The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overall Structural Characteristics of MalS
2.2. Binding Affinity and Structural Characterization of N Domain Predicted by AlphaFold2
2.3. Essentials of Calcium Ion Binding to MalS
2.4. Structural Relevance of Maltohexaose-Releasing Activity of MalS
3. Materials and Methods
3.1. Materials
3.2. Construction and Purification of Recombinant Protein
3.3. Crystallization and Data Collection
3.4. Structure Determination and Refinement
3.5. Protein Docking and Alignment
3.6. Hydrolysis of Amylopectin by MalS
3.7. Determination of Binding Affinity for Amylopectin and Glycogen
3.8. Determination of Relative Activity
3.9. Prediction of MalS Structure Using Alphafold2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Freundlieb, S.; Boos, W. Alpha-amylase of Escherichia coli, mapping and cloning of the structural gene, malS, and identification of its product as a periplasmic protein. J. Biol. Chem. 1986, 261, 2946–2953. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Freundlieb, S.; Tapio, S.; Boos, W. Molecular characterization of the MalT-dependent periplasmic alpha-amylase of Escherichia coli encoded by malS. J. Biol. Chem. 1992, 267, 5148–5154. [Google Scholar] [CrossRef] [PubMed]
- Raibaud, O.; Vidal-Ingigliardi, D.; Richet, E. A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters. J. Mol. Biol. 1989, 205, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Richet, E.; Raibaud, O. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 1989, 8, 981–987. [Google Scholar] [CrossRef]
- Szmelcman, S.; Hofnung, M. Maltose transport in Escherichia coli K-12: Involvement of the bacteriophage lambda receptor. J. Bacteriol. 1975, 124, 112–118. [Google Scholar] [CrossRef]
- Szmelcman, S.; Schwartz, M.; Silhavy, T.J.; Boos, W. Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants as measured by fluorescence quenching. Eur. J. Biochem. 1976, 65, 13–19. [Google Scholar]
- Benz, R.; Schmid, A.; Vos-Scheperkeuter, G.H. Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane. J. Membr. Biol. 1987, 100, 21–29. [Google Scholar] [CrossRef]
- Charbit, A.; Gehring, K.; Nikaido, H.; Ferenci, T.; Hofnung, M. Maltose transport and starch binding in phage-resistant point mutants of maltoporin. Functional and topological implications. J. Mol. Biol. 1988, 201, 487–496. [Google Scholar] [CrossRef]
- Freundlieb, S.; Ehmann, U.; Boos, W. Facilitated diffusion of p-nitrophenyl-alpha-D-maltohexaoside through the outer membrane of Escherichia coli. Characterization of LamB as a specific and saturable channel for maltooligosaccharides. J. Biol. Chem. 1988, 263, 314–320. [Google Scholar]
- Duplay, P.; Bedouelle, H.; Fowler, A.; Zabin, I.; Saurin, W.; Hofnung, M. Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J. Biol. Chem. 1984, 259, 10606–10613. [Google Scholar] [CrossRef]
- Spurlino, J.C.; Lu, G.Y.; Quiocho, F.A. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J. Biol. Chem. 1991, 266, 5202–5219. [Google Scholar] [PubMed]
- Shuman, H.A. Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J. Biol. Chem. 1982, 257, 5455–5461. [Google Scholar] [PubMed]
- Hengge, R.; Boos, W. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochim. Biophys. Acta 1983, 737, 443–478. [Google Scholar] [PubMed]
- Davidson, A.L.; Nikaido, H. Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli. J. Biol. Chem. 1990, 265, 4254–4260. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.L.; Nikaido, H. Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J. Biol. Chem. 1991, 266, 8946–8951. [Google Scholar] [CrossRef] [PubMed]
- Bertoldo, C.; Antranikian, G. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 2002, 6, 151–160. [Google Scholar] [CrossRef]
- van der Maarel, M.J.E.C.; van der Veen, B.; Uitdehaag, J.C.M.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef]
- Zeeman, S.C.; Kossmann, J.; Smith, A.M. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant. Biol. 2010, 61, 209–234. [Google Scholar] [CrossRef]
