Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = α-Al2O3 particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2809 KiB  
Article
Initial Stages of Al-AM60-Modified Surface of Magnesium Alloy Activity Exposed to Simulated Marine Environment
by Gerardo Sánchez, Lucien Veleva and Eduardo Flores
Coatings 2025, 15(6), 661; https://doi.org/10.3390/coatings15060661 - 30 May 2025
Viewed by 543
Abstract
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β [...] Read more.
The surface of AM60 magnesium alloy was modified with Al-nanocoating ~65.62 nm, using DC magnetron sputtering to enhance its resistance to degradation under aggressive marine ambience. The sputtered Al film showed adhesion to the α-Mg matrix, covering the dispersed particles of the β-Mg17Al12 secondary phase. The aluminum nanofilm was composed of (111) and (200) crystal planes of metallic aluminum (Al0) and Al2O3 (Al3+). After 30 days of immersion in a simulated marine environment (SME, pH 7.8), the Al-AM60 maintained a lower alkaline value (pH~8.13) of SME than that of uncoated AM60, attributed to α-Mg electrochemical oxidation to Al2O3 and its posterior dissolution, consuming OH ions. Consequently, the concentration of the released Mg2+ ions from the Al-AM60 surface was reduced ~2.3 times (~15 mg L−1). The Rp (polarization resistance), as inversely proportional to the corrosion current, was extracted from the EIS impedance data fitted to an equivalent electrical circuit. After 30 days in SME solution, the Rp value of the Al-AM60 modified surface was ~3.5 times higher than that of AM60 (~15.46 kΩ cm2), confirming that the sputtered aluminum nano-deposit layer can hinder the corrosion process. These reported findings indicated that sputtered Al nano-coatings can mitigate the surface degradation of Mg-Al alloys in saline aggressive marine environments. Full article
Show Figures

Figure 1

11 pages, 3786 KiB  
Article
AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution
by Guifang Xu, Yonggang Ding, Fan Bai, Youming Zhang, Jianhua Yin and Caifeng Chen
Inorganics 2025, 13(5), 165; https://doi.org/10.3390/inorganics13050165 - 15 May 2025
Cited by 1 | Viewed by 608
Abstract
The aluminum electrolysis industry faces significant challenges due to the high consumption and environmental impact of carbon anodes, which are prone to oxidation in high-temperature and strongly oxidizing environments. This study innovatively introduces aluminum fluoride (AlF3) as an additive to enhance [...] Read more.
The aluminum electrolysis industry faces significant challenges due to the high consumption and environmental impact of carbon anodes, which are prone to oxidation in high-temperature and strongly oxidizing environments. This study innovatively introduces aluminum fluoride (AlF3) as an additive to enhance the oxidation resistance of carbon anodes for aluminum electrolysis. By systematically exploring microstructural evolution through SEM, XRD, Raman spectroscopy, and permeability analyses, it reveals that AlF3 inserts fluorine atoms into carbon interlayers, forming F-C bonds that reduce interlayer spacing while promoting graphitization. Simultaneously, AlF3-derived α-Al2O3 particles densify the anode and make it more compact, reaching the optimum when 7 wt.% AlF3 is doped. The bulk density of the carbon anode increased to 2.08 g/cm3, porosity decreased to 0.315, and air permeability reached a minimum of 2.3 nPm. In addition, the fluorine intercalation reduces the electrical resistance to 2.12 Ω via conductive F-C clusters. The demonstrated efficacy of AlF3 additives in enhancing the oxidation resistance and conductivity of carbon anodes suggests strong potential for industrial adoption, particularly in optimizing anode composition to reduce energy consumption. Full article
Show Figures

