Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = γ-actin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3852 KiB  
Article
PCSK9 Inhibitor Inclisiran Attenuates Cardiotoxicity Induced by Sequential Anthracycline and Trastuzumab Exposure via NLRP3 and MyD88 Pathway Inhibition
by Vincenzo Quagliariello, Massimiliano Berretta, Irma Bisceglia, Martina Iovine, Matteo Barbato, Raffaele Arianna, Maria Laura Canale, Andrea Paccone, Alessandro Inno, Marino Scherillo, Stefano Oliva, Christian Cadeddu Dessalvi, Alfredo Mauriello, Carlo Maurea, Celeste Fonderico, Anna Chiara Maratea, Domenico Gabrielli and Nicola Maurea
Int. J. Mol. Sci. 2025, 26(14), 6617; https://doi.org/10.3390/ijms26146617 - 10 Jul 2025
Viewed by 451
Abstract
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), [...] Read more.
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), such as inclisiran, are known for their lipid-lowering effects, but emerging data indicate that they may also exert pleiotropic benefits beyond cholesterol reduction. This study investigates whether inclisiran can mitigate the cardiotoxic effects of anthracyclines and trastuzumab through reduction of NLRP3 activation and MyD88 signaling, independently of its effects on dyslipidemia. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were exposed to subclinical concentrations of doxorubicin (1 µM) and trastuzumab in sequential therapy (200 nM), alone or in combination with inclisiran (100 nM) for 24 h. After the incubation period, we performed the following tests: determination of cardiomyocytes apoptosis, analysis of intracellular reactive oxygen species, lipid peroxidation products (including malondialdehyde and 4-hydroxynonenal), intracellular mitofusin-2 and Ca++ levels. Troponin and BNP were quantified through selective ELISA methods. A confocal laser scanning microscope was used to study cardiomyocyte morphology and F-actin staining after treatments. Moreover, pro-inflammatory studies were also performed, including the intracellular expression of NLRP-3, MyD-88 and twelve cytokines/growth factors involved in cardiotoxicity (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IFN-γ, TNF-α, G-CSF, GM-CSF). Inclisiran co-incubated with doxorubicin and trastuzumab exerts significant cardioprotective effects, enhancing cell viability by 88.9% compared to only DOXO/TRA treated cells (p < 0.001 for all). Significant reduction of oxidative stress, and intracellular levels of NLRP-3, MyD88, IL-1α, IL-1β, IL-6, IL-12, IL17-α, TNF-α, G-CSF were seen in the inclisiran group vs. only DOXO/TRA (p < 0.001). For the first time, PCSK9i inclisiran has been shown to exert significant anti-inflammatory effects to reduce anthracycline-HER-2 blocking agent-mediated cardiotoxicity through NLRP-3 and Myd-88 related pathways. The overall conclusions of the study warrant further investigation of the use of PCSK9i in primary prevention of CTRCD in cancer patients, independently from dyslipidemia. Full article
Show Figures

Figure 1

12 pages, 9987 KiB  
Article
Sarcoglycans Role in Actin Cytoskeleton Dynamics and Cell Adhesion of Human Articular Chondrocytes: New Insights from siRNA-Mediated Gene Silencing
by Antonio Centofanti, Michele Runci Anastasi, Fabiana Nicita, Davide Labellarte, Michele Scuruchi, Alice Pantano, Josè Freni, Angelo Favaloro and Giovanna Vermiglio
Int. J. Mol. Sci. 2025, 26(12), 5732; https://doi.org/10.3390/ijms26125732 - 15 Jun 2025
Viewed by 687
Abstract
Chondrocytes maintain cartilage integrity through coordinated regulation of extracellular matrix (ECM) synthesis and remodeling. These processes depend on ECM dynamic interactions, mediated by integrin-based focal adhesions and associated cytoskeletal components. While the roles of core adhesion proteins are well described, the involvement of [...] Read more.
Chondrocytes maintain cartilage integrity through coordinated regulation of extracellular matrix (ECM) synthesis and remodeling. These processes depend on ECM dynamic interactions, mediated by integrin-based focal adhesions and associated cytoskeletal components. While the roles of core adhesion proteins are well described, the involvement of sarcoglycans (SGs) remains unclear in chondrocytes. Drawing parallels from striated muscle, where the SG subcomplex stabilizes the sarcolemma, we hypothesized that SGs similarly integrate into chondrocyte adhesion complexes. This study investigated the SGs (α, β, γ, δ) expression with cytoskeletal and adhesion proteins, including actin and vinculin, in human chondrocytes cultured by immunofluorescence, qPCR, and siRNA-mediated silencing. All four SG isoforms were expressed in the cytoplasmic and membrane domains, with enrichment at focal adhesion sites. Double labeling revealed SG colocalization with F-actin stress fibers and vinculin, indicating integration into the core adhesion complex. Silencing of each SG resulted in disrupted actin stress fibers, diffuse vinculin distribution, reduced focal plaque number, and a change in cell morphology. These findings support the hypothesis that SGs regulate actin cytoskeletal dynamics and focal contact stabilization. Loss of SG function compromises chondrocyte shape and adhesion, highlighting the importance of these glycoproteins also in non-muscle cells. Full article
Show Figures

Figure 1

19 pages, 7447 KiB  
Article
LC-MS/MS-Based Metabolomics and Multivariate Statistical Analysis Reveal the Mechanism of Rhodotorula mucilaginosa Proteases on Myofibrillar Protein Degradation and the Evolution of Taste Compounds
by Tianmeng Zhang, Qiang Xia, Daodong Pan, Yangying Sun, Ying Wang, Jinxuan Cao, Ren-You Gan and Changyu Zhou
Foods 2025, 14(11), 1867; https://doi.org/10.3390/foods14111867 - 24 May 2025
Viewed by 462
Abstract
Rhodotorula mucilaginosa plays a key role in developing the taste of dry-cured ham, while the mechanism of Rhodotorula mucilaginosa proteases on myofibrillar protein (MP) hydrolysis and the evolution of taste substances has not been studied. The enzymatic characteristics, hydrolysis capacities for MPs, free [...] Read more.
Rhodotorula mucilaginosa plays a key role in developing the taste of dry-cured ham, while the mechanism of Rhodotorula mucilaginosa proteases on myofibrillar protein (MP) hydrolysis and the evolution of taste substances has not been studied. The enzymatic characteristics, hydrolysis capacities for MPs, free amino acid contents, metabolite compositions, and taste attributes were investigated during the interactions of MPs and proteases. The proteases of R. mucilaginosa EIODSF019 (RE) and R. mucilaginosa XZY63-3 (RX) showed high hydrolytic activities at the conditions of pH 5.0~7.0 and 30~40 °C. Compared with RX, RE showed a lower Michaelis constant (Km) value and a better affinity for protein substrates. RE showed a higher capability to degrade myosin and actin compared with RX and P. kudriavzevii XS-5 proteases (PK). The microtopography of enzyme-treated MPs in RE presented a smoother surface and lower root mean square roughness than that in RX and PK. The total content of free amino acids significantly increased from 0.34 mg/100 mL of CK to 17.10 mg/100 mL of RE after 4 h of hydrolysis of MPs. Sixty-two metabolites were identified by LC-MS/MS, and γ-glutamyl peptides were the main components of MP hydrolysates. Sensory scores of umami, richness, and aftertaste showed the largest values in RE among these groups. Partial least squares discriminant analysis and correlation network demonstrated that γ-Glu-Lys, γ-Glu-Tyr, γ-Glu-Glu, γ-Glu-His, γ-Glu-Leu, γ-Glu-Cys, γ-Glu-Ala, and γ-Glu-Gln were positively correlated with the improvements of umami, richness, and aftertaste in RE. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products: 3rd Edition)
Show Figures

Figure 1

46 pages, 7528 KiB  
Review
Molecular Mechanisms of Alzheimer’s Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy
by Eun Hee Ahn and Jae-Bong Park
Cells 2025, 14(2), 89; https://doi.org/10.3390/cells14020089 - 10 Jan 2025
Cited by 7 | Viewed by 3576
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer’s disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant [...] Read more.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer’s disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD. Full article
Show Figures

Figure 1

18 pages, 9775 KiB  
Article
Divergent Contribution of Cytoplasmic Actins to Nuclear Structure of Lung Cancer Cells
by Galina Shagieva, Vera Dugina, Anton Burakov, Yulia Levuschkina, Dmitry Kudlay, Sergei Boichuk, Natalia Khromova, Maria Vasileva and Pavel Kopnin
Int. J. Mol. Sci. 2024, 25(24), 13607; https://doi.org/10.3390/ijms252413607 - 19 Dec 2024
Viewed by 1229
Abstract
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences [...] Read more.
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2. In contrast, the suppression of γ-actin led to upregulation of the lamin A/B ratio through an increase in A-type lamins. Histone H3 post-translational modifications display distinct patterns in response to decreased actin isoform expression. The level of dimethylated H3K9me2 declined while acetylated H3K9ac increased in β-actin-depleted A549 cells. In contrast, the inhibition of γ-actin expression resulted in a reduction in H3K9ac. Based on our observations, we propose that β-actin plays a role in chromatin compaction and deactivation, and is involved in the elevation of nuclear stiffness through the control of the lamins ratio. The non-muscle γ-actin is presumably responsible for chromatin decondensation and activation. The identification of novel functions for actin isoforms offers insights into the mechanisms through which they influence cell fate during development and cancer progression. Full article
Show Figures

Figure 1

34 pages, 5759 KiB  
Article
Expression and Immune Response Profiles in Nile Tilapia (Oreochromis niloticus) and European Sea Bass (Dicentrarchus labrax) During Pathogen Challenge and Infection
by Ahmed A. Saleh, Asmaa Z. Mohamed, Shaaban S. Elnesr, Asmaa F. Khafaga, Hamada Elwan, Mohamed F. Abdel-Aziz, Asmaa A. Khaled and Elsayed E. Hafez
Int. J. Mol. Sci. 2024, 25(23), 12829; https://doi.org/10.3390/ijms252312829 - 28 Nov 2024
Cited by 3 | Viewed by 2545
Abstract
Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax) are economically significant species in Mediterranean countries, serving essential roles in the aquaculture industry due to high market demand and nutritional value. They experience substantial losses from bacterial pathogens [...] Read more.
Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax) are economically significant species in Mediterranean countries, serving essential roles in the aquaculture industry due to high market demand and nutritional value. They experience substantial losses from bacterial pathogens Vibrio anguillarum and Streptococcus iniae, particularly at the onset of the summer season. The immune mechanisms involved in fish infections by V. anguillarum and S. iniae remain poorly understood. This study investigated their impact through experiments with control and V. anguillarum- and S. iniae-infected groups for each species. Blood samples were collected at 1, 3, and 7 days post bacterial injection to assess biochemical and immunological parameters, including enzyme activities (AST and ALT), oxidative markers (SOD, GPX, CAT, and MDA), and leukocyte counts. Further analyses included phagocyte activity, lysozyme activity, IgM levels, and complement C3 and C4 levels. Muscle tissues were sampled at 1, 3, and 7 days post injection to assess mRNA expression levels of 18 immune-relevant genes. The focus was on cytokines and immune-related genes, including pro-inflammatory cytokines (TNF-α, TNF-β, IL-2, IL-6, IL-8, IL-12, and IFN-γ), major histocompatibility complex components (MHC-IIα and MHC-IIβ), cytokine receptors (CXCL-10 and CD4-L2), antimicrobial peptides (Pleurocidin and β-defensin), immune regulatory peptides (Thymosin β12, Leap 2, and Lysozyme g), and Galectins (Galectin-8 and Galectin-9). β-actin was used as the housekeeping gene for normalization. Significant species-specific responses were observed in N. Tilapia and E. Sea Bass when infected with V. anguillarum and S. iniae, highlighting differences in biochemical, immune, and gene expression profiles. Notably, in N. Tilapia, AST levels significantly increased by day 7 during S. iniae infection, reaching 45.00 ± 3.00 (p < 0.05), indicating late-stage acute stress or tissue damage. Conversely, E. Sea Bass exhibited a significant rise in ALT levels by day 7 in the S. iniae group, peaking at 33.5 ± 3.20 (p < 0.05), suggesting liver distress or a systemic inflammatory response. On the immunological front, N. Tilapia showed significant increases in respiratory burst activity on day 1 for both pathogens, with values of 0.28 ± 0.03 for V. anguillarum and 0.25 ± 0.02 for S. iniae (p < 0.05), indicating robust initial immune activation. Finally, the gene expression analysis revealed a pronounced peak of TNF-α in E. Sea Bass by day 7 post V. anguillarum infection with a fold change of 6.120, suggesting a strong species-specific pro-inflammatory response strategy. Understanding these responses provides critical insights for enhancing disease management and productivity in aquaculture operations. Full article
(This article belongs to the Special Issue Fish Immunology, 5th Edition)
Show Figures

