Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = α-amylase family GH13

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3517 KiB  
Article
Characterization of a Thermostable α-Amylase from Bacillus licheniformis 104.K for Industrial Applications
by Askar Kholikov, Khushnut Vokhidov, Azizjon Murtozoyev, Zoé S. Tóth, Gergely N. Nagy, Beáta G. Vértessy and Akhmadzhan Makhsumkhanov
Microorganisms 2025, 13(8), 1757; https://doi.org/10.3390/microorganisms13081757 - 28 Jul 2025
Viewed by 538
Abstract
This study describes the characterization of a novel thermostable α-amylase from a Bacillus licheniformis 104.K strain isolated from the Kashkadarya region of Uzbekistan. Phylogenetic analysis revealed that the thermostable α-amylase belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and shares high sequence [...] Read more.
This study describes the characterization of a novel thermostable α-amylase from a Bacillus licheniformis 104.K strain isolated from the Kashkadarya region of Uzbekistan. Phylogenetic analysis revealed that the thermostable α-amylase belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and shares high sequence similarity with known α-amylases. Our results demonstrate that the recombinant α-amylase exhibits optimal activity at pH 6.0 and 90 °C, retaining full activity after 30 min at 60 °C. The addition of CaCl2 significantly enhanced thermostability, with the enzyme retaining more than 95% of its initial activity at 70 °C after 30 min. Our findings indicate that α-amylase from B. licheniformis 104.K is a functional, thermostable enzyme with potential industrial applications. This study highlights the commercial significance of thermostable amylases and the need to identify novel, cost-effective, and sustainable sources. The results of this study will contribute to the fields of enzyme applications, stabilizing additives, and genetic engineering of thermostable genes. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

23 pages, 6264 KiB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of Four Subgroup Members of the GH13 Family in Wheat (Triticum aestivum L.)
by Yue Yin, Dongjie Cui, Hao Sun, Panfeng Guan, Hanfeng Zhang, Qing Chi and Zhen Jiao
Int. J. Mol. Sci. 2024, 25(6), 3399; https://doi.org/10.3390/ijms25063399 - 17 Mar 2024
Cited by 1 | Viewed by 1893
Abstract
The glycoside hydrolase 13 (GH13) family is crucial for catalyzing α-glucoside linkages, and plays a key role in plant growth, development, and stress responses. Despite its significance, its role in plants remains understudied. This study targeted four GH13 subgroups in wheat, identifying 66 [...] Read more.
The glycoside hydrolase 13 (GH13) family is crucial for catalyzing α-glucoside linkages, and plays a key role in plant growth, development, and stress responses. Despite its significance, its role in plants remains understudied. This study targeted four GH13 subgroups in wheat, identifying 66 GH13 members from the latest wheat database (IWGSC RefSeq v2.1), including 36 α-amylase (AMY) members, 18 1,4-α-glucan-branching enzyme (SBE) members, 9 isoamylase (ISA) members, and 3 pullulanase (PU) members. Chromosomal distribution reveals a concentration of wheat group 7 chromosomes. Phylogenetic analysis underscores significant evolutionary distance variations among the subgroups, with distinct molecular structures. Replication events shaped subgroup evolution, particularly in regard to AMY members. Subcellular localization indicates AMY member predominance in extracellular and chloroplast regions, while others localize solely in chloroplasts, confirmed by the heterologous expression of TaSEB16 and TaAMY1 in tobacco. Moreover, 3D structural analysis shows the consistency of GH13 across species. Promoter cis-acting elements are suggested to be involved in growth, stress tolerance, and starch metabolism signaling. The RNA-seq data revealed TaGH13 expression changes under drought and submergence stress, and significant expression variation was observed between strong and weak gluten varieties during seed germination using quantitative real-time PCR (qRT-PCR), correlating with seed starch content. These findings demonstrate the pivotal role of GH13 family gene expression in wheat germination, concerning variety preference and environmental stress. Overall, this study advances the understanding of wheat GH13 subgroups, laying the groundwork for further functional studies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 2322 KiB  
Article
Identification and Characterization of Novel Malto-Oligosaccharide-Forming Amylase AmyCf from Cystobacter sp. Strain CF23
by Jihong Wang, Lei Zhang, Peiwen Wang, Jinhui Lei, Lingli Zhong, Lei Zhan, Xianfeng Ye, Yan Huang, Xue Luo, Zhongli Cui and Zhoukun Li
Foods 2023, 12(18), 3487; https://doi.org/10.3390/foods12183487 - 19 Sep 2023
Cited by 4 | Viewed by 1821
Abstract
Malto-oligosaccharides (MOSs) from starch conversion is advantageous for food and pharmaceutical applications. In this study, an efficient malto-oligosaccharide-forming α-amylase AmyCf was identified from myxobacter Cystobacter sp. strain CF23. AmyCf is composed of 417 amino acids with N-terminal 41 amino acids as the signal [...] Read more.
Malto-oligosaccharides (MOSs) from starch conversion is advantageous for food and pharmaceutical applications. In this study, an efficient malto-oligosaccharide-forming α-amylase AmyCf was identified from myxobacter Cystobacter sp. strain CF23. AmyCf is composed of 417 amino acids with N-terminal 41 amino acids as the signal peptide, and conserved glycoside hydrolase family 13 (GH13) catalytic module and predicted C-terminal domain with β-sheet structure are also identified. Phylogenetic and functional analysis demonstrated that AmyCf is a novel member of GH13_6 subfamily. The special activity of AmyCf toward soluble starch and raw wheat starch is 9249 U/mg and 11 U/mg, respectively. AmyCf has broad substrate specificity toward different types of starches without requiring Ca2+. Under ideal circumstances of 60 °C and pH 7.0, AmyCf hydrolyzes gelatinized starch into maltose and maltotriose and maltotetraose as the main hydrolytic products with more than 80% purity, while maltose and maltotriose are mainly produced from the hydrolysis of raw wheat starch with more than 95% purity. The potential applicability of AmyCf in starch processing is highlighted by its capacity to convert gelatinized starch and raw starch granules into MOSs. This enzymatic conversion technique shows promise for the low-temperature enzymatic conversion of raw starch. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