Graphical abstract

16 pages, 4236 KiB  
Article
Halloysite-Nanotube-Mediated High-Flux γ-Al2O3 Ultrafiltration Membranes for Semiconductor Wastewater Treatment
by Shining Geng, Dazhi Chen, Zhenghua Guo, Qian Li, Manyu Wen, Jiahui Wang, Kaidi Guo, Jing Wang, Yu Wang, Liang Yu, Xinglong Li and Xiaohu Li
Membranes 2025, 15(5), 130; https://doi.org/10.3390/membranes15050130 - 27 Apr 2025
Viewed by 779
Abstract
The wastewater from Chemical Mechanical Polishing (CMP) generated in the semiconductor industry contains a significant concentration of suspended particles and necessitates rigorous treatment to meet environmental standards. Ceramic ultrafiltration membranes offer significant advantages in treating such high-solid wastewater, including a high separation efficiency, [...] Read more.
The wastewater from Chemical Mechanical Polishing (CMP) generated in the semiconductor industry contains a significant concentration of suspended particles and necessitates rigorous treatment to meet environmental standards. Ceramic ultrafiltration membranes offer significant advantages in treating such high-solid wastewater, including a high separation efficiency, environmental friendliness, and straightforward cleaning and maintenance. However, the preparation of high-precision ceramic ultrafiltration membranes with a smaller pore size (usually <20 nm) is very complicated, requiring the repeated construction of transition layers, which not only increases the time and economic costs of manufacturing but also leads to an elevated transport resistance. In this work, halloysite nanotubes (HNTs), characterized by their high aspect ratio and lumen structure, were utilized to create a high-porosity transition layer using a spray-coating technique, onto which a γ-Al2O3 ultrafiltration selective layer was subsequently coated. Compared to the conventional α-Al2O3 transition multilayers, the HNTs-derived transition layer not only had an improved porosity but also had a reduced pore size. As such, this strategy tended to simplify the preparation process for the ceramic membranes while reducing the transport resistance. The resulting high-flux γ-Al2O3 ultrafiltration membranes were used for the high-efficiency treatment of CMP wastewater, and the fouling behaviors were investigated. As expected, the HNTs-mediated γ-Al2O3 ultrafiltration membranes exhibited excellent water flux (126 LMH) and high rejection (99.4%) of inorganic particles in different solvent systems. In addition, such membranes demonstrated good operation stability and regeneration performance, showing promise for their application in the high-efficiency treatment of CMP wastewater in the semiconductor industry. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

14 pages, 6104 KiB  
Article
Investigating the Ag–Support Interaction in Silver Catalysts for Soot Combustion: The Importance of Coordination of Al3+ Ions in the Support
by Ewa M. Iwanek (nee Wilczkowska), Aleksandra Goździk and Zbigniew Kaszkur
Reactions 2025, 6(2), 27; https://doi.org/10.3390/reactions6020027 - 18 Apr 2025
Viewed by 624
Abstract
This study shows how important the coordination of Al3+ ions in the silver support is for the overall activity in soot combustion. Five silver catalysts with a silver content of 14.7 wt.% were prepared using the following supports: α-Al2O3 [...] Read more.
This study shows how important the coordination of Al3+ ions in the silver support is for the overall activity in soot combustion. Five silver catalysts with a silver content of 14.7 wt.% were prepared using the following supports: α-Al2O3, which has only octahedrally coordinated Al3+, θ-Al2O3, which has both octahedrally and tetrahedrally coordinated Al3+, and zeolites, which contain only tetrahedrally coordinated Al3+: 10X, 13X, and 5A. The analysis of the diffraction patterns showed that silver on the surface of catalysts made with the first four supports was mainly in the metallic form, except for Ag/5A in which there was a lack of reflections from Ag0 in the XRD pattern. Nevertheless, the difference in the activity of the support and the catalyst as well as the EDX results indicate the presence of silver on the catalyst. The SEM-EDX analysis showed that the silver dispersion strongly depends on the support and that even the zeolites with large silver particles on the surface have silver evenly distributed across the surface. The activity of the catalysts decreased in the following series: Ag/Al 1200 > Ag/5A ≈ Ag/13X > Ag/10X ≈ Ag/Al 550. Time-of-Flight Secondary Ion Mass Spectrometry was used to delve into the reason why the catalyst with the low-surface area α-Al2O3 support yielded a better catalyst than that obtained using the high-surface area alumina support and showed that different ratios of secondary ions were emitted from the two surfaces. Full article
Show Figures

Graphical abstract

16 pages, 6091 KiB  
Article
Seasonal Dynamics of Microbial Communities in PM2.5 and PM10 from a Pig Barn
by Qian Tang, Minyang Zhang, Lili Yu, Kaidong Deng, Huihua Mao, Jingwen Hu and Chuang Wang
Animals 2025, 15(8), 1116; https://doi.org/10.3390/ani15081116 - 12 Apr 2025
Cited by 1 | Viewed by 524
Abstract
Modern, intensive, high-density farming practices cause elevated concentrations of particulate matter (PM) inside livestock barns. PM in livestock barns is predominantly biological, hence, it contains abundant microorganisms. Understanding the microbial composition of PM is crucial for assessing the hazards of air emitted from [...] Read more.
Modern, intensive, high-density farming practices cause elevated concentrations of particulate matter (PM) inside livestock barns. PM in livestock barns is predominantly biological, hence, it contains abundant microorganisms. Understanding the microbial composition of PM is crucial for assessing the hazards of air emitted from livestock barns. PM10 and PM2.5 from a pig barn were collected in winter and spring, and morphological, chemical, and microbial analyses were performed. The PM samples exhibit diverse morphological characteristics. The top three elements detected in the PM samples were O, C, and Si. Other elements, including N, Al, K, Mg, Ca, Na, Zn, P, W, Ba, Fe, S, Cl, and Ti, were also identified in these samples. For bacterial α diversity, the Sobs and Chao1 indices for PM10 were significantly higher than those for PM2.5 in winter (p < 0.05), and in spring, the ACE index for PM10 was significantly higher than that for PM2.5 (p < 0.05). For fungal α diversity, the Shannon index for PM10 was significantly higher than that for PM2.5 in winter (p < 0.01), and in spring, the Ace index for PM10 was significantly higher than that for PM2.5 (p < 0.05). The β diversity results indicate that season, rather than the particle size, had a significant effect on the microbial composition in the PM samples. A total of seven bacterial pathogen genera and 16 fungal allergen genera were identified in PM samples. In winter, the relative abundances of total bacterial pathogens and fungal allergens in PM2.5 were higher than those in PM10. In contrast, the relative abundance of fungal allergens in PM10 was higher in spring than in winter. This study provides a comprehensive characterization of PM from a pig barn across the particle sizes and seasons. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

18 pages, 3191 KiB  
Article
Material Characterization and Technological Properties of Biocompatible Ti-12Al-42Nb Spherical Powder Alloy for Additive Manufacturing of Personal Medical Implants
by Alexander Anokhin, Andrey Kirsankin, Elena Kukueva, Alexander Luk’yanov, Maria Chuvikina, Elena Ermakova, Svetlana Strelnikova and Stepan Kupreenko
Metals 2025, 15(2), 147; https://doi.org/10.3390/met15020147 - 31 Jan 2025
Viewed by 972
Abstract
The paper focuses on material characterization and technology properties of a new Ti-12Al-42Nb spherical powder alloy for additive manufacturing of personal medical implants. The electrode induction melting inert gas atomization (EIGA) method was used to produce the powder alloy. The powder sphericity coefficient [...] Read more.
The paper focuses on material characterization and technology properties of a new Ti-12Al-42Nb spherical powder alloy for additive manufacturing of personal medical implants. The electrode induction melting inert gas atomization (EIGA) method was used to produce the powder alloy. The powder sphericity coefficient (PSC) was 1.02. Image J software was used to calculate the spherical degree by processing images sets from scanning electron microscopy (SEM) and optical microscopy (OM). SEM of particles cross-sections indicated internal thermal-induced porosity (TIP) with a 2.3 μm pore diameter. Particle size distribution was in the range from 15.72 μm (d10) to 64.48 μm (d100) as measured by laser particle analyzer. It was indicated that flowability and powder bulk density were 196 sec and 2.79 g/cm3, respectively. XRD analysis confirmed the beta phase of the powder alloy with no additional phases. X-ray fluorescence spectrometry confirmed the alloyed composition. Reducing and oxidative melting methods of analysis showed a slight amount of impurities: oxygen (0.0087 wt.%), nitrogen (0.03 wt.%), hydrogen (0.0012 wt.%), sulfur (0.0016 wt.%), and carbon (0.022 wt.%). Simultaneous thermal analysis (STA) was performed to indicate weight growth and losses and thermal effects in argon, nitrogen, and air as well as the oxidation of Al2O3, TiO2, and Nb2O5 on the surface layer of Ti-12Al-42Nb powder alloy particles. Different phase transformations of γAl2O3  θAl2O3  αAl2O3 and TiO2 rutile TiO2 anatase phase transformation were detected by STA in the oxidative layer. Full article
Show Figures

Figure 1

21 pages, 3777 KiB  
Article
Separation of Short-Chain Fatty Acids from Primary Sludge into a Particle-Free Permeate by Coupling Chamber Filter-Press and Cross-Flow Microfiltration: Optimization, Semi-Continuous Operation, and Evaluation
by Nikhil Shylaja Prakash, Peter Maurer, Harald Horn, Florencia Saravia and Andrea Hille-Reichel
Membranes 2025, 15(1), 22; https://doi.org/10.3390/membranes15010022 - 11 Jan 2025
Viewed by 1882
Abstract
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental [...] Read more.
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-Al2O3; pore size: 0.2 µm; cross-flow velocity: 3 m∙s−1; pressure = 2.2 bars). Firstly, primary sludge underwent dark fermentation yielding a hydrolyzate with a significant concentration of SCFAs along with total solids (TS) concentration in the range of 20 to 30 g∙L−1. The hydrolyzate was conditioned with hydroxypropyl trimethyl ammonium starch (HPAS), and then dewatered using a filter press, reducing TS by at least 60%, resulting in a filtrate with a suspended solids concentration ranging from 100 to 1300 mg∙L1. Despite the lower suspended solids concentration, the microfiltration membrane underwent severe fouling due to HPAS’s electrostatic interaction. Two methods were optimized for microfiltration: (1) increased backwashing frequency to sustain a permeate flux of 20 L∙m2∙h1 (LMH), and (2) surface charge modification to maintain the flux between 70 and 80 LMH. With backwashing, microfiltration can filter around 900 L∙meff−2 (without chemical cleaning), with the flux between 50 and 60 LMH under semi-continuous operation. Evaluating the particle-free permeate obtained from the treatment chain, around 4 gCSCFAs∙capita−1∙d−1 can be recovered from primary sludge with a purity of 0.85 to 0.97 CSCFAs∙DOC−1. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 4338 KiB  
Article
Self-Reduction of Nitric Oxide on Alumina-Supported Ultra-Small Nickel Particles
by Ramazan T. Magkoev, Yong Men, Reza Behjatmanesh-Ardakani, Mohammadreza Elahifard, Nelli E. Pukhaeva, Aleksandr A. Takaev, Ramazan A. Khekilaev, Tamerlan T. Magkoev and Oleg. G. Ashkhotov
Surfaces 2025, 8(1), 6; https://doi.org/10.3390/surfaces8010006 - 8 Jan 2025
Viewed by 983
Abstract
The adsorption and reaction of nitric oxide (NO) molecules on the surface of the model-supported metal/oxide system, consisting of Ni nanoparticles deposited on α-Al2O3 (0001) in ultra-high vacuum, have been studied using in situ surface-sensitive techniques and density functional theory [...] Read more.
The adsorption and reaction of nitric oxide (NO) molecules on the surface of the model-supported metal/oxide system, consisting of Ni nanoparticles deposited on α-Al2O3 (0001) in ultra-high vacuum, have been studied using in situ surface-sensitive techniques and density functional theory (DFT) calculations. As a combination of X-ray and Auger electron spectroscopy (XPS, AES), Fourier-transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) techniques reveals, there is a threshold of Ni particle mean size (<d>) of c.a. 2 nm, differentiating the electron state of adsorbed NO molecules and their reaction. The main feature of Ni particles normally not exceeding 2 nm is that the NO adsorbs in the form of (NO)2 dimers, whereas, for larger particles, the NO molecules adsorb in the form of monomers, usually characteristic for the bulk Ni substrate. This difference is demonstrated to be the main reason for the different reaction of NO molecules on the surface of Ni/alumina. The striking feature is that, in the case of ultra-small Ni particles (<d> ≤ 2 nm), the nitrous oxide (N2O) molecules are formed upon heating as a result of the NO self-reduction mechanism, which are otherwise not formed in the case of larger Ni particles. According to DFT results, this is due to the significant synergistic impact of NO co-adsorption on the neighboring NO dissociation reaction over ultra-small Ni particles, mediated by the metal/oxide perimeter interface. The observed molecular conversion effects offer an opportunity to tune the catalytic selectivity of this and related metal/oxide systems via varying the supported metal particle size. Full article
Show Figures

Figure 1

11 pages, 8689 KiB  
Article
Investigation of Synthesis, Characterization, and Finishing Applications of Spherical Al2O3 Magnetic Abrasives via Plasma Molten Metal Powder and Powder Jetting
by Shujun Wang, Yusheng Zhang, Shuo Meng, Yugang Zhao and Jianbing Meng
Micromachines 2024, 15(6), 709; https://doi.org/10.3390/mi15060709 - 28 May 2024
Viewed by 1261
Abstract
Magnetic abrasive finishing (MAF) is an efficient finishing process method using magnetic abrasive particles (MAPs) as finishing tools. In this study, two iron-based alumina magnetic abrasives with different particle size ranges were synthesized by the plasma molten metal powder and powder jetting method. [...] Read more.
Magnetic abrasive finishing (MAF) is an efficient finishing process method using magnetic abrasive particles (MAPs) as finishing tools. In this study, two iron-based alumina magnetic abrasives with different particle size ranges were synthesized by the plasma molten metal powder and powder jetting method. Characterization of the magnetic abrasives in terms of microscopic morphology, phase composition, magnetic permeability, particle size distribution, and abrasive ability shows that the magnetic abrasives are spherical in shape, that the hard abrasives are combined in the surface layer of the iron matrix and remain sharp, and that the hard abrasives combined in the surface layer of the magnetic abrasives with smaller particle sizes are sparser than those of the magnetic abrasives with larger particle sizes. The magnetic abrasives are composed of α-Fe and Al2O3; the magnetic permeability of the magnetic abrasives having smaller particle sizes is slightly higher than that of the magnetic abrasives having larger particle sizes; the two magnetic abrasives are distributed in a range of different particle sizes; the magnetic abrasives have different magnetic permeabilities, which are higher than those of the larger ones; both magnetic abrasives are distributed in the range of smaller particle sizes; and AZ31B alloy can obtain smaller surface roughness of the workpiece after the grinding process of the magnetic abrasives with a small particle size. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 3rd Edition)
Show Figures

Figure 1

21 pages, 21706 KiB  
Article
The Effect of Stearic Acid on Microstructure and Properties of (Ti2AlC + Al2O3)p/TiAl Composites
by Jiawei Zhu, Meini Yuan, Xin Pei, Xiaosheng Zhou and Maohua Li
Metals 2024, 14(4), 392; https://doi.org/10.3390/met14040392 - 27 Mar 2024
Cited by 3 | Viewed by 1889
Abstract
A new type of multiphase nanoparticle-reinforced TiAl matrix composites ((Ti2AlC + Al2O3)p/TiAl composites) was successfully prepared by vacuum hot-pressing sintering using Ti powder and Al powder, which were ball-milled with different contents of stearic acid [...] Read more.
A new type of multiphase nanoparticle-reinforced TiAl matrix composites ((Ti2AlC + Al2O3)p/TiAl composites) was successfully prepared by vacuum hot-pressing sintering using Ti powder and Al powder, which were ball-milled with different contents of stearic acid (CH3(CH2)16COOH). The component, microstructure, reaction mechanism, and mechanical properties were studied. The results indicated that the composites prepared by adding stearic acid as a process control agent during the ball-milling process not only contained γ-TiAl and α2-Ti3Al phases but also Ti2AlC and Al2O3 phases. The results of SEM and TEM showed that the composites were composed of equiaxed TiAl and Ti3Al grains, and the Ti2AlC and Al2O3 particles were mainly distributed along the TiAl grain boundary in chain form, which can effectively reduce the TiAl grain size. Through the room-temperature compression test, the maximum compression stress was significantly improved in those composites that added the stearic acid, due to the reinforcement particles. The maximum compression stress was 1590 MPa with a 24.3% fracture strain. In addition, the generated crack deflection and Ti2AlC and Al2O3 particles could also enhance the toughness of the TiAl alloy. (Ti2AlC + Al2O3)p/TiAl composites generated by adding stearic acid played a key role in improving the mechanical properties of the TiAl matrix. Full article
Show Figures

Figure 1

22 pages, 55376 KiB  
Article
Effects of Thermal Exposure on the Microstructure and Mechanical Properties of a Ti–48Al–3Nb–1.5Ta Alloy via Powder Hot Isostatic Pressing
by Zhenbo Zuo, Rui Hu, Qingxiang Wang, Zitong Gao, Xian Luo, Yunjin Lai, Sa Xue, Min Xiang, Xiaohao Zhao and Shaoqiang Li
Materials 2024, 17(4), 794; https://doi.org/10.3390/ma17040794 - 7 Feb 2024
Cited by 3 | Viewed by 1649
Abstract
Research on how thermal exposure affects the microstructure and mechanical properties of the Ti–48Al–3Nb–1.5Ta (at. %) alloy, which is prepared via powder hot isostatic pressing (P–HIP), is essential since this low-density alloy shows promise for use in high-temperature applications, particularly for aero-engines, which [...] Read more.
Research on how thermal exposure affects the microstructure and mechanical properties of the Ti–48Al–3Nb–1.5Ta (at. %) alloy, which is prepared via powder hot isostatic pressing (P–HIP), is essential since this low-density alloy shows promise for use in high-temperature applications, particularly for aero-engines, which require long-term stable service. In this study, a P–HIP Ti–48Al–3Nb–1.5Ta (at. %) alloy was exposed to high temperatures for long durations. The phase, microstructure and mechanical properties of the P–HIP Ti–48Al–3Nb–1.5Ta alloy after thermal exposure under different conditions were analyzed using XRD, SEM, EBSD, EPMA, TEM, nanomechanical testing and tensile testing. The surface scale is composed of oxides and nitrides, primarily Al2O3, TiO2, and TiN, among which Al2O3 is preferentially generated and then covered by rapidly growing TiO2 as the thermal exposure duration increases. The nitrides appear later than the oxides and exist between the oxides and the substrate. With increasing exposure temperature and duration, the surface scale becomes more continuous, TiO2 particles grow larger, and the oxide layer thickens or even falls off. The addition of Ta and Nb can improve the oxidation resistance because Ta5+ and Nb5+ replace Ti4+ in the rutile lattice and weaken O diffusion. Compared with the P–HIP Ti–48Al–3Nb–1.5Ta alloy, after thermal exposure, the grain size does not increase significantly, and the γ phase increases slightly (by less than 3%) with the decomposition of the α2 phase. With increasing thermal exposure duration, the γ phase exhibits discontinuous coarsening (DC). Compared with the P–HIP Ti–48Al–3Nb–1.5Ta alloy, the hardness increases by about 2 GPa, the tensile strength increases by more than 50 MPa, and the fracture strain decreases by about 0.1% after thermal exposure. When the depth extends from the edge of the thermally exposed specimens, the hardness decreases overall. Full article
(This article belongs to the Special Issue Heat Treatments and Performance of Alloy and Metal)
Show Figures

Figure 1

18 pages, 3399 KiB  
Article
High Photocatalytic Efficiency of Al2O3-TiO2 Coatings on 304 Stainless Steel for Methylene Blue and Wastewater Degradation
by Mónica Araceli Camacho-González, Irina Victorovna Lijanova, Joan Reyes-Miranda, Estela Sarmiento-Bustos, Maribel Quezada-Cruz, Pedro Vera-Serna, Miguel Ángel Barrón-Meza and Aristeo Garrido-Hernández
Catalysts 2023, 13(10), 1351; https://doi.org/10.3390/catal13101351 - 7 Oct 2023
Cited by 3 | Viewed by 1960
Abstract
This work explores the novelty of achieving high photocatalytic efficiency and remarkable bactericidal activity with Al2O3-TiO2 coatings on perforated 304 stainless steel (SS) substrates, placed transversely along an airlift reactor of 0.980 L for wastewater treatment under visible [...] Read more.
This work explores the novelty of achieving high photocatalytic efficiency and remarkable bactericidal activity with Al2O3-TiO2 coatings on perforated 304 stainless steel (SS) substrates, placed transversely along an airlift reactor of 0.980 L for wastewater treatment under visible light irradiation. The Al2O3-TiO2 coatings achieved methylene blue and total organic carbon (TOC) concentration reductions of 97.3 and 96.51%, respectively, in a wastewater sample with heterogeneous photocatalsis. The Al2O3-TiO2 coatings resulted in a 33.30% reduction in total and fecal coliforms and a remarkable 94.23% decrease in Salmonella spp. in the wastewater sample. XRD confirmed the TiO2 anatase–rutile phases and Al2O3 α-γ phases in the coating. The particle size distribution ranges from 100 to 500 nm, and the coating surface was homogeneous without cracks confirmed using SEM and AFM, respectively. The roughness and thickness of the coatings were 85 ± 5 nm and 250 ± 50 nm, respectively. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

17 pages, 10190 KiB  
Article
Effects of In-Situ Reaction, Extrusion Ratio and CeO2 on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains
by Qianwen Bi, Xiaoxu Luo, Lu Guo, Xiaoqing Zuo, Bei Huang, Jianhong Yi and Yun Zhou
Materials 2023, 16(12), 4481; https://doi.org/10.3390/ma16124481 - 20 Jun 2023
Cited by 3 | Viewed by 1534
Abstract
Al-Ti-C-(Ce) grain refiners were prepared by combining in-situ reaction, hot extrusion, and adding CeO2. The effects of second phase TiC particle size and distribution, extrusion ratio, and Ce addition on the grain-refining performance of grain refiners were investigated. The results show [...] Read more.
Al-Ti-C-(Ce) grain refiners were prepared by combining in-situ reaction, hot extrusion, and adding CeO2. The effects of second phase TiC particle size and distribution, extrusion ratio, and Ce addition on the grain-refining performance of grain refiners were investigated. The results show that about 10 nm TiC particles are dispersed on the surface and inside of 100–200 nm Ti particles by in-situ reaction. The Al-Ti-C grain refiners, which are made, by hot extrusion, of a mixture of in-situ reaction Ti/TiC composite powder and Al powder, increase the effective nucleation phase of α-Al and hinder grain growth due to the fine and dispersed TiC; this results in the average size of pure aluminum grains to decrease from 1912.4 μm to 504.8 μm (adding 1 wt.% Al-Ti-C grain refiner). Additionally, with the increase of the extrusion ratio from 13 to 30, the average size of pure aluminum grains decreases further to 470.8 μm. This is because the micropores in the matrix of grain refiners are reduced, and the nano-TiC aggregates are dispersed with the fragmentation of Ti particles, resulting in a sufficient Al-Ti reaction and an enhanced nucleation effect of nano-TiC. Furthermore, Al-Ti-C-Ce grain refiners were prepared by adding CeO2. Under the conditions of holding for 3–5 min and adding a 5.5 wt.% Al-Ti-C-Ce grain refiner, the average size of pure aluminum grains is reduced to 48.4–48.8 μm. The reason for the excellent grain-refining and good anti-fading performance of the Al-Ti-C-Ce grain refiner is presumedly related to the Ti2Al20Ce rare earth phases and [Ce] atoms, which hinder agglomeration, precipitation, and dissolution of the TiC and TiAl3 particles. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 2308 KiB  
Article
Diffusion and Interdiffusion Study at Al- and O-Terminated Al2O3/AlSi12 Interface Using Molecular Dynamics Simulations
by Masoud Tahani, Eligiusz Postek and Tomasz Sadowski
Materials 2023, 16(12), 4324; https://doi.org/10.3390/ma16124324 - 12 Jun 2023
Cited by 5 | Viewed by 2446
Abstract
The equivalent characteristics of the materials’ interfaces are known to impact the overall mechanical properties of ceramic–metal composites significantly. One technological method that has been suggested is raising the temperature of the liquid metal to improve the weak wettability of ceramic particles with [...] Read more.
The equivalent characteristics of the materials’ interfaces are known to impact the overall mechanical properties of ceramic–metal composites significantly. One technological method that has been suggested is raising the temperature of the liquid metal to improve the weak wettability of ceramic particles with liquid metals. Therefore, as the first step, it is necessary to produce the diffusion zone at the interface by heating the system and maintaining it at a preset temperature to develop the cohesive zone model of the interface using mode I and mode II fracture tests. This study uses the molecular dynamics method to study the interdiffusion at the interface of α-Al2O3/AlSi12. The hexagonal crystal structure of aluminum oxide with the Al- and O-terminated interfaces with AlSi12 are considered. A single diffusion couple is used for each system to determine the average main and cross ternary interdiffusion coefficients. In addition, the effect of temperature and the termination type on the interdiffusion coefficients is examined. The results demonstrate that the thickness of the interdiffusion zone is proportional to the annealing temperature and time, and Al- and O-terminated interfaces exhibit similar interdiffusion properties. Full article
(This article belongs to the Special Issue Computational Mechanics of Structures and Materials)
Show Figures

Figure 1

12 pages, 4392 KiB  
Article
Effect of α-Al2O3 Additive on the Surface Micro-Arc Oxidation Coating of Ti6Al4V Alloy
by Yuke Chen and Meini Yuan
Nanomaterials 2023, 13(11), 1802; https://doi.org/10.3390/nano13111802 - 5 Jun 2023
Cited by 12 | Viewed by 2246
Abstract
α-Al2O3 nanoparticles can enter a micro-arc oxidation coating and participate in the coating-formation process through chemical reaction or physical–mechanical combination in the electrolyte. The prepared coating has high strength, good toughness and excellent wear and corrosion resistance. In this paper, [...] Read more.
α-Al2O3 nanoparticles can enter a micro-arc oxidation coating and participate in the coating-formation process through chemical reaction or physical–mechanical combination in the electrolyte. The prepared coating has high strength, good toughness and excellent wear and corrosion resistance. In this paper, 0, 1, 3 and 5 g/L of α-Al2O3 nanoparticles were added to a Na2SiO3-Na(PO4)6 electrolyte to study the effect on the microstructure and properties of a Ti6Al4V alloy micro-arc oxidation coating. The thickness, microscopic morphology, phase composition, roughness, microhardness, friction and wear properties and corrosion resistance were characterized using a thickness meter, scanning electron microscope, X-ray diffractometer, laser confocal microscope, microhardness tester and electrochemical workstation. The results show that surface quality, thickness, microhardness, friction and wear properties and corrosion resistance of the Ti6Al4V alloy micro-arc oxidation coating were improved by adding α-Al2O3 nanoparticles to the electrolyte. The nanoparticles enter the coatings by physical embedding and chemical reaction. The coatings’ phase composition mainly includes Rutile-TiO2, Anatase-TiO2, α-Al2O3, Al2TiO5 and amorphous phase SiO2. Due to the filling effect of α-Al2O3, the thickness and hardness of the micro-arc oxidation coating increase, and the surface micropore aperture size decreases. The roughness decreases with the increase of α-Al2O3 additive concentration, while the friction wear performance and corrosion resistance are improved. Full article
Show Figures

Figure 1

Back to TopTop