Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (208)

Search Parameters:
Keywords = αMSH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7392 KiB  
Article
Skin-Whitening, Antiwrinkle, and Moisturizing Effects of Astilboides tabularis (Hemsl.) Engl. Root Extracts in Cell-Based Assays and Three-Dimensional Artificial Skin Models
by Nam Ho Yoo, Hyun Sook Lee, Sung Min Park, Young Sun Baek and Myong Jo Kim
Int. J. Mol. Sci. 2025, 26(12), 5725; https://doi.org/10.3390/ijms26125725 - 15 Jun 2025
Viewed by 545
Abstract
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc [...] Read more.
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc fraction showed significant dose-dependent inhibitory activity against tyrosinase (TYR) (72.0% inhibition at 50 µg/mL), comparable to that of kojic acid. In α-melanocyte-stimulating hormone (α-MSH)-stimulated Neoderm-ME artificial skin containing melanocytes, the EtOAc fraction reduced melanin synthesis at concentrations of 50 and 75 µg/mL and decreased melanogenesis-related gene expression, including TYR, microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1) and TRP-2. In the antiwrinkle assays, the EtOAc fraction effectively inhibited elastase activity (41.5% inhibition at 10 µg/mL), exceeding the efficacy of ursolic acid. In the Neoderm-ED artificial skin model, the EtOAc fraction reversed structural damage induced by particulate matter (PM10), restoring epidermal thickness and dermal density. This improvement was supported by the increased expression of skin barrier and antiwrinkle genes, including filaggrin, hyaluronic acid synthase-1 (HAS-1), HAS-2, aquaporin-3 (AQP-3), collagen type I alpha 1 chain (COL1A1), elastin, tissue inhibitor of metalloproteinases-1 (TIMP-1), and TIMP-2, as well as decreased expression of matrix metalloproteinases (MMP-1, MMP-3, and MMP-9). Our results indicate that the EtOAc fraction from A. tabularis root has considerable potential as a multifunctional cosmetic. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

15 pages, 7618 KiB  
Article
Effect of Filler Type, Content, and Silanization on the Flexural Strength, Elastic Modulus, Shore D Hardness, and Two-Body Wear of PAEK Compounds
by Felix Schmeiser, Wofgang Schramm, Felicitas Mayinger, Uwe Baumert and Bogna Stawarczyk
Materials 2025, 18(12), 2736; https://doi.org/10.3390/ma18122736 - 11 Jun 2025
Viewed by 411
Abstract
The aim of this study was to evaluate the influence of filler type, filler content, and filler silanization on the flexural strength (FX), elastic modulus (Em), shore D hardness (SDH), and two-body wear (2BW) of polyaryletherketone (PAEK) compounds. Specimens (40 wt% [...] Read more.
The aim of this study was to evaluate the influence of filler type, filler content, and filler silanization on the flexural strength (FX), elastic modulus (Em), shore D hardness (SDH), and two-body wear (2BW) of polyaryletherketone (PAEK) compounds. Specimens (40 wt% PEEK, 40 wt% PEK) with different filler types: 20 wt%: fumed silica (FS), calcium silicate (CS), feldspar (FP), magnesium silicate hydrate (MSH), no filler (NF); different filler content: 20, 25 or 30 wt% CS; different filler silanization: 20 wt% CS silanized with alkylsilane/aminosilane, FP silanized with methylsilane/ vinylsilane, no silanization; and PEEK20 (BioHPP) or PEEK25 (BioHPP plus) controls were fabricated and tested for FX, Em, and SDH. Two-body wear (4 × 100,000 cycles, 50 N, 2.5 Hz) with composite resin antagonists was measured with PAEKi (35 wt% PEEK, 35 wt% PEK, 30 wt% CS), PAEKii (70 wt% PEEK, 30 wt% CS), PAEKiii (70 wt% PEEK, 25 wt% CS, 5 wt% FP), and PEEK20 controls. Data were analyzed with Kolmogorov–Smirnov-, Kruskal–Wallis-H-, post hoc Scheffé test, pairwise comparisons, Bonferroni correction, one-way ANOVA, and Spearman rho (α = 0.05). An abrasion area analysis was performed. Adding filler increased FX, Em, and SDH, with CS and MSH showing the highest values for FX and Em. Adding 30 wt% CS increased FX, Em, and SDH compared with 20 wt%. Silanization with methylsilane increased FX, Em, and SDH. Silanization with aminosilane increased FX and SDH. PEEK20 showed the lowest 2BW compared with all EPCs. No material losses were detected on the antagonists. PAEK compounds with 25 to 30 wt% CS increased FX and Em compared to lower contents, no filler, or PEEK20. Higher values of FX and Em did not lead to lower 2BW. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 1428 KiB  
Article
Pentagalloylglucose Inhibits Melanogenesis via Suppression of MITF Signaling Pathway
by Jung-Wook Kang and In-Chul Lee
Int. J. Mol. Sci. 2025, 26(10), 4861; https://doi.org/10.3390/ijms26104861 - 19 May 2025
Viewed by 513
Abstract
Pentagalloylglucose (PGG) is a powerful antioxidant and a naturally derived polyphenolic compound present in tannins. In this study, we investigated the ability of PGG to selectively inhibit hyperpigmentation through the regulation of melanogenesis in melanocytes. PGG inhibited melanin production in α-melanocyte-stimulating hormone (α-MSH)-induced [...] Read more.
Pentagalloylglucose (PGG) is a powerful antioxidant and a naturally derived polyphenolic compound present in tannins. In this study, we investigated the ability of PGG to selectively inhibit hyperpigmentation through the regulation of melanogenesis in melanocytes. PGG inhibited melanin production in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Furthermore, PGG suppressed the expression of melanin synthesis enzymes, such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. The mRNA and protein expression of the microphthalmia-associated transcription factor, which is involved in the mechanism of melanogenesis, was also reduced by PGG, and this effect was induced via PKA/CREB and MAPK phosphorylation. These results suggest that PGG inhibits α-MSH-induced melanin production by regulating the PKA/CREB/MAPK signaling pathway, indicating that natural compounds can serve as inhibitors of melanogenesis. Full article
(This article belongs to the Special Issue The Role of Natural Products in Drug Discovery)
Show Figures

Figure 1

18 pages, 4554 KiB  
Article
Whitening and Anti-Inflammatory Activities of Exosomes Derived from Leuconostoc mesenteroides subsp. DB-21 Strain Isolated from Camellia japonica Flower
by Byeong-Min Choi, Gibok Lee, Hyehyun Hong, Chang-Min Park, Areum Yeom, Won-Jae Chi and Seung-Young Kim
Molecules 2025, 30(5), 1124; https://doi.org/10.3390/molecules30051124 - 28 Feb 2025
Viewed by 1276
Abstract
In the present study, we investigated the anti-inflammatory and anti-melanogenic effects of Leuconostoc mesenteroides subsp. DB-21-derived exosomes (DB-21 exosomes), isolated from Camellia japonica flower in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells and melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. We confirmed that DB-21 exosomes [...] Read more.
In the present study, we investigated the anti-inflammatory and anti-melanogenic effects of Leuconostoc mesenteroides subsp. DB-21-derived exosomes (DB-21 exosomes), isolated from Camellia japonica flower in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells and melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. We confirmed that DB-21 exosomes were not toxic to LPS-induced RAW 264.7 macrophage cells and α-MSH-induced B16F10 melanoma cells. Moreover, we confirmed that DB-21 exosomes inhibit the pro-inflammatory cytokines IL-6, IL-1β, TNF-α, PGE2, and the expression of inflammatory factors iNOS and COX-2. We also found that DB-21 exosomes have a concentration-dependent ability to inhibit melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are factors involved in melanogenesis. Additionally, it inhibits the phosphorylation of Akt and GSK-3β, and MAP kinase pathway proteins such as ERK, JNK, and p38. We confirmed that DB-21 exosomes inhibit melanin synthesis in B16F10 cells through various pathways, and based on previous results, they may be used as a functional cosmetic material with anti-inflammatory and anti-melanogenic activities. Full article
(This article belongs to the Special Issue Advances in Chemistry of Cosmetics)
Show Figures

Figure 1

15 pages, 2812 KiB  
Article
Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry Characterization of Ethyl Acetate Fraction from Sargassum pallidum and Its Anti-Melanogenesis Effect in B16F10 Melanoma Cells and Zebrafish Model
by Wook-Chul Kim, Hyeon Kang and Seung-Hong Lee
Int. J. Mol. Sci. 2025, 26(4), 1522; https://doi.org/10.3390/ijms26041522 - 11 Feb 2025
Viewed by 919
Abstract
Melanin overproduction causes various skin diseases, such as spots, freckles, and wrinkles, resulting in the requirement of melanin synthesis inhibitors like 1-phenyl-2-thiourea (PTU) and kojic acid, which have been commonly used in the pharmaceutical industry. However, these inhibitors can cause side effects such [...] Read more.
Melanin overproduction causes various skin diseases, such as spots, freckles, and wrinkles, resulting in the requirement of melanin synthesis inhibitors like 1-phenyl-2-thiourea (PTU) and kojic acid, which have been commonly used in the pharmaceutical industry. However, these inhibitors can cause side effects such as skin irritation and allergies. Therefore, it is necessary to develop safe and effective melanin inhibitors from natural resources. The purpose of this study was to investigate a whitening agent from natural substances using B16F10 melanoma cells and zebrafish model. We investigated the melanogenesis-inhibiting activities of the fractions from Sargassum pallidum extract. The ethyl acetate fraction from S. pallidum extract (SPEF) significantly decreased tyrosinase activity. SPEF also significantly reduced α-melanocyte stimulating hormone (MSH)-induced intracellular tyrosinase activity and melanin content in B16F10 cells. Moreover, SPEF inhibited the expression levels of key melanogenic proteins such as tyrosinase, TRP-1, TRP-2, and MITF by downregulating the phosphorylation levels of CREB and PKA in α-MSH-stimulated melanoma cells. Furthermore, SPEF significantly suppressed melanin synthesis in the zebrafish model with no developmental toxicity. LC-Q-TOF-MS/MS analysis identified that SPEF was composed of 12 phytochemical compounds, including diterpenes, which were the dominant metabolites. These results altogether show that SPEF effectively suppresses melanogenesis in B16F10 melanoma cells and in a zebrafish model, with potential for usage in pharmaceuticals and cosmeceuticals. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

21 pages, 5101 KiB  
Article
Insights on the Anti-Inflammatory and Anti-Melanogenic Effects of 2′-Hydroxy-2,6′-dimethoxychalcone in RAW 264.7 and B16F10 Cells
by Sung-Min Bae and Chang-Gu Hyun
Curr. Issues Mol. Biol. 2025, 47(2), 85; https://doi.org/10.3390/cimb47020085 - 29 Jan 2025
Viewed by 1181
Abstract
Chalcones are recognized for their diverse pharmacological properties, including anti-inflammatory and anti-melanogenic effects. However, studies on 2′-hydroxy-2-methoxychalcone derivatives remain limited. This study investigated the anti-inflammatory and melanin synthesis-inhibitory effects of three derivatives: 2′-hydroxy-2,4-dimethoxychalcone (2,4-DMC), 2′-hydroxy-2,5′-dimethoxychalcone (2,5′-DMC), and 2′-hydroxy-2,6′-dimethoxychalcone (2,6′-DMC). In lipopolysaccharide (LPS)-stimulated RAW [...] Read more.
Chalcones are recognized for their diverse pharmacological properties, including anti-inflammatory and anti-melanogenic effects. However, studies on 2′-hydroxy-2-methoxychalcone derivatives remain limited. This study investigated the anti-inflammatory and melanin synthesis-inhibitory effects of three derivatives: 2′-hydroxy-2,4-dimethoxychalcone (2,4-DMC), 2′-hydroxy-2,5′-dimethoxychalcone (2,5′-DMC), and 2′-hydroxy-2,6′-dimethoxychalcone (2,6′-DMC). In lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, 2,6′-DMC demonstrated a superior inhibition of nitric oxide (NO) production, pro-inflammatory cytokines, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) compared to the other derivatives. A mechanistic analysis revealed that 2,6′-DMC modulates the NF-κB and MAPK signaling pathways to attenuate inflammation. Additionally, 2,6′-DMC exhibited a significant inhibition of α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis in B16F10 melanoma cells by downregulating tyrosinase, TRP-1, TRP-2, and MITF expression. This regulation was achieved through the suppression of the Wnt/β-catenin, PI3K/AKT, MAPK, and PKA/CREB pathways. Compared to 2,4-DMC and 2,5′-DMC, 2,6′-DMC’s structural configuration, characterized by methoxy groups at the 2- and 6′-positions, contributed to its enhanced molecular stability and binding affinity, amplifying its inhibitory effects. A primary skin irritation test confirmed that 2,6′-DMC exhibited minimal irritation, demonstrating its safety for dermal applications. These findings suggest that 2,6′-DMC holds promise as a dual-function agent for managing inflammatory conditions and hyperpigmentation-related disorders. Full article
(This article belongs to the Special Issue Molecular Insights into Melanogenesis and Melanoma Development)
Show Figures

Figure 1

27 pages, 4623 KiB  
Review
Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders
by Kaiqi Chen, Xiaojun Wu, Xiaoke Li, Haoxuan Pan, Wenhui Zhang, Jinxi Shang, Yinuo Di, Ruonan Liu, Zhaodi Zheng and Xitan Hou
Molecules 2025, 30(3), 568; https://doi.org/10.3390/molecules30030568 - 27 Jan 2025
Viewed by 1748
Abstract
The interaction between the neuroendocrine system and the immune system plays a key role in the onset and progression of various diseases. Neuropeptides, recognized as common biochemical mediators of communication between these systems, are receiving increasing attention because of their potential therapeutic applications [...] Read more.
The interaction between the neuroendocrine system and the immune system plays a key role in the onset and progression of various diseases. Neuropeptides, recognized as common biochemical mediators of communication between these systems, are receiving increasing attention because of their potential therapeutic applications in immune-related disorders. Additionally, many neuropeptides share significant similarities with antimicrobial peptides (AMPs), and evidence shows that these antimicrobial neuropeptides are directly involved in innate immunity. This review examines 10 antimicrobial neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), ghrelin, adrenomedullin (AM), neuropeptide Y (NPY), urocortin II (UCN II), calcitonin gene-related peptide (CGRP), substance P (SP), and catestatin (CST). Their expression characteristics and the immunomodulatory mechanisms mediated by their specific receptors are summarized, along with potential drugs targeting these receptors. Future studies should focus on further investigating antimicrobial neuropeptides and advancing the development of related drugs in preclinical and/or clinical studies to improve the treatment of immune-related diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 4011 KiB  
Article
Inhibition of Melanogenesis via Passive Immune Targeted Alpha-MSH Binder Polypeptide
by Se-Hyo Jeong, Hun-Hwan Kim, Abigail Joy D. Rodelas-Angelia, Mark Rickard N. Angelia, Pritam Bhagwan Bhosale, Eun-Hye Kim, Tae-Sung Jung, Mee-Jung Ahn and Gon-Sup Kim
Cosmetics 2025, 12(1), 12; https://doi.org/10.3390/cosmetics12010012 - 17 Jan 2025
Viewed by 1956
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) is a hormone that stimulates the formation of melanin, which is responsible for protecting the skin from UV rays. However, excessive production of melanin causes pigmentation, leading to skin disorders, such as melasma and freckles. Using phage display technology, [...] Read more.
Alpha-melanocyte stimulating hormone (α-MSH) is a hormone that stimulates the formation of melanin, which is responsible for protecting the skin from UV rays. However, excessive production of melanin causes pigmentation, leading to skin disorders, such as melasma and freckles. Using phage display technology, we screened a modified hagfish VLRB (α-MSH target binding polypeptide) library for polypeptides that recognize α-MSH. This was expressed in E. coli to produce binding proteins that specifically bind to α-MSH. In this study, we investigated the effect of α-MSH binder protein on the inhibition of melanogenesis in B16F10 cells stimulated with α-MSH and the mechanism of inhibition. The α-MSH-induced inhibition of intracellular and extracellular melanogenesis was accompanied by the downregulation of TRP1 and TRP2, and melanogenesis-related proteins, such as tyrosinase and MITF, were significantly downregulated. These results suggest that the α-MSH binder polypeptide regulates melanogenesis inhibition and its associated mechanisms. Full article
(This article belongs to the Special Issue 10th Anniversary of Cosmetics—Recent Advances and Perspectives)
Show Figures

Figure 1

14 pages, 2808 KiB  
Article
Human Tyrosinase Displayed on the Surface of Chinese Hamster Ovary Cells for Ligand Fishing of Tyrosinase Inhibitors from Medicinal Plants
by Xiao-Rui Zhai, Ming-Jie Li, Xiang Yin, Ayzohra Ablat, Yuan Wang, Peng Shu and Xun Liao
Molecules 2025, 30(1), 30; https://doi.org/10.3390/molecules30010030 - 25 Dec 2024
Viewed by 815
Abstract
Ligand fishing is a promising strategy for the screening of active ingredients from complex natural products. In this work, human tyrosinase (hTYR) was displayed on the surface of Chinese hamster ovary (CHO) cells for the first time; it was then used as bait [...] Read more.
Ligand fishing is a promising strategy for the screening of active ingredients from complex natural products. In this work, human tyrosinase (hTYR) was displayed on the surface of Chinese hamster ovary (CHO) cells for the first time; it was then used as bait to develop a new method for ligand fishing. The localization of hTYR on the CHO cell surface was verified by an enzyme activity test and fluorescence microscopy. The displayed tyrosinase (CHO@hTYR) maintained relatively stable enzymatic activity (82.59 ± 2.70%) within 7 days. Furthermore, it can be reused for fishing five times. Guided by the proposed ligand fishing method, four tyrosinase inhibitors, including 4-methoxy-5-methyl coumarin (1), cupressuflavone (2), amentoflavone (3), and 3,4-dimethoxy-5-methyl coumarin (4), were isolated from Alhagi sparsifolia, and the active fraction with low polarity was isolated from Coffea arabica; these two medicinal plants possess skin-lightening potential. All the isolated tyrosinase inhibitors significantly reduced the intracellular tyrosinase activity and melanin level in B16 cells enhanced by α-MSH. Meanwhile, the active fraction (100 μg/mL) from C. arabica exhibited stronger inhibitory effects than the positive controls (α-arbutin and kojic acid) by recovering them to the normal levels. This work demonstrated the promising application of the cell surface display in the field of ligand fishing and is helpful in unveiling the chemical basis of the skin-lightening effect of A. sparsifolia and C. arabica. Full article
(This article belongs to the Special Issue Study on the Bioactive Compounds from Plant Extraction)
Show Figures