22 pages, 5404 KiB  
Article
Structural and Functional Characterization of Drosophila melanogaster α-Amylase
by Moez Rhimi, Jean-Luc Da Lage, Richard Haser, Georges Feller and Nushin Aghajari
Molecules 2023, 28(14), 5327; https://doi.org/10.3390/molecules28145327 - 11 Jul 2023
Cited by 4 | Viewed by 2454
Abstract
Insects rely on carbohydrates such as starch and glycogen as an energy supply for growth of larvae and for longevity. In this sense α-amylases have essential roles under extreme conditions, e.g., during nutritional or temperature stress, thereby contributing to survival of the insect. [...] Read more.
Insects rely on carbohydrates such as starch and glycogen as an energy supply for growth of larvae and for longevity. In this sense α-amylases have essential roles under extreme conditions, e.g., during nutritional or temperature stress, thereby contributing to survival of the insect. This makes them interesting targets for combating insect pests. Drosophila melanogaster α-amylase, DMA, which belongs to the glycoside hydrolase family 13, sub family 15, has been studied from an evolutionary, biochemical, and structural point of view. Our studies revealed that the DMA enzyme is active over a broad temperature and pH range, which is in agreement with the fluctuating environmental changes with which the insect is confronted. Crystal structures disclosed a new nearly fully solvated metal ion, only coordinated to the protein via Gln263. This residue is only conserved in the subgroup of D. melanogaster and may thus contribute to the enzyme adaptive response to large temperature variations. Studies of the effect of plant inhibitors and the pseudo-tetrasaccharide inhibitor acarbose on DMA activity, allowed us to underline the important role of the so-called flexible loop on activity/inhibition, but also to suggest that the inhibition modes of the wheat inhibitors WI-1 and WI-3 on DMA, are likely different. Full article
(This article belongs to the Special Issue Advances in Amylases)
Show Figures

Figure 1

18 pages, 3879 KiB  
Article
Novel Design of an α-Amylase with an N-Terminal CBM20 in Aspergillus niger Improves Binding and Processing of a Broad Range of Starches
by Andika Sidar, Gerben P. Voshol, Erik Vijgenboom and Peter J. Punt
Molecules 2023, 28(13), 5033; https://doi.org/10.3390/molecules28135033 - 27 Jun 2023
Cited by 10 | Viewed by 3075
Abstract
In the starch processing industry including the food and pharmaceutical industries, α-amylase is an important enzyme that hydrolyses the α-1,4 glycosidic bonds in starch, producing shorter maltooligosaccharides. In plants, starch molecules are organised in granules that are very compact and rigid. The level [...] Read more.
In the starch processing industry including the food and pharmaceutical industries, α-amylase is an important enzyme that hydrolyses the α-1,4 glycosidic bonds in starch, producing shorter maltooligosaccharides. In plants, starch molecules are organised in granules that are very compact and rigid. The level of starch granule rigidity affects resistance towards enzymatic hydrolysis, resulting in inefficient starch degradation by industrially available α-amylases. In an approach to enhance starch hydrolysis, the domain architecture of a Glycoside Hydrolase (GH) family 13 α-amylase from Aspergillus niger was engineered. In all fungal GH13 α-amylases that carry a carbohydrate binding domain (CBM), these modules are of the CBM20 family and are located at the C-terminus of the α-amylase domain. To explore the role of the domain order, a new GH13 gene encoding an N-terminal CBM20 domain was designed and found to be fully functional. The starch binding capacity and enzymatic activity of N-terminal CBM20 α-amylase was found to be superior to that of native GH13 without CBM20. Based on the kinetic parameters, the engineered N-terminal CBM20 variant displayed surpassing activity rates compared to the C-terminal CBM20 version for the degradation on a wide range of starches, including the more resistant raw potato starch for which it exhibits a two-fold higher Vmax underscoring the potential of domain engineering for these carbohydrate active enzymes. Full article
(This article belongs to the Special Issue Advances in Amylases)
Show Figures

Figure 1

13 pages, 2987 KiB  
Article
Exploration of the Transglycosylation Activity of Barley Limit Dextrinase for Production of Novel Glycoconjugates
by Malene Bech Vester-Christensen, Jesper Holck, Martin Rejzek, Léa Perrin, Morten Tovborg, Birte Svensson, Robert A. Field and Marie Sofie Møller
Molecules 2023, 28(10), 4111; https://doi.org/10.3390/molecules28104111 - 16 May 2023
Cited by 3 | Viewed by 2432
Abstract
A few α-glucan debranching enzymes (DBEs) of the large glycoside hydrolase family 13 (GH13), also known as the α-amylase family, have been shown to catalyze transglycosylation as well as hydrolysis. However, little is known about their acceptor and donor preferences. Here, a DBE [...] Read more.
A few α-glucan debranching enzymes (DBEs) of the large glycoside hydrolase family 13 (GH13), also known as the α-amylase family, have been shown to catalyze transglycosylation as well as hydrolysis. However, little is known about their acceptor and donor preferences. Here, a DBE from barley, limit dextrinase (HvLD), is used as a case study. Its transglycosylation activity is studied using two approaches; (i) natural substrates as donors and different p-nitrophenyl (pNP) sugars as well as different small glycosides as acceptors, and (ii) α-maltosyl and α-maltotriosyl fluorides as donors with linear maltooligosaccharides, cyclodextrins, and GH inhibitors as acceptors. HvLD showed a clear preference for pNP maltoside both as acceptor/donor and acceptor with the natural substrate pullulan or a pullulan fragment as donor. Maltose was the best acceptor with α-maltosyl fluoride as donor. The findings highlight the importance of the subsite +2 of HvLD for activity and selectivity when maltooligosaccharides function as acceptors. However, remarkably, HvLD is not very selective when it comes to aglycone moiety; different aromatic ring-containing molecules besides pNP could function as acceptors. The transglycosylation activity of HvLD can provide glycoconjugate compounds with novel glycosylation patterns from natural donors such as pullulan, although the reaction would benefit from optimization. Full article
(This article belongs to the Special Issue Advances in Amylases)
Show Figures

