; Greneche, J.M. Exchange coupling effects in nanocrystalline alloys studied by Monte Carlo simulation. J. Appl. Phys. 2002, 91, 8727–8729. [Google Scholar] [CrossRef]
- Crisan, O.; Crisan, A.D.; Randrianantoandro, N.; Nicula, R.; Burkel, E. Crystallization processes and phase evolution in amorphous Fe–Pt–Nb–B alloys. J. Alloys Compd. 2007, 440, L3–L7. [Google Scholar] [CrossRef]
- Crisan, O.; Angelakeris, M.; Flevaris, N.K.; Filoti, G. Magnetism and Anisotropy in Core-Shell Nanoparticles. J. Optoelectron. Adv. Mater. 2003, 5, 959–962. [Google Scholar]
- Crisan, O.; Greneche, J.M.; le Breton, J.M.; Crisan, A.D.; Labaye, Y.; Berger, L.; Filoti, G. Magnetism of nanocrystalline Finemet alloy: Experiment and simulation. Eur. Phys. J. B 2003, 34, 155–162. [Google Scholar] [CrossRef]
- McCurrie, R.; Rickman, J.; Dunk, P.; Hawkridge, D. Dependence of the permanent magnet properties of Mn55Al45 on particle size. IEEE Trans. Magn. 1978, 14, 682–684. [Google Scholar] [CrossRef]
- Zijlstra, H. Coercivity and wall motion. IEEE Trans. Magn. 1970, 6, 179–181. [Google Scholar] [CrossRef]
- Jakubovics, J.; Jolly, T. The effect of crystal defects on the domain structure of Mn-Al alloys. Phys. B + C 1977, 86–88, 1357–1359. [Google Scholar] [CrossRef]
- Bance, S.; Bittner, F.; Woodcock, T.; Schultz, L.; Schrefl, T. Role of twin and anti-phase defects in MnAl permanent magnets. Acta Mater. 2017, 131, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Bittner, F.; Freudenberger, J.; Schultz, L.; Woodcock, T. The impact of dislocations on coercivity in L10-MnAl. J. Alloys Compd. 2017, 704, 528–536. [Google Scholar] [CrossRef]
- Thielsch, J.; Bittner, F.; Woodcock, T.G. Magnetization reversal processes in hot-extruded τ-MnAl-C. J. Magn. Magn Mater. 2017, 426, 25–31. [Google Scholar] [CrossRef]
- Livingston, J.D. A review of coercivity mechanisms (invited). J. Appl. Phys. 1981, 52, 2544–2548. [Google Scholar] [CrossRef]
- Lucis, M.J.; Prost, T.E.; Jiang, X.; Wang, M.; Shield, J.E. Phase Transitions in Mechanically Milled Mn-Al-C Permanent Magnets. Metals 2014, 4, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Jian, H.; Skokov, K.P.; Gutfleisch, O. Microstructure and magnetic properties of Mn–Al–C alloy powders prepared by ball milling. J. Alloys Compd. 2015, 622, 524–528. [Google Scholar] [CrossRef]
- Bittner, F.; Schultz, L.; Woodcock, T. The role of the interface distribution in the decomposition of metastable L10-Mn54Al46. J. Alloys Compd. 2017, 727, 1095–1099. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisan, A.D.; Leca, A.; Dan, I.; Crisan, O. Thermal Stability, Blocking Regime and Superparamagnetic Behavior in Mn-Al-C Melt Spun Ribbons. Nanomaterials 2021, 11, 2898. https://doi.org/10.3390/nano11112898
Crisan AD, Leca A, Dan I, Crisan O. Thermal Stability, Blocking Regime and Superparamagnetic Behavior in Mn-Al-C Melt Spun Ribbons. Nanomaterials. 2021; 11(11):2898. https://doi.org/10.3390/nano11112898
Chicago/Turabian StyleCrisan, Alina Daniela, Aurel Leca, Ioan Dan, and Ovidiu Crisan. 2021. "Thermal Stability, Blocking Regime and Superparamagnetic Behavior in Mn-Al-C Melt Spun Ribbons" Nanomaterials 11, no. 11: 2898. https://doi.org/10.3390/nano11112898