- MacGregor, E.A.; Janecek, S.; Svensson, B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim. Biophys. Acta 2001, 1546, 1–20. [Google Scholar] [CrossRef]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef]
- Martinovicova, M.; Janecek, S. In silico analysis of the alpha-amylase family GH57: Eventual subfamilies reflecting enzyme specificities. 3 Biotech. 2018, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Marecek, F.; Janecek, S. A Novel Subfamily GH13_46 of the alpha-Amylase Family GH13 Represented by the Cyclomaltodextrinase from Flavobacterium sp. No. 92. Molecules 2022, 27, 8735. [Google Scholar] [CrossRef] [PubMed]
- Horvathova, V.; Janecek, S.; Sturdik, E. Amylolytic enzymes: Molecular aspects of their properties. Gen. Physiol. Biophys. 2001, 20, 7–32. [Google Scholar] [PubMed]
- Spiess, C.; Happersberger, H.P.; Glocker, M.O.; Spiess, E.; Rippe, K.; Ehrmann, M. Biochemical characterization and mass spectrometric disulfide bond mapping of periplasmic alpha-amylase MalS of Escherichia coli. J. Biol. Chem. 1997, 272, 22125–22133. [Google Scholar] [CrossRef]
- Declerck, N.; Machius, M.; Joyet, P.; Wiegand, G.; Huber, R.; Gaillardin, C. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng. 2003, 16, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Torrance, J.W.; Macarthur, M.W.; Thornton, J.M. Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins 2008, 71, 813–830. [Google Scholar] [CrossRef]
- Khajeh, K.; Ranjbar, B.; Naderi-Manesh, H.; Habibi, A.E.; Nemat-Gorgani, M. Chemical modification of bacterial alpha-amylases: Changes in tertiary structures and the effect of additional calcium. Biochim. Biophys. Acta 2001, 1548, 229–237. [Google Scholar] [CrossRef]
- Buisson, G.; Duée, E.; Haser, R.; Payan, F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987, 6, 3909–3916. [Google Scholar]
- Larson, S.B.; Greenwood, A.; Cascio, D.; Day, J. A McPhersonRefined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution. J. Mol. Biol. 1994, 235, 1560–1584. [Google Scholar] [CrossRef]
- Asoodeh, A.; Chamani, J.; Lagzian, M. A novel thermostable, acidophilic alpha-amylase from a new thermophilic “Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization. Int. J. Biol. Macromol. 2010, 46, 289–297. [Google Scholar]
- Sharma, A.; Satyanarayana, T. High maltose-forming, Ca2+-independent and acid stable alpha-amylase from a novel acidophilic bacterium, Bacillus acidicola. Biotechnol. Lett. 2010, 32, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Hoshino, E. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics. J. Biosci. Bioeng. 2003, 96, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Ranjani, V.; Janeček, Š.; Chai, K.P.; Shahir, S.; Rahman, R.N.Z.R.A.; Chan, K.-G.; Goh, K.M. Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus alpha-amylase. Sci. Rep. 2014, 4, 5850. [Google Scholar] [CrossRef] [PubMed]
- Janecek, S. Alpha-Amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol. 1997, 67, 67–97. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Kim, T.J.; Cheong, T.K.; Kim, J.W.; Oh, B.H.; Svensson, B. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim. Biophys. Acta 2000, 1478, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zheng, Y.; Chen, M.; Wang, Y.; Xiao, Y.; Gao, Y. A starch-binding domain identified in alpha-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett. 2014, 588, 1161–1167. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Zhang, J.; Sun, H.; Zhang, X. Backbone and side-chain assignments for a novel CBM69 starch binding domain AmyP-SBD. Biomol. NMR Assign. 2017, 11, 235–237. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, J.; Zhang, X.; Peng, H.; Li, X.; Zhang, J.; Sun, H.; Tu, X. Ligand Induced Folding of the First Identified CBM69 Starch Binding Domain AmyP-SBD. Protein Pept. Lett. 2018, 25, 362–367. [Google Scholar] [CrossRef]
- Janecek, S.; Svensson, B.; MacGregor, E.A. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb. Technol. 2011, 49, 429–440. [Google Scholar] [CrossRef]
- Janeček, Š.; Mareček, F.; MacGregor, E.A.; Svensson, B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol. Adv. 2019, 37, 107451. [Google Scholar] [CrossRef]
- Zheng, H.; Chruszcz, M.; Lasota, P.; Lebioda, L.; Minor, W. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem. 2008, 102, 1765–1776. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Li, F.; Peng, H.; Zhang, X.; Xiao, Y.; He, C. Crystal structure of a raw-starch-degrading bacterial alpha-amylase belonging to subfamily 37 of the glycoside hydrolase family GH13. Sci. Rep. 2017, 7, 44067. [Google Scholar] [CrossRef] [PubMed]
- Uitdehaag, J.C.M.; van Alebeek, G.-J.W.M.; van der Veen, B.A.; Dijkhuizen, L.; Dijkstra, B.W. Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity. Biochemistry 2000, 39, 7772–7780. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Kim, M.-S.; Cho, H.-S.; Kim, J.-I.; Kim, T.-J.; Choi, J.-H.; Park, C.; Lee, H.-S.; Oh, B.-H.; Park, K.-H. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 2002, 277, 21891–21897. [Google Scholar] [CrossRef]
- Qi, Y.; Geib, T.; Volmer, D.A. Determining the Binding Sites of beta-Cyclodextrin and Peptides by Electron-Capture Dissociation High Resolution Tandem Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2015, 26, 1143–1149. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Am. Chem. Soc. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzym. 1997, 276, 307–326. [Google Scholar]
- Echols, N.; Grosse-Kunstleve, R.W.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Headd, J.J.; McCoy, A.J.; Moriarty, N.W.; Read, R.J.; Richardson, D.C.; et al. Graphical tools for macromolecular crystallography in PHENIX. J. Appl. Crystallogr. 2012, 45 Pt 3, 581–586. [Google Scholar] [CrossRef]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75 Pt 10, 861–877. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 4, 486–501. [Google Scholar] [CrossRef] [PubMed]
- DeLano, W. The PyMOL Molecular Graphic System; DeLano Scientific: San Carlos, CA, USA, 2002; Available online: http://www.pymol.org (accessed on 3 May 2023).
- Tran, P.L.; Lee, J.S.; Park, K.H. Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable alpha-amylase. FEBS Lett. 2014, 588, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
Data Statistics | |
---|---|
Space Group | R 3:H |
Unit-cell parameters (Å, °) | A = 133.24, b = 133.24, c = 386.27 α = 90, β = 90, γ = 120 |
Unique reflections | 69977 |
Rsym (%) b | 12.3 (68.4) |
Completeness (%) | 99.8 (100) a |
Average I/δ (I) | 168.0/5.5 (24.1/4.7) |
Refinement statistics | |
Resolution range (Å) | 20.02-2.70 |
R factor (%) c | 0.178 |
Rfree (%) | 0.234 |
R.m.s.d., bond lengths (Å) | 0.53 |
R.m.s.d., angle (°) | 0.70 |
Average B value (Å2) | 48 |
No. of atoms | 18048 |
Ramachandran plot, residues in (%) | |
Most favoured region | 96% |
Additionally allowed region | 6% |
Outlier region | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Tran, P.L.; Yoo, M.-J.; Song, H.-N.; Park, K.-H.; Kim, T.-J.; Park, J.-T.; Woo, E.-J. The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19. Molecules 2023, 28, 3972. https://doi.org/10.3390/molecules28103972
An Y, Tran PL, Yoo M-J, Song H-N, Park K-H, Kim T-J, Park J-T, Woo E-J. The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19. Molecules. 2023; 28(10):3972. https://doi.org/10.3390/molecules28103972
Chicago/Turabian StyleAn, Yan, Phuong Lan Tran, Min-Jee Yoo, Hyung-Nam Song, Kwang-Hyun Park, Tae-Jip Kim, Jong-Tae Park, and Eui-Jeon Woo. 2023. "The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19" Molecules 28, no. 10: 3972. https://doi.org/10.3390/molecules28103972
APA StyleAn, Y., Tran, P. L., Yoo, M. -J., Song, H. -N., Park, K. -H., Kim, T. -J., Park, J. -T., & Woo, E. -J. (2023). The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19. Molecules, 28(10), 3972. https://doi.org/10.3390/molecules28103972