Graphical abstract

15 pages, 8073 KiB  
Article
The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19
by Yan An, Phuong Lan Tran, Min-Jee Yoo, Hyung-Nam Song, Kwang-Hyun Park, Tae-Jip Kim, Jong-Tae Park and Eui-Jeon Woo
Molecules 2023, 28(10), 3972; https://doi.org/10.3390/molecules28103972 - 9 May 2023
Cited by 6 | Viewed by 3251
Abstract
Periplasmic α-amylase MalS (EC. 3.2.1.1), which belongs to glycoside hydrolase (GH) family 13 subfamily 19, is an integral component of the maltose utilization pathway in Escherichia coli K12 and used among Ecnterobacteriaceae for the effective utilization of maltodextrin. We present the crystal structure [...] Read more.
Periplasmic α-amylase MalS (EC. 3.2.1.1), which belongs to glycoside hydrolase (GH) family 13 subfamily 19, is an integral component of the maltose utilization pathway in Escherichia coli K12 and used among Ecnterobacteriaceae for the effective utilization of maltodextrin. We present the crystal structure of MalS from E. coli and reveal that it has unique structural features of circularly permutated domains and a possible CBM69. The conventional C-domain of amylase consists of amino acids 120–180 (N-terminal) and 646–676 (C-terminal) in MalS, and the whole domain architecture shows the complete circular permutation of C-A-B-A-C in domain order. Regarding substrate interaction, the enzyme has a 6-glucosyl unit pocket binding it to the non-reducing end of the cleavage site. Our study found that residues D385 and F367 play important roles in the preference of MalS for maltohexaose as an initial product. At the active site of MalS, β-CD binds more weakly than the linear substrate, possibly due to the positioning of A402. MalS has two Ca2+ binding sites that contribute significantly to the thermostability of the enzyme. Intriguingly, the study found that MalS exhibits a high binding affinity for polysaccharides such as glycogen and amylopectin. The N domain, of which the electron density map was not observed, was predicted to be CBM69 by AlphaFold2 and might have a binding site for the polysaccharides. Structural analysis of MalS provides new insight into the structure–evolution relationship in GH13 subfamily 19 enzymes and a molecular basis for understanding the details of catalytic function and substrate binding of MalS. Full article
(This article belongs to the Special Issue Advances in Amylases)
Show Figures

Figure 1

17 pages, 4865 KiB  
Article
Improved Stability and Hydrolysates of Hyperthermophilic GH57 Type II Pullulanase from the Deep-Sea Archaeon Thermococcus siculi HJ21 by Truncation
by Xudong Wu, Baojie Dou, Boyan Wang, Mingwang Liu, Ruxue Shao, Jing Lu, Mingsheng Lyu and Shujun Wang
Catalysts 2023, 13(3), 453; https://doi.org/10.3390/catal13030453 - 21 Feb 2023
Cited by 7 | Viewed by 2666
Abstract
Pullulanase (EC 3.2.1.41) belongs to the amylase family and is often used alone or in combination with other amylases in the industrial production of starch-based products. This enzyme is often required in industrial production because of its better stability. We here truncated the [...] Read more.
Pullulanase (EC 3.2.1.41) belongs to the amylase family and is often used alone or in combination with other amylases in the industrial production of starch-based products. This enzyme is often required in industrial production because of its better stability. We here truncated the pullulanase gene from the deep-sea hydrothermal anaerobic archaeon Thermococcus siculi HJ21 and obtained Pul-HJΔ782, which is a member of the α-amylase family GH57. The results revealed that the optimum temperature for Pul-HJΔ782 was 100 °C, and its thermostability at 100 °C improved after truncation. Less than 15% of its enzyme activity was lost after 1 h of incubation at 100 °C, and 57% activity remained after 5 h of treatment. Truncation significantly improved the overall pH tolerance range of Pul-HJΔ782, and its stability in the pH range 4–8 was over 80% relative activity from an average of 60%. The sequence and structural model of Pul-HJΔ782 was analyzed, and its instability index was reduced significantly. Furthermore, the hydrolysates of the truncated and wild-type pullulanase were analyzed, and the enzymatic digestion efficiency of the truncated Pul-HJΔ782 was higher. Full article
Show Figures