Figure 1

20 pages, 27817 KiB  
Article
Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts
by Yuka Aizawa, Kenta Haga, Nagako Yoshiba, Witsanu Yortchan, Sho Takada, Rintaro Tanaka, Eriko Naito, Tatsuya Abé, Satoshi Maruyama, Manabu Yamazaki, Jun-ichi Tanuma, Kazuyo Igawa, Kei Tomihara, Shinsaku Togo and Kenji Izumi
Biomedicines 2024, 12(10), 2373; https://doi.org/10.3390/biomedicines12102373 - 17 Oct 2024
Cited by 2 | Viewed by 2223
Abstract
Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor–stromal interface [...] Read more.
Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor–stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

11 pages, 5872 KiB  
Communication
Interaction of Receptor-Binding Domain of the SARS-CoV-2 Omicron Variant with hACE2 and Actin
by Ai Fujimoto, Haruki Kawai, Rintaro Kawamura and Akira Kitamura
Cells 2024, 13(16), 1318; https://doi.org/10.3390/cells13161318 - 7 Aug 2024
Viewed by 1647
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in 2021 as a variant with heavy amino acid mutations in the spike protein, which is targeted by most vaccines, compared to previous variants. Amino acid substitutions in the spike [...] Read more.
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in 2021 as a variant with heavy amino acid mutations in the spike protein, which is targeted by most vaccines, compared to previous variants. Amino acid substitutions in the spike proteins may alter their affinity for host viral receptors and the host interactome. Here, we found that the receptor-binding domain (RBD) of the omicron variant of SARS-CoV-2 exhibited an increased affinity for human angiotensin-converting enzyme 2, a viral cell receptor, compared to the prototype RBD. Moreover, we identified β- and γ-actin as omicron-specific binding partners of RBD. Protein complex predictions revealed that many omicron-specific amino acid substitutions affected the affinity between RBD of the omicron variant and actin. Our findings indicate that proteins localized to different cellular compartments exhibit strong binding to the omicron RBD. Full article
Show Figures

Figure 1

17 pages, 6890 KiB  
Article
Suppression of Ventilation-Induced Diaphragm Fibrosis through the Phosphoinositide 3-Kinase-γ in a Murine Bleomycin-Induced Acute Lung Injury Model
by Li-Fu Li, Chung-Chieh Yu, Chih-Yu Huang, Huang-Pin Wu, Chien-Ming Chu, Ping-Chi Liu and Yung-Yang Liu
Int. J. Mol. Sci. 2024, 25(12), 6370; https://doi.org/10.3390/ijms25126370 - 8 Jun 2024
Cited by 1 | Viewed by 2044
Abstract
Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among [...] Read more.
Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway. Five days after receiving a single bolus of 0.075 units of bleomycin intratracheally, C57BL/6 mice were exposed to 6 or 10 mL/kg of MV for 8 h after receiving 5 mg/kg of AS605240 intraperitoneally. In wild-type mice, bleomycin exposure followed by MV 10 mL/kg prompted significant increases in disruptions of diaphragmatic myofibrillar organization, transforming growth factor-β1, oxidative loads, Masson’s trichrome staining, extracellular collagen levels, positive staining of α-smooth muscle actin, PI3K-γ expression, and myonuclear apoptosis (p < 0.05). Decreased diaphragm contractility and peroxisome proliferator-activated receptor-γ coactivator-1α levels were also observed (p < 0.05). MV-augmented bleomycin-induced diaphragm fibrosis and myonuclear apoptosis were attenuated in PI3K-γ-deficient mice and through AS605240-induced inhibition of PI3K-γ activity (p < 0.05). MV-augmented diaphragm fibrosis after bleomycin-induced ALI is partially mediated by PI3K-γ. Therapy targeting PI3K-γ may ameliorate MV-associated diaphragm fibrosis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

11 pages, 1641 KiB  
Article
Suitable Promoter for DNA Vaccination Using a pDNA Ternary Complex
by Tomoaki Kurosaki, Hiroki Nakamura, Hitoshi Sasaki and Yukinobu Kodama
Pharmaceutics 2024, 16(5), 679; https://doi.org/10.3390/pharmaceutics16050679 - 17 May 2024
Cited by 1 | Viewed by 1625
Abstract
In this study, we evaluated the effect of several promoters on the transfection activity and immune-induction efficiency of a plasmid DNA (pDNA)/polyethylenimine/γ-polyglutamic acid complex (pDNA ternary complex). Model pDNAs encoding firefly luciferase (Luc) were constructed with several promoters, such as simian virus 40 [...] Read more.
In this study, we evaluated the effect of several promoters on the transfection activity and immune-induction efficiency of a plasmid DNA (pDNA)/polyethylenimine/γ-polyglutamic acid complex (pDNA ternary complex). Model pDNAs encoding firefly luciferase (Luc) were constructed with several promoters, such as simian virus 40 (SV40), eukaryotic elongation factor 1 alpha (EF1), cytomegalovirus (CMV), and chicken beta actin hybrid (CBh) (pSV40-Luc, pEF1-Luc, pCMV-Luc, and pCBh-Luc, respectively). Four types of pDNA ternary complexes, each with approximately 145-nm particle size and −30-mV ζ-potential, were stably constructed. The pDNA ternary complex containing pSV40-Luc showed low gene expression, but the other complexes containing pEF1-Luc, pCMV-Luc, and pCBh-Luc showed high gene expression in DC2.4 cells and spleen after intravenous administration. After immunization using various pDNA encoding ovalbumin (OVA) such as pEF1-OVA, pCMV-OVA, and pCBh-OVA, only the pDNA ternary complex containing pCBh-OVA showed significant anti-OVA immunoglobulin G (IgG) induction. In conclusion, our results showed that the CBh promoter is potentially suitable for use in pDNA ternary complex-based DNA vaccination. Full article
Show Figures

Figure 1

18 pages, 6907 KiB  
Article
Imbalance between Actin Isoforms Contributes to Tumour Progression in Taxol-Resistant Triple-Negative Breast Cancer Cells
by Vera Dugina, Maria Vasileva, Natalia Khromova, Svetlana Vinokurova, Galina Shagieva, Ekaterina Mikheeva, Aigul Galembikova, Pavel Dunaev, Dmitry Kudlay, Sergei Boichuk and Pavel Kopnin
Int. J. Mol. Sci. 2024, 25(8), 4530; https://doi.org/10.3390/ijms25084530 - 20 Apr 2024
Cited by 3 | Viewed by 2628
Abstract
The widespread occurrence of breast cancer and its propensity to develop drug resistance highlight the need for a comprehensive understanding of the molecular mechanisms involved. This study investigates the intricate pathways associated with secondary resistance to taxol in triple-negative breast cancer (TNBC) cells, [...] Read more.
The widespread occurrence of breast cancer and its propensity to develop drug resistance highlight the need for a comprehensive understanding of the molecular mechanisms involved. This study investigates the intricate pathways associated with secondary resistance to taxol in triple-negative breast cancer (TNBC) cells, with a particular focus on the changes observed in the cytoplasmic actin isoforms. By studying a taxol-resistant TNBC cell line, we revealed a shift between actin isoforms towards γ-actin predominance, accompanied by increased motility and invasive properties. This was associated with altered tubulin isotype expression and reorganisation of the microtubule system. In addition, we have shown that taxol-resistant TNBC cells underwent epithelial-to-mesenchymal transition (EMT), as evidenced by Twist1-mediated downregulation of E-cadherin expression and increased nuclear translocation of β-catenin. The RNA profiling analysis revealed that taxol-resistant cells exhibited significantly increased positive regulation of cell migration, hormone response, cell–substrate adhesion, and actin filament-based processes compared with naïve TNBC cells. Notably, taxol-resistant cells exhibited a reduced proliferation rate, which was associated with an increased invasiveness in vitro and in vivo, revealing a complex interplay between proliferative and metastatic potential. This study suggests that prolonged exposure to taxol and acquisition of taxol resistance may lead to pro-metastatic changes in the TNBC cell line. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

14 pages, 2664 KiB  
Article
A Novel Interaction of Slug (SNAI2) and Nuclear Actin
by Ling Zhuo, Jan B. Stöckl, Thomas Fröhlich, Simone Moser, Angelika M. Vollmar and Stefan Zahler
Cells 2024, 13(8), 696; https://doi.org/10.3390/cells13080696 - 17 Apr 2024
Cited by 2 | Viewed by 1663
Abstract
Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified [...] Read more.
Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified as a yet unknown potential actin-binding protein. We validated this interaction using immunoprecipitation and analyzed the functional relation between slug and actin. Since both proteins have been reported to be involved in DNA double-strand break (DSB) repair, we focused on their interaction during this process after treatment with doxorubicin or UV irradiation. Confocal microscopy elicits that the overexpression of actin fused to an NLS stabilizes complexes of slug and γH2AX, an early marker of DNA damage repair. Full article
(This article belongs to the Special Issue Cytoskeletal Remodeling in Health and Disease)
Show Figures

Figure 1

17 pages, 6364 KiB  
Article
Actin-Dependent Mechanism of Tumor Progression Induced by a Dysfunction of p53 Tumor Suppressor
by Natalia Khromova, Maria Vasileva, Vera Dugina, Dmitry Kudlay, Peter Chumakov, Sergei Boichuk and Pavel Kopnin
Cancers 2024, 16(6), 1123; https://doi.org/10.3390/cancers16061123 - 11 Mar 2024
Cited by 1 | Viewed by 2198
Abstract
Cancer cell aggressiveness, marked by actin cytoskeleton reconfiguration critical for metastasis, may result from an imbalanced ratio favoring γ-actin. Dysfunctional p53 emerges as a key regulator of invasiveness and migration in various cancer cells, both in vitro and in vivo. P53 inactivation (via [...] Read more.
Cancer cell aggressiveness, marked by actin cytoskeleton reconfiguration critical for metastasis, may result from an imbalanced ratio favoring γ-actin. Dysfunctional p53 emerges as a key regulator of invasiveness and migration in various cancer cells, both in vitro and in vivo. P53 inactivation (via mutants R175H, R248W, R273H, or TP53 repression) significantly enhanced the migration, invasion, and proliferation of human lung adenocarcinoma A549 cells in vitro and in vivo, facilitating intrapulmonary xenograft metastasis in athymic mice. Conversely, wild-type TP53 (TP53 WT) overexpression in p53-deficient non-small- cell lung cancer (NSCLC) H1299 cells substantially reduced proliferation and migration in vitro, effectively curbing orthotopic tumorigenicity and impeding in vivo metastasis. These alterations in cell motility were closely associated with actin cytoskeleton restructuring, favoring γ-actin, and coincided with ERK1/2-mediated signaling activation, unveiling an innovative regulatory mechanism in malignancy progression. Cancer cell aggressiveness, driven by actin cytoskeleton reorganization and a shift towards γ-actin predominance, may be regulated by p53 dysfunction, thereby providing novel insight into tumor progression mechanisms. Full article
(This article belongs to the Special Issue Genes in Cancer)
Show Figures

Figure 1

35 pages, 17518 KiB  
Article
The Role of ZO-2 in Modulating JAM-A and γ-Actin Junctional Recruitment, Apical Membrane and Tight Junction Tension, and Cell Response to Substrate Stiffness and Topography
by Diana Cristina Pinto-Dueñas, Christian Hernández-Guzmán, Patrick Matthew Marsch, Anand Sunil Wadurkar, Dolores Martín-Tapia, Lourdes Alarcón, Genaro Vázquez-Victorio, Juan Vicente Méndez-Méndez, José Jorge Chanona-Pérez, Shikha Nangia and Lorenza González-Mariscal
Int. J. Mol. Sci. 2024, 25(5), 2453; https://doi.org/10.3390/ijms25052453 - 20 Feb 2024
Cited by 5 | Viewed by 2939
Abstract
This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead [...] Read more.
This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography. Full article
(This article belongs to the Special Issue The Tight Junction and Its Proteins: From Structure to Pathologies)
Show Figures

Figure 1

25 pages, 111011 KiB  
Article
Copaifera langsdorffii Oleoresin-Loaded Nanostructured Lipid Carrier Emulgel Improves Cutaneous Healing by Anti-Inflammatory and Re-Epithelialization Mechanisms
by Lucas F. S. Gushiken, Fernando P. Beserra, Maria F. Hussni, Murilo T. Gonzaga, Victor P. Ribeiro, Patrícia F. de Souza, Jacqueline C. L. Campos, Tais N. C. Massaro, Carlos A. Hussni, Regina K. Takahira, Priscyla D. Marcato, Jairo K. Bastos and Cláudia H. Pellizzon
Int. J. Mol. Sci. 2023, 24(21), 15882; https://doi.org/10.3390/ijms242115882 - 1 Nov 2023
Cited by 6 | Viewed by 1935
Abstract
The skin is essential to the integrity of the organism. The disruption of this organ promotes a wound, and the organism starts the healing to reconstruct the skin. Copaifera langsdorffii is a tree used in folk medicine to treat skin affections, with antioxidant [...] Read more.
The skin is essential to the integrity of the organism. The disruption of this organ promotes a wound, and the organism starts the healing to reconstruct the skin. Copaifera langsdorffii is a tree used in folk medicine to treat skin affections, with antioxidant and anti-inflammatory properties. In our study, the oleoresin of the plant was associated with nanostructured lipid carriers, aiming to evaluate the healing potential of this formulation and compare the treatment with reference drugs used in wound healing. Male Wistar rats were used to perform the excision wound model, with the macroscopic analysis of wound retraction. Skin samples were used in histological, immunohistochemical, and biochemical analyses. The results showed the wound retraction in the oleoresin-treated group, mediated by α-smooth muscle actin (α-SMA). Biochemical assays revealed the anti-inflammatory mechanism of the oleoresin-treated group, increasing interleukin-10 (IL-10) concentration and decreasing pro-inflammatory cytokines. Histopathological and immunohistochemical results showed the improvement of re-epithelialization and tissue remodeling in the Copaifera langsdorffii group, with an increase in laminin-γ2, a decrease in desmoglein-3 and an increase in collagen remodeling. These findings indicate the wound healing potential of nanostructured lipid carriers associated with Copaifera langsdorffii oleoresin in skin wounds, which can be helpful as a future alternative treatment for skin wounds. Full article
(This article belongs to the Special Issue Recent Approaches for Wound Treatment—2nd Edition)
Show Figures

Figure 1

Back to TopTop