Figure 1

13 pages, 2263 KiB  
Article
10(E)-Pentadecenoic Acid Inhibits Melanogenesis Partly Through Suppressing the Intracellular MITF/Tyrosinase Axis
by Min-Kyeong Lee, Kyoung Mi Moon, Su-Yeon Park, Jaeseong Seo, Ah-Reum Kim and Bonggi Lee
Antioxidants 2024, 13(12), 1547; https://doi.org/10.3390/antiox13121547 - 17 Dec 2024
Cited by 2 | Viewed by 1180
Abstract
Melanogenesis, the biological process responsible for melanin synthesis, plays a crucial role in determining skin and hair color, photoprotection, and serving as a biomarker in various diseases. While various factors regulate melanogenesis, the role of fatty acids in this process remains underexplored. This [...] Read more.
Melanogenesis, the biological process responsible for melanin synthesis, plays a crucial role in determining skin and hair color, photoprotection, and serving as a biomarker in various diseases. While various factors regulate melanogenesis, the role of fatty acids in this process remains underexplored. This study investigated the anti-melanogenic properties of 10(E)-pentadecenoic acid (10E-PDA) through both in silico and in vitro analyses. SwissSimilarity was utilized to predict the functional properties of 10E-PDA by comparing it with structurally similar lipids known to exhibit anti-melanogenic effects. Subsequent in vitro experiments demonstrated that 10E-PDA significantly reduced melanin production and intracellular tyrosinase activity in α-MSH (melanocyte-stimulating hormone)-stimulated B16F10 melanoma cells without exhibiting significant cytotoxicity at concentrations up to 15 μM. Further mechanistic studies revealed that 10E-PDA inhibited the nuclear translocation of microphthalmia-associated transcription factor (MITF), consistent with the decrease observed in p-MITF protein levels. It also decreased the mRNA levels of tyrosinase-related proteins (TRP-1, TRP-2) and tyrosinase, while reducing the protein levels of TRP-1 and tyrosinase, but not TRP-2. These findings suggest that 10E-PDA exerts its anti-melanogenic effects by modulating the MITF/tyrosinase axis, presenting potential therapeutic implications for skin pigmentation disorders. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

17 pages, 2852 KiB  
Article
Triglochin maritima Extracts Exert Anti-Melanogenic Properties via the CREB/MAPK Pathway in B16F10 Cells
by Won-Hwi Lee, Yuna Ha, Jeong-In Park, Won Bae Joh, Mira Park, Jang Kyun Kim, Hee-Kyung Jeon and Youn-Jung Kim
Mar. Drugs 2024, 22(12), 532; https://doi.org/10.3390/md22120532 - 27 Nov 2024
Cited by 2 | Viewed by 1439
Abstract
Triglochin maritima, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of T. maritima (TME) along with its ethyl [...] Read more.
Triglochin maritima, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of T. maritima (TME) along with its ethyl acetate (TME-EA) and water (TME-A) fractions. TME (10–200 µg/mL), TME-EA (1–15 µg/mL), and TME-A (100–1000 µg/mL) were prepared and applied to B16F10 cells with or without α-MSH for 72 h. MTT assays were used to assess cytotoxicity, and anti-melanogenesis activity was determined by measuring melanin content, conducting a tyrosinase activity assay, and evaluating the expression of melanogenesis-related genes and proteins via RT-PCR and Western blotting. HPLC-PDA was used to analyze TME and TME-EA. The IC20 cytotoxicity values of TME, TME-A, and TME-EA without α-MSH, were 198.426 μg/mL, 1000 μg/mL, and 18.403 μg/mL, respectively. TME and TME-EA significantly decreased melanin and tyrosinase activity in α-MSH-stimulated B16F10 cells, with TME-EA showing comparable effects to arbutin, while TME-A showed no influence. TME-EA down-regulated melanogenesis genes (Tyr, Trp1, Dct, Mitf, Mc1r) and reduced CREB, p-38, and JNK phosphorylation while increasing ERK phosphorylation, suggesting the CREB/MAPK pathway’s role in the anti-melanogenic effect. Luteolin was identified as a potential active ingredient. TME-EA may serve as an effective cosmeceutical for hyperpigmentation improvement due to its anti-melanogenic properties. Full article
Show Figures

Graphical abstract

14 pages, 3915 KiB  
Article
Desmodesmus pannonicus Water Extract Inhibits Melanin Synthesis and Promotes Wound Healing
by Kazuomi Sato, Yosuke Hiraga, Yuji Yamaguchi, Setsuko Sakaki and Hiroyuki Takenaka
Life 2024, 14(12), 1542; https://doi.org/10.3390/life14121542 - 25 Nov 2024
Cited by 1 | Viewed by 944
Abstract
This study investigated the multifaceted benefits of Desmodesmus pannonicus water extract across various cell lines, including murine B16F1 melanoma cells, human keratinocyte HaCaT cells, and human follicle dermal papilla cells (HFDPCs), to assess its potential in skin health improvement. Initially, the antioxidant capacity [...] Read more.
This study investigated the multifaceted benefits of Desmodesmus pannonicus water extract across various cell lines, including murine B16F1 melanoma cells, human keratinocyte HaCaT cells, and human follicle dermal papilla cells (HFDPCs), to assess its potential in skin health improvement. Initially, the antioxidant capacity of the extract was evaluated using the ABTS assay, revealing significant radical scavenging activity, indicating strong antioxidative properties. Subsequently, D. pannonicus extract showed notable inhibition of α-MSH-enhanced melanin production in B16F1 cells without cell toxicity by suppressing tyrosinase expression. Furthermore, the extract significantly promoted cell migration and enhanced wound healing in HaCaT cells, accompanied by an upregulation of VEGF and MMP mRNA levels, which are crucial for the wound healing process. In addition, we investigated the effect of D. pannonicus extract on hair growth-related genes in HFDPCs. Despite a slight reduction in VEGF mRNA levels, an increase in CTGF and HGF1 mRNA levels was observed, alongside a significant down-regulation of TGFβ1, highlighting the extract’s potential to promote hair growth and exhibit antiandrogenic effects. Collectively, these findings demonstrated the therapeutic potential of D. pannonicus extract in treating hyperpigmentation, enhancing wound healing, and promoting hair growth, making it a promising candidate for future dermatological applications. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

18 pages, 1139 KiB  
Article
Facial Movements Extracted from Video for the Kinematic Classification of Speech
by Richard Palmer, Roslyn Ward, Petra Helmholz, Geoffrey R. Strauss, Paul Davey, Neville Hennessey, Linda Orton and Aravind Namasivayam
Sensors 2024, 24(22), 7235; https://doi.org/10.3390/s24227235 - 12 Nov 2024
Cited by 1 | Viewed by 1940
Abstract
Speech Sound Disorders (SSDs) are prevalent communication problems in children that pose significant barriers to academic success and social participation. Accurate diagnosis is key to mitigating life-long impacts. We are developing a novel software solution—the Speech Movement and Acoustic Analysis Tracking (SMAAT) system [...] Read more.
Speech Sound Disorders (SSDs) are prevalent communication problems in children that pose significant barriers to academic success and social participation. Accurate diagnosis is key to mitigating life-long impacts. We are developing a novel software solution—the Speech Movement and Acoustic Analysis Tracking (SMAAT) system to facilitate rapid and objective assessment of motor speech control issues underlying SSD. This study evaluates the feasibility of using automatically extracted three-dimensional (3D) facial measurements from single two-dimensional (2D) front-facing video cameras for classifying speech movements. Videos were recorded of 51 adults and 77 children between 3 and 4 years of age (all typically developed for age) saying 20 words from the mandibular and labial-facial levels of the Motor-Speech Hierarchy Probe Wordlist (MSH-PW). Measurements around the jaw and lips were automatically extracted from the 2D video frames using a state-of-the-art facial mesh detection and tracking algorithm, and each individual measurement was tested in a Leave-One-Out Cross-Validation (LOOCV) framework for its word classification performance. Statistics were evaluated at the α=0.05 significance level and several measurements were found to exhibit significant classification performance in both the adult and child cohorts. Importantly, measurements of depth indirectly inferred from the 2D video frames were among those found to be significant. The significant measurements were shown to match expectations of facial movements across the 20 words, demonstrating their potential applicability in supporting clinical evaluations of speech production. Full article
(This article belongs to the Special Issue Deep Learning Based Face Recognition and Feature Extraction)
Show Figures

Graphical abstract

16 pages, 4718 KiB  
Article
Anti-Melanogenic Activities of Sargassum fusiforme Polyphenol-Rich Extract on α-MSH-Stimulated B16F10 Cells via PI3K/Akt and MAPK/ERK Pathways
by Bei Chen, Honghong Chen, Kun Qiao, Min Xu, Jingna Wu, Yongchang Su, Yan Shi, Lina Ke, Zhiyu Liu and Qin Wang
Foods 2024, 13(22), 3556; https://doi.org/10.3390/foods13223556 - 7 Nov 2024
Cited by 1 | Viewed by 1996
Abstract
Background: Melanin overproduction leads to pigmented skin diseases. Brown algae polyphenols, non-toxic secondary metabolites, exhibit potential bioactivities. Sargassum fusiforme, an edible seaweed, has been underexplored in the field of beauty despite its polyphenol richness. Methods: Polyphenols from S. fusiforme were extracted using [...] Read more.
Background: Melanin overproduction leads to pigmented skin diseases. Brown algae polyphenols, non-toxic secondary metabolites, exhibit potential bioactivities. Sargassum fusiforme, an edible seaweed, has been underexplored in the field of beauty despite its polyphenol richness. Methods: Polyphenols from S. fusiforme were extracted using macroporous resin (SFRP) and ethyl acetate (SFEP). Their antioxidant and anti-aging properties, tyrosinase inhibitory activities, and mechanisms were assessed. The melanogenesis inhibition effect and mechanism by SFRP was examined in B16F10 melanoma cells. Results: Both SFRP and SFEP demonstrated scavenging activities against DPPH, superoxide anion, and hydroxyl radicals. SFRP showed stronger anti-collagenase and anti-elastase effects. They dose-dependently inhibited mushroom tyrosinase, with IC50 values of 9.89 μg/mL for SFRP and 0.99 μg/mL for SFEP. SFRP reversibly inhibited tyrosinase, while SFEP showed irreversible inhibition. SFRP also suppressed melanin content and intracellular tyrosinase activity in B16F10 cells, downregulating the expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 and 2 expression through the PI3K/Akt and MAPK/ERK signal pathways. Conclusions: S. fusiforme polyphenols, especially SFRP, exhibit promising antioxidant, anti-aging, and melanogenesis inhibitory properties, highlighting their potential application as novel anti-melanogenic agents in cosmetics and the food industry. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

17 pages, 6207 KiB  
Article
Discovery of Kuraridin as a Potential Natural Anti-Melanogenic Agent: Focusing on Specific Target Genes and Multidirectional Signaling Pathways
by Subin Jeon, Kumju Youn and Mira Jun
Int. J. Mol. Sci. 2024, 25(20), 11227; https://doi.org/10.3390/ijms252011227 - 18 Oct 2024
Cited by 4 | Viewed by 1735
Abstract
Abnormal melanogenesis upon UV exposure causes excessive oxidative stress, leading to hyperpigmentation disorders. As a key rate-limiting enzyme in melanogenesis, tyrosinase is considered a primary target for depigmenting agents. Sophora flavescens is used as a food and in traditional medicine as a valuable [...] Read more.
Abnormal melanogenesis upon UV exposure causes excessive oxidative stress, leading to hyperpigmentation disorders. As a key rate-limiting enzyme in melanogenesis, tyrosinase is considered a primary target for depigmenting agents. Sophora flavescens is used as a food and in traditional medicine as a valuable source of prenylated flavonoids. The present study aimed to elucidate the anti-melanogenic effect and potential mechanism of kuraridin, one of the major prenylated flavonoids. Kuraridin showed anti-tyrosinase activity with an IC50 value in the nanomolar range, superior to that of kojic acid, a positive control. It significantly reduced tyrosinase activity with the least cytotoxicity, suppressing melanogenesis in α-MSH-induced B16F10 cells. Furthermore, kuraridin considerably reduced melanogenesis in a 3D human skin model. To elucidate the anti-melanogenic mechanism of kuraridin, target genes (KIT, MAP2K1, and PRKCA) and pathways (c-KIT and ETB-R pathways) were identified using network pharmacology. KIT and MAP2K1 are simultaneously involved in the c-KIT cascade and are considered the most important in melanogenesis. PRKCA acts directly on MITF and its downstream enzymes through another pathway. Docking simulation showed strong interactions between kuraridin and c-KIT, ERK1/2, and PKC encoded by target genes. Overall, the present study showed kuraridin to be a novel natural anti-melanogenic agent in hyperpigmentation disorders. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 4.0: From Nature to Applications)
Show Figures

Figure 1

Back to TopTop