Figure 1

17 pages, 8544 KiB  
Article
A Novel Subfamily GH13_46 of the α-Amylase Family GH13 Represented by the Cyclomaltodextrinase from Flavobacterium sp. No. 92
by Filip Mareček and Štefan Janeček
Molecules 2022, 27(24), 8735; https://doi.org/10.3390/molecules27248735 - 9 Dec 2022
Cited by 17 | Viewed by 2197
Abstract
In the CAZy database, the α-amylase family GH13 has already been divided into 45 subfamilies, with additional subfamilies still emerging. The presented in silico study was undertaken in an effort to propose a novel GH13 subfamily represented by the experimentally characterized cyclomaltodxtrinase from [...] Read more.
In the CAZy database, the α-amylase family GH13 has already been divided into 45 subfamilies, with additional subfamilies still emerging. The presented in silico study was undertaken in an effort to propose a novel GH13 subfamily represented by the experimentally characterized cyclomaltodxtrinase from Flavobacterium sp. No. 92. Although most cyclomaltodextrinases have been classified in the subfamily GH13_20. This one has not been assigned any GH13 subfamily as yet. It possesses a non-specified immunoglobulin-like domain at its N-terminus mimicking a starch-binding domain (SBD) and the segment MPDLN in its fifth conserved sequence region (CSR) typical, however, for the subfamily GH13_36. The searches through sequence databases resulted in collecting a group of 108 homologs forming a convincing cluster in the evolutionary tree, well separated from all remaining GH13 subfamilies. The members of the newly proposed subfamily share a few exclusive sequence features, such as the “aromatic” end of the CSR-II consisting of two well-conserved tyrosines with either glycine, serine, or proline in the middle or a glutamic acid succeeding the catalytic proton donor in the CSR-III. Concerning the domain N of the representative cyclomaltodextrinase, docking trials with α-, β- and γ-cyclodextrins have indicated it may represent a new type of SBD. This new GH13 subfamily has been assigned the number GH13_46. Full article
(This article belongs to the Special Issue Advances in Amylases)
Show Figures

Figure 1

19 pages, 7019 KiB  
Article
In-Depth Characterization of Debranching Type I Pullulanase from Priestia koreensis HL12 as Potential Biocatalyst for Starch Saccharification and Modification
by Daran Prongjit, Hataikarn Lekakarn, Benjarat Bunterngsook, Katesuda Aiewviriyasakul, Wipawee Sritusnee, Nattapol Arunrattanamook and Verawat Champreda
Catalysts 2022, 12(9), 1014; https://doi.org/10.3390/catal12091014 - 7 Sep 2022
Cited by 10 | Viewed by 3610
Abstract
Pullulanase is an effective starch debranching enzyme widely used in starch saccharification and modification. In this work, the biochemical characteristics and potential application of a new type I pullulanase from Priestia koreensis HL12 (HL12Pul) were evaluated and reported for the first time. Through [...] Read more.
Pullulanase is an effective starch debranching enzyme widely used in starch saccharification and modification. In this work, the biochemical characteristics and potential application of a new type I pullulanase from Priestia koreensis HL12 (HL12Pul) were evaluated and reported for the first time. Through in-depth evolutionary analysis, HL12Pul was classified as type I pullulanase belonging to glycoside hydrolase family 13, subfamily 14 (GH13_14). HL12Pul comprises multi-domains architecture, including two carbohydrate-binding domains, CBM68 and CBM48, at the N-terminus, the TIM barrel structure of glycoside hydrolase family 13 (GH13) and C-domain. Based on sequence analysis and experimental cleavage profile, HL12Pul specifically hydrolyzes only α-1,6 glycosidic linkage-rich substrates. The enzyme optimally works at 40 °C, pH 6.0, with the maximum specific activity of 181.14 ± 3.55 U/mg protein and catalytic efficiency (kcat/Km) of 49.39 mL/mg·s toward pullulan. In addition, HL12Pul worked in synergy with raw starch-degrading α-amylase, promoting raw cassava starch hydrolysis and increasing the sugar yield by 2.9-fold in comparison to the α-amylase alone in a short reaction time. Furthermore, HL12Pul effectively produces type III-resistant starch (RSIII) from cassava starch with a production yield of 70%. These indicate that HL12Pul has the potential as a biocatalyst for starch saccharification and modification. Full article
Show Figures

Graphical abstract

19 pages, 4531 KiB  
Article
Functional Characterization of Recombinant Raw Starch Degrading α-Amylase from Roseateles terrae HL11 and Its Application on Cassava Pulp Saccharification
by Daran Prongjit, Hataikarn Lekakarn, Benjarat Bunterngsook, Katesuda Aiewviriyasakul, Wipawee Sritusnee and Verawat Champreda
Catalysts 2022, 12(6), 647; https://doi.org/10.3390/catal12060647 - 13 Jun 2022
Cited by 7 | Viewed by 4226
Abstract
Exploring new raw starch-hydrolyzing α-amylases and understanding their biochemical characteristics are important for the utilization of starch-rich materials in bio-industry. In this work, the biochemical characteristics of a novel raw starch-degrading α-amylase (HL11 Amy) from Roseateles terrae HL11 was firstly reported. Evolutionary analysis [...] Read more.
Exploring new raw starch-hydrolyzing α-amylases and understanding their biochemical characteristics are important for the utilization of starch-rich materials in bio-industry. In this work, the biochemical characteristics of a novel raw starch-degrading α-amylase (HL11 Amy) from Roseateles terrae HL11 was firstly reported. Evolutionary analysis revealed that HL11Amy was classified into glycoside hydrolase family 13 subfamily 32 (GH13_32). It contains four protein domains consisting of domain A, domain B, domain C and carbohydrate-binding module 20 (CMB20). The enzyme optimally worked at 50 °C, pH 4.0 with a specific activity of 6270 U/mg protein and 1030 raw starch-degrading (RSD) U/mg protein against soluble starch. Remarkably, HL11Amy exhibited activity toward both raw and gelatinized forms of various substrates, with the highest catalytic efficiency (kcat/Km) on starch from rice, followed by potato and cassava, respectively. HL11Amy effectively hydrolyzed cassava pulp (CP) hydrolysis, with a reducing sugar yield of 736 and 183 mg/g starch from gelatinized and raw CP, equivalent to 72% and 18% conversion based on starch content in the substrate, respectively. These demonstrated that HL11Amy represents a promising raw starch-degrading enzyme with potential applications in starch modification and cassava pulp saccharification. Full article
Show Figures

Graphical abstract

8 pages, 2703 KiB  
Article
Evaluation of Porcine and Aspergillus oryzae α-Amylases as Possible Model for the Human Enzyme
by Mauro Marengo, Davide Pezzilli, Eleonora Gianquinto, Alex Fissore, Simonetta Oliaro-Bosso, Barbara Sgorbini, Francesca Spyrakis and Salvatore Adinolfi
Processes 2022, 10(4), 780; https://doi.org/10.3390/pr10040780 - 15 Apr 2022
Cited by 11 | Viewed by 4172
Abstract
α-amylases are ubiquitous enzymes belonging to the glycosyl hydrolase (GH13) family, whose members share a high degree of sequence identity, even between distant organisms. To understand the determinants of catalytic activity of α-amylases throughout evolution, and to investigate the use of homologous enzymes [...] Read more.
α-amylases are ubiquitous enzymes belonging to the glycosyl hydrolase (GH13) family, whose members share a high degree of sequence identity, even between distant organisms. To understand the determinants of catalytic activity of α-amylases throughout evolution, and to investigate the use of homologous enzymes as a model for the human one, we compared human salivary α-amylase, Aspergillus oryzae α-amylase and pancreatic porcine α-amylase, using a combination of in vitro and in silico approaches. Enzyme sequences were aligned, and structures superposed, whereas kinetics were spectroscopically studied by using commercial synthetic substrates. These three enzymes show strikingly different activities, specifically mediated by different ions, despite relevant structural homology. Our study confirms that the function of α-amylases throughout evolution has considerably diverged, although key structural determinants, such as the catalytic triad and the calcium-binding pocket, have been retained. These functional differences need to be carefully considered when α-amylases, from different organisms, are used as a model for the human enzymes. In this frame, particular focus is needed for the setup of proper experimental conditions. Full article
Show Figures

