Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = Δ5-desaturase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3784 KiB  
Article
Transcriptome Analysis Reveals the Molecular Mechanism Involved in Carotenoid Absorption and Metabolism in the Ridgetail White Prawn Exopalaemon carinicauda
by Yumin Han, Yang Yu, Chengsong Zhang, Shihao Li, Jianbo Yuan and Fuhua Li
Animals 2025, 15(9), 1314; https://doi.org/10.3390/ani15091314 - 1 May 2025
Viewed by 533
Abstract
Astaxanthin plays a vital role in pigmentation, immune function, reproduction, and antioxidation in aquatic species. To clