Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = γ-secretase complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1801 KiB  
Article
Presenilin-1 Familial Alzheimer Mutations Impair γ-Secretase Cleavage of APP Through Stabilized Enzyme–Substrate Complex Formation
by Sujan Devkota, Masato Maesako and Michael S. Wolfe
Biomolecules 2025, 15(7), 955; https://doi.org/10.3390/biom15070955 - 1 Jul 2025
Viewed by 369
Abstract
Familial Alzheimer’s disease (FAD) is caused by dominant missense mutations in amyloid precursor protein (APP) and presenilin-1 (PSEN1), the catalytic component of γ-secretase that generates amyloid β-peptides (Aβ) from the APP C-terminal fragment C99. While most FAD mutations increase the ratio of aggregation-prone [...] Read more.
Familial Alzheimer’s disease (FAD) is caused by dominant missense mutations in amyloid precursor protein (APP) and presenilin-1 (PSEN1), the catalytic component of γ-secretase that generates amyloid β-peptides (Aβ) from the APP C-terminal fragment C99. While most FAD mutations increase the ratio of aggregation-prone Aβ42 relative to Aβ40, consistent with the amyloid hypothesis of Alzheimer pathogenesis, some mutations do not increase this ratio. The γ-secretase complex produces amyloid β-peptide (Aβ) through processive cleavage along two pathways: C99 → Aβ49 → Aβ46 → Aβ43 → Aβ40 and C99 → Aβ48 → Aβ45 → Aβ42 → Aβ38. Understanding how FAD mutations affect the multistep γ-secretase cleavage process is critical for elucidating disease pathogenesis. In a recent study, we discovered that FAD mutations lead to stalled γ-secretase/substrate complexes that trigger synaptic loss independently of Aβ production. Here, we further investigate this “stalled complex” hypothesis, focusing on five additional PSEN1 FAD mutations (M84V, C92S, Y115H, T116I, and M139V). A comprehensive biochemical analysis revealed that all five mutations led to substantially reduced initial proteolysis of C99 to Aβ49 or Aβ48 as well as deficiencies in one or more subsequent trimming steps. Results from fluorescence lifetime imaging microscopy support increased stabilization of enzyme–substrate complexes by all five FAD mutations. These findings provide further support for the stalled complex hypothesis, highlighting that FAD mutations impair γ-secretase function by promoting the accumulation of stalled enzyme–substrate complexes. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

46 pages, 7528 KiB  
Review
Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
by Eun Hee Ahn and Jae-Bong Park
Cells 2025, 14(2), 89; https://doi.org/10.3390/cells14020089 - 10 Jan 2025
Cited by 7 | Viewed by 3576
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer’s disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant [...] Read more.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer’s disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD. Full article
Show Figures