Figure 1

24 pages, 2582 KiB  
Article
Modulating Glycoside Hydrolase Activity between Hydrolysis and Transfer Reactions Using an Evolutionary Approach
by Rodrigo A. Arreola-Barroso, Alexey Llopiz, Leticia Olvera and Gloria Saab-Rincón
Molecules 2021, 26(21), 6586; https://doi.org/10.3390/molecules26216586 - 30 Oct 2021
Cited by 5 | Viewed by 3962
Abstract
The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction [...] Read more.
The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction specificity is key to modifying and designing enzymes with increased specificity towards individual reactions for further applications in industrial, chemical, or biomedical fields. This work proposes a computational approach for decoding the determinant structural composition defining the reaction specificity. This method is based on the conservation of coevolving residues in spatial contacts associated with reaction specificity. To evaluate the algorithm, mutants of α-amylase (TmAmyA) and glucanotransferase (TmGTase) from Thermotoga maritima were constructed to modify the reaction specificity. The K98P/D99A/H222Q variant from TmAmyA doubled the transglycosydation/hydrolysis (T/H) ratio while the M279N variant from TmGTase increased the hydrolysis/transglycosidation ratio five-fold. Molecular dynamic simulations of the variants indicated changes in flexibility that can account for the modified T/H ratio. An essential contribution of the presented computational approach is its capacity to identify residues outside of the active center that affect the reaction specificity. Full article
(This article belongs to the Special Issue Recent Advances in Carbohydrate-Active Enzymes)
Show Figures

Graphical abstract

17 pages, 21119 KiB  
Article
In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites
by Zuzana Janíčková and Štefan Janeček
Molecules 2021, 26(18), 5704; https://doi.org/10.3390/molecules26185704 - 21 Sep 2021
Cited by 6 | Viewed by 3251
Abstract
This study brings a detailed bioinformatics analysis of fungal and chloride-dependent α-amylases from the family GH13. Overall, 268 α-amylase sequences were retrieved from subfamilies GH13_1 (39 sequences), GH13_5 (35 sequences), GH13_15 (28 sequences), GH13_24 (23 sequences), GH13_32 (140 sequences) and GH13_42 (3 sequences). [...] Read more.
This study brings a detailed bioinformatics analysis of fungal and chloride-dependent α-amylases from the family GH13. Overall, 268 α-amylase sequences were retrieved from subfamilies GH13_1 (39 sequences), GH13_5 (35 sequences), GH13_15 (28 sequences), GH13_24 (23 sequences), GH13_32 (140 sequences) and GH13_42 (3 sequences). Eight conserved sequence regions (CSRs) characteristic for the family GH13 were identified in all sequences and respective sequence logos were analysed in an effort to identify unique sequence features of each subfamily. The main emphasis was given on the subfamily GH13_32 since it contains both fungal α-amylases and their bacterial chloride-activated counterparts. In addition to in silico analysis focused on eventual ability to bind the chloride anion, the property typical mainly for animal α-amylases from subfamilies GH13_15 and GH13_24, attention has been paid also to the potential presence of the so-called secondary surface-binding sites (SBSs) identified in complexed crystal structures of some particular α-amylases from the studied subfamilies. As template enzymes with already experimentally determined SBSs, the α-amylases from Aspergillus niger (GH13_1), Bacillus halmapalus, Bacillus paralicheniformis and Halothermothrix orenii (all from GH13_5) and Homo sapiens (saliva; GH13_24) were used. Evolutionary relationships between GH13 fungal and chloride-dependent α-amylases were demonstrated by two evolutionary trees—one based on the alignment of the segment of sequences spanning almost the entire catalytic TIM-barrel domain and the other one based on the alignment of eight extracted CSRs. Although both trees demonstrated similar results in terms of a closer evolutionary relatedness of subfamilies GH13_1 with GH13_42 including in a wider sense also the subfamily GH13_5 as well as for subfamilies GH13_32, GH13_15 and GH13_24, some subtle differences in clustering of particular α-amylases may nevertheless be observed. Full article
(This article belongs to the Special Issue Recent Advances in Carbohydrate-Active Enzymes)
Show Figures

Figure 1

38 pages, 1376 KiB  
Review
Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives
by Natália G. Graebin, Jéssie Da N. Schöffer, Diandra De Andrades, Plinho F. Hertz, Marco A. Z. Ayub and Rafael C. Rodrigues
Molecules 2016, 21(8), 1074; https://doi.org/10.3390/molecules21081074 - 17 Aug 2016
Cited by 61 | Viewed by 11877
Abstract
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development [...] Read more.
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented. Full article
(This article belongs to the Special Issue Enzyme Immobilization 2016)
Show Figures

Figure 1

Back to TopTop