Figure 1

30 pages, 400 KiB  
Review
Novel Therapeutics in Soft Tissue Sarcoma
by Leonidas Mavroeidis, Andrea Napolitano, Paul Huang and Robin L. Jones
Cancers 2025, 17(1), 10; https://doi.org/10.3390/cancers17010010 - 24 Dec 2024
Cited by 4 | Viewed by 2702
Abstract
There has been noteworthy progress in molecular characterisation and therapeutics in soft tissue sarcomas. Novel agents have gained regulatory approval by the FDA. Examples are the tyrosine kinase inhibitors avapritinib and ripretinib in gastrointestinal stromal tumours (GIST), the immune check point inhibitor atezolizumab [...] Read more.
There has been noteworthy progress in molecular characterisation and therapeutics in soft tissue sarcomas. Novel agents have gained regulatory approval by the FDA. Examples are the tyrosine kinase inhibitors avapritinib and ripretinib in gastrointestinal stromal tumours (GIST), the immune check point inhibitor atezolizumab in alveolar soft part tissue sarcoma, the γ-secretase inhibitor nirogacestat in desmoid tumours, the NTRK inhibitors larotrectinib and entrectinib in tumours with NTRK fusions, the mTOR inhibitor nab-sirolimus in PEComa, and the EZH-2 inhibitor tazemetostat in epithelioid sarcoma. The FDA has also recently granted accelerated approval for autologous T-cell therapy with afami-cel in patients with HLA-A*02 and MAGE-A4-expressing synovial sarcoma. There are other promising treatments that are still investigational, such as MDM2 and CDK4/6 inhibitors in well-/dedifferentiated liposarcoma, immune checkpoint inhibitors in the head and neck angiosarcoma and a subset of patients with undifferentiated pleomorphic sarcoma, and PARP inhibitors in leiomyosarcoma. The challenges in drug development in soft tissue sarcoma are due to the rarity and the molecular heterogeneity of the disease and the fact that many subtypes are associated with complex karyotypes or non-targetable molecular alterations. We believe that progress maybe possible with a better understanding of the complex biology, the development of novel compounds for difficult targets such as proteolysis targeting chimeras (Protacs), the utilisation of modern clinical trial designs, and enhanced collaboration of academia with industry to develop treatments with a strong biologic rationale. Full article
(This article belongs to the Special Issue Advances in Cancer Therapeutics)
17 pages, 841 KiB  
Article
Comprehensive Catalog of Variants Potentially Associated with Hidradenitis Suppurativa, Including Newly Identified Variants from a Cohort of 100 Patients
by Kévin Muret, Vincent Le Goff, Claire Dandine-Roulland, Claire Hotz, Francette Jean-Louis, Bertrand Boisson, Lilia Mesrob, Florian Sandron, Delphine Daian, Robert Olaso, Edith Le Floch, Vincent Meyer, Pierre Wolkenstein, Jean-Laurent Casanova, Yves Lévy, Eric Bonnet, Jean-François Deleuze and Sophie Hüe
Int. J. Mol. Sci. 2024, 25(19), 10374; https://doi.org/10.3390/ijms251910374 - 26 Sep 2024
Viewed by 2161
Abstract
Hidradenitis suppurativa (HS) is a chronic skin disease characterized by painful, recurrent abscesses, nodules, and scarring, primarily in skin folds. The exact causes of HS are multifactorial, involving genetic, hormonal, and environmental factors. It is associated with systemic diseases such as metabolic syndrome [...] Read more.
Hidradenitis suppurativa (HS) is a chronic skin disease characterized by painful, recurrent abscesses, nodules, and scarring, primarily in skin folds. The exact causes of HS are multifactorial, involving genetic, hormonal, and environmental factors. It is associated with systemic diseases such as metabolic syndrome and inflammatory bowel disease. Genetic studies have identified mutations in the γ-secretase complex that affect Notch signaling pathways critical for skin cell regulation. Despite its high heritability, most reported HS cases do not follow a simple genetic pattern. In this article, we performed whole-exome sequencing (WES) on a cohort of 100 individuals with HS, and we provide a comprehensive review of the variants known to be described or associated with HS. 91 variants were associated with the γ-secretase complex, and 78 variants were associated with other genes involved in the Notch pathway, keratinization, or immune response. Through this new genetic analysis, we have added ten new variants to the existing catalogs. All variants are available in a .vcf file and are provided as a resource for future studies. Full article
(This article belongs to the Special Issue Hidradenitis Suppurativa and Related Disorders)
Show Figures

Figure 1

16 pages, 12721 KiB  
Article
The Suppression of Ubiquitin C-Terminal Hydrolase L1 Promotes the Transdifferentiation of Auditory Supporting Cells into Hair Cells by Regulating the mTOR Pathway
by Yeon Ju Kim, In Hye Jeong, Jung Ho Ha, Young Sun Kim, Siung Sung, Jeong Hun Jang and Yun-Hoon Choung
Cells 2024, 13(9), 737; https://doi.org/10.3390/cells13090737 - 24 Apr 2024
Cited by 1 | Viewed by 2043
Abstract
In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development [...] Read more.
In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters’ cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway. Full article
Show Figures

Figure 1

21 pages, 7404 KiB  
Article
GW501516-Mediated Targeting of Tetraspanin 15 Regulates ADAM10-Dependent N-Cadherin Cleavage in Invasive Bladder Cancer Cells
by Alexandre Barbaud, Isabelle Lascombe, Adeline Péchery, Sergen Arslan, François Kleinclauss and Sylvie Fauconnet
Cells 2024, 13(8), 708; https://doi.org/10.3390/cells13080708 - 19 Apr 2024
Cited by 1 | Viewed by 2147
Abstract
Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an [...] Read more.
Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an ADAM10-interacting protein to induce selective N-cadherin cleavage. We first demonstrated, in invasive T24 bladder cancer cells, that N-cadherin was cleaved by ADAM10 generating NTF in the extracellular environment and leaving a membrane-anchored CTF1 fragment and that Tspan15 is required for ADAM10 to induce the selective N-cadherin cleavage. Targeting N-cadherin function in cancer is relevant to preventing tumor progression and metastases. For antitumor molecules to inhibit N-cadherin function, they should be complete and not cleaved. We first showed that the GW501516, an agonist of the nuclear receptor PPARβ/δ, decreased Tspan15 and prevented N-cadherin cleavage thus decreasing NTF. Interestingly, the drug did not modify ADAM10 expression, which was important because it could limit side effects since ADAM10 cleaves numerous substrates. By targeting Tspan15 to block ADAM10 activity on N-cadherin, GW501516 could prevent NTF pro-tumoral effects and be a promising molecule to treat bladder cancer. More interestingly, it could optimize the effects of the N-cadherin antagonists those such as ADH-1 that target the N-cadherin ectodomain. Full article
Show Figures

Figure 1

21 pages, 6069 KiB  
Article
Regulation of Mertk Surface Expression via ADAM17 and γ-Secretase Proteolytic Processing
by Kevin C. Lahey, Christopher Varsanyi, Ziren Wang, Ahmed Aquib, Varsha Gadiyar, Alcina A. Rodrigues, Rachael Pulica, Samuel Desind, Viralkumar Davra, David C. Calianese, Dongfang Liu, Jong-Hyun Cho, Sergei V. Kotenko, Mariana S. De Lorenzo and Raymond B. Birge
Int. J. Mol. Sci. 2024, 25(8), 4404; https://doi.org/10.3390/ijms25084404 - 17 Apr 2024
Cited by 3 | Viewed by 4077
Abstract
Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several [...] Read more.
Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk. Full article
Show Figures

Figure 1

14 pages, 1348 KiB  
Review
Hidradenitis Suppurativa: An Understanding of Genetic Factors and Treatment
by Yi-Lun Chu and Sebastian Yu
Biomedicines 2024, 12(2), 338; https://doi.org/10.3390/biomedicines12020338 - 1 Feb 2024
Cited by 8 | Viewed by 5318
Abstract
Hidradenitis suppurativa (HS), recognized as a chronic and debilitating skin disease, presents significant challenges in both diagnosis and treatment. This review explores the clinical manifestations, genetic landscape, and molecular mechanisms underlying HS. The disease’s association with a predisposing genetic background, obesity, smoking, and [...] Read more.
Hidradenitis suppurativa (HS), recognized as a chronic and debilitating skin disease, presents significant challenges in both diagnosis and treatment. This review explores the clinical manifestations, genetic landscape, and molecular mechanisms underlying HS. The disease’s association with a predisposing genetic background, obesity, smoking, and skin occlusion underscores the complexity of its etiology. Genetic heterogeneity manifests in sporadic, familial, and syndromic forms, with a focus on mutations in the γ-secretase complex genes, particularly NCSTN. The dysregulation of immune mediators, including TNF-α, IL-17, IL-1β, and IL-12/23, plays a crucial role in the chronic inflammatory nature of HS. Recent advancements in genetic research have identified potential therapeutic targets, leading to the development of anti-TNF-α, anti-IL-17, anti-IL-1α, and anti-IL-12/23 therapies and JAK inhibitors. These interventions offer promise in alleviating symptoms and improving the quality of life for HS patients. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

17 pages, 2846 KiB  
Review
Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer’s Disease and Other Neurodegenerative Diseases
by Yang Sun, Sadequl Islam, Makoto Michikawa and Kun Zou
Int. J. Mol. Sci. 2024, 25(3), 1757; https://doi.org/10.3390/ijms25031757 - 1 Feb 2024
Cited by 15 | Viewed by 4397
Abstract
Presenilin, a transmembrane protein primarily known for its role in Alzheimer’s disease (AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted functions in various cellular processes. Recent investigations have unveiled a plethora of functions beyond its amyloidogenic [...] Read more.
Presenilin, a transmembrane protein primarily known for its role in Alzheimer’s disease (AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted functions in various cellular processes. Recent investigations have unveiled a plethora of functions beyond its amyloidogenic role. This review aims to provide a comprehensive overview of presenilin’s diverse roles in AD and other neurodegenerative disorders. It includes a summary of well-known substrates of presenilin, such as its involvement in amyloid precursor protein (APP) processing and Notch signaling, along with other functions. Additionally, it highlights newly discovered functions, such as trafficking function, regulation of ferritin expression, apolipoprotein E (ApoE) secretion, the interaction of ApoE and presenilin, and the Aβ42-to-Aβ40-converting activity of ACE. This updated perspective underscores the evolving landscape of presenilin research, emphasizing its broader impact beyond established pathways. The incorporation of these novel findings accentuates the dynamic nature of presenilin’s involvement in cellular processes, further advancing our comprehension of its multifaceted roles in neurodegenerative disorders. By synthesizing evidence from a range of studies, this review sheds light on the intricate web of presenilin functions and their implications in health and disease. Full article
(This article belongs to the Special Issue Advances in Neurodegenerative Diseases Research and Therapy 2.0)
Show Figures

Figure 1

14 pages, 2663 KiB  
Article
Computational Studies to Understand the Neuroprotective Mechanism of Action Basil Compounds
by Varinder Singh, Somdutt Mujwar, Manjinder Singh, Tanveer Singh and Sheikh F. Ahmad
Molecules 2023, 28(20), 7005; https://doi.org/10.3390/molecules28207005 - 10 Oct 2023
Cited by 7 | Viewed by 2147
Abstract
Neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, pose a significant global health challenge, emphasizing the need for novel neuroprotective agents. Basil (Ocimum spp.) has been recognized for its therapeutic potential, and numerous studies have reported neuroprotective effects. In this manuscript, we present [...] Read more.
Neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, pose a significant global health challenge, emphasizing the need for novel neuroprotective agents. Basil (Ocimum spp.) has been recognized for its therapeutic potential, and numerous studies have reported neuroprotective effects. In this manuscript, we present a computational protocol to extricate the underlying mechanism of action of basil compounds in neuroprotective effects. Molecular docking-based investigation of the chemical interactions between selected bioactive compounds from basil and key neuroprotective targets, including AChE, GSK3β, γ-secretase, and sirtuin2. Our results demonstrate that basil compound myricerone caffeoyl ester possesses a high affinity of −10.01 and −8.85 kcal/mol against GSK3β and γ-secretase, respectively, indicating their potential in modulating various neurobiological processes. Additionally, molecular dynamics simulations were performed to explore the protein–ligand complexes’ stability and to analyze the bound basil compounds’ dynamic behavior. This comprehensive computational investigation enlightens the putative mechanistic basis for the neuroprotective effects of basil compounds, providing a rationale for their therapeutic use in neurodegenerative disorders after further experimental validation. Full article
(This article belongs to the Special Issue Natural Compounds in Neurological Diseases)
Show Figures

Figure 1

22 pages, 3567 KiB  
Article
MYCN Amplification Is Associated with Reduced Expression of Genes Encoding γ-Secretase Complex and NOTCH Signaling Components in Neuroblastoma
by Prasoon Agarwal, Aleksandra Glowacka, Loay Mahmoud, Wesam Bazzar, Lars-Gunnar Larsson and Mohammad Alzrigat
Int. J. Mol. Sci. 2023, 24(9), 8141; https://doi.org/10.3390/ijms24098141 - 2 May 2023
Cited by 6 | Viewed by 3108
Abstract
Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN’s contribution to high-risk disease [...] Read more.
Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN’s contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB. Full article
(This article belongs to the Special Issue Molecular Determinants of Neuroblastoma 2.0)
Show Figures

Figure 1

7 pages, 6406 KiB  
Communication
Double Mutations in a Patient with Early-Onset Alzheimer’s Disease in Korea: An APP Val551Met and a PSEN2 His169Asn
by Heewon Bae, Kyu Hwan Shim, Jang Yoo, Young-Soon Yang, Seong Soo A. An and Min-Ju Kang
Int. J. Mol. Sci. 2023, 24(8), 7446; https://doi.org/10.3390/ijms24087446 - 18 Apr 2023
Cited by 2 | Viewed by 1572
Abstract
The etiology of early-onset Alzheimer’s disease (EOAD) is associated with alterations in the production of amyloid beta (Aβ) species caused by mutations in the APP, PSEN1, and PSEN2 genes. Mutations affect intra- or inter-molecular interactions and processes between the γ-secretase complex [...] Read more.
The etiology of early-onset Alzheimer’s disease (EOAD) is associated with alterations in the production of amyloid beta (Aβ) species caused by mutations in the APP, PSEN1, and PSEN2 genes. Mutations affect intra- or inter-molecular interactions and processes between the γ-secretase complex and amyloid precursor protein (APP), leading to the aberrant sequential cleavage of Aβ species. A 64-year-old woman presented with progressive memory decline, mild right hippocampal atrophy, and a family history of Alzheimer’s dementia (AD). Whole exome sequencing was performed to evaluate AD-related gene mutations, which were verified by Sanger sequencing. A mutation-caused structural alteration of APP was predicted using in silico prediction programs. Two AD-related mutations, in APP (rs761339914; c.G1651A; p.V551M) and PSEN2 (rs533813519; c.C505A; p.H169N), were identified. The APP Val551Met mutation in the E2 domain may influence APP homodimerization through changes in intramolecular interactions between adjacent amino acids, altering Aβ production. The second mutation was PSEN2 His169Asn mutation, which was previously reported in five EOAD patients from Korea and China, with a relatively high frequency in the East Asian population. According to a previous report, the presenilin 2 protein was predicted to result in a major helical torsion by PSEN2 His169Asn mutation. Notably, the co-existence of APP Val551Met and PSEN2 His169Asn may induce a synergistic effect by both mutations. Future functional studies are needed to clarify the pathological effects of these double mutations. Full article
(This article belongs to the Special Issue Recent Advances in Alzheimer’s Disease)
Show Figures

Figure 1

20 pages, 3041 KiB  
Article
Unraveling Presenilin 2 Functions in a Knockout Zebrafish Line to Shed Light into Alzheimer’s Disease Pathogenesis
by Lucia Barazzuol, Domenico Cieri, Nicola Facchinello, Tito Calì, Philip Washbourne, Francesco Argenton and Paola Pizzo
Cells 2023, 12(3), 376; https://doi.org/10.3390/cells12030376 - 19 Jan 2023
Cited by 4 | Viewed by 3477
Abstract
Mutations in presenilin 2 (PS2) have been causally linked to the development of inherited Alzheimer’s disease (AD). Besides its role as part of the γ-secretase complex, mammalian PS2 is also involved, as an individual protein, in a growing number of cell processes, which [...] Read more.
Mutations in presenilin 2 (PS2) have been causally linked to the development of inherited Alzheimer’s disease (AD). Besides its role as part of the γ-secretase complex, mammalian PS2 is also involved, as an individual protein, in a growing number of cell processes, which result altered in AD. To gain more insight into PS2 (dys)functions, we have generated a presenilin2 (psen2) knockout zebrafish line. We found that the absence of the protein does not markedly influence Notch signaling at early developmental stages, suggesting a Psen2 dispensable role in the γ-secretase-mediated Notch processing. Instead, loss of Psen2 induces an exaggerated locomotor response to stimulation in fish larvae, a reduced number of ER-mitochondria contacts in zebrafish neurons, and an increased basal autophagy. Moreover, the protein is involved in mitochondrial axonal transport, since its acute downregulation reduces in vivo organelle flux in zebrafish sensory neurons. Importantly, the expression of a human AD-linked mutant of the protein increases this vital process. Overall, our results confirm zebrafish as a good model organism for investigating PS2 functions in vivo, representing an alternative tool for the characterization of new AD-linked defective cell pathways and the testing of possible correcting drugs. Full article
(This article belongs to the Special Issue Modeling Developmental Processes and Disorders in Zebrafish)
Show Figures

Figure 1

31 pages, 10384 KiB  
Article
Expression of Amyloid Precursor Protein, Caveolin-1, Alpha-, Beta-, and Gamma-Secretases in Penumbra Cells after Photothrombotic Stroke and Evaluation of Neuroprotective Effect of Secretase and Caveolin-1 Inhibitors
by Svetlana Sharifulina, Andrey Khaitin, Valeria Guzenko, Yuliya Kalyuzhnaya, Valentina Dzreyan, Alexandr Logvinov, Natalia Dobaeva, Yan Li, Lei Chen, Bin He and Svetlana Demyanenko
Biomedicines 2022, 10(10), 2655; https://doi.org/10.3390/biomedicines10102655 - 20 Oct 2022
Cited by 5 | Viewed by 3035
Abstract
Our studies reveal changes in the expression of the main participants in the processing of amyloid precursor protein (APP) in neurons and astrocytes after photothrombotic stroke (PTS). Here we show the increase in the level of N- and C-terminal fragments of APP in [...] Read more.
Our studies reveal changes in the expression of the main participants in the processing of amyloid precursor protein (APP) in neurons and astrocytes after photothrombotic stroke (PTS). Here we show the increase in the level of N- and C-terminal fragments of APP in the cytoplasm of ischemic penumbra cells at 24 h after PTS and their co-immunoprecipitation with caveolin-1. The ADAM10 α-secretase level decreased in the rat brain cortex on the first day after PTS. Levels of γ-secretase complex proteins presenilin-1 and nicastrin were increased in astrocytes, but not in neurons, in the penumbra after PTS. Inhibitory analysis showed that these changes lead to neuronal death and activation of astrocytes in the early recovery period after PTS. The caveolin-1 inhibitor daidzein shifted APP processing towards Aβ synthesis, which caused astroglial activation. γ-secretase inhibitor DAPT down-regulated glial fibrillary acidic protein (GFAP) in astrocytes, prevented mouse cerebral cortex cells from PTS-induced apoptosis, and reduced the infarction volume. Thus, new generation γ-secretase inhibitors may be considered as potential agents for the treatment of stroke. Full article
Show Figures

Figure 1

25 pages, 5356 KiB  
Article
Targeting PSEN1 by lnc-CYP3A43-2/miR-29b-2-5p to Reduce β Amyloid Plaque Formation and Improve Cognition Function
by Wei Wuli, Shinn-Zong Lin, Shee-Ping Chen, Bakhos A. Tannous, Wen-Sheng Huang, Peng Yeong Woon, Yang-Chang Wu, Hsueh-Hui Yang, Yi-Cheng Chen, Renata Lopes Fleming, Jack T. Rogers, Catherine M. Cahill, Tsung-Jung Ho, Tzyy-Wen Chiou and Horng-Jyh Harn
Int. J. Mol. Sci. 2022, 23(18), 10554; https://doi.org/10.3390/ijms231810554 - 11 Sep 2022
Cited by 15 | Viewed by 3508
Abstract
Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates β-amyloid (Aβ) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aβ levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells [...] Read more.
Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates β-amyloid (Aβ) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aβ levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear. This article aims to investigate the possible mechanisms through which BP ameliorates the development of Alzheimer’s disease (AD) and verify the effectiveness of BP through animal experiments. Results from RNA microarray analysis showed that BP treatment in Ts21 iPSC-derived neuronal cells reduced long noncoding RNA (lncRNA) CYP3A43-2 levels and increased microRNA (miR)-29b-2-5p levels. Bioinformatics tool prediction analysis, biotin-labeled miR-29b-2-5p pull-down assay, and dual-luciferase reporter assay confirmed a direct negative regulatory effect for miRNA29b-2-5p on lnc-RNA-CYP3A43-2 and PSEN1. Moreover, BP administration improved short-term memory and significantly reduced Aβ accumulation in the hippocampus and cortex of 3xTg-AD mice but failed in miR-29b-2-5p mutant mice generated by CRISP/Cas9 technology. In addition, analysis of brain samples from patients with AD showed a decrease in microRNA-29b-2-5p expression in the frontal cortex region. Our results provide evidence that the LncCYP3A43-2/miR29-2-5p/PSEN1 network might be involved in the molecular mechanisms underlying BP-induced Aβ reduction. Full article
Show Figures

Figure 1

Back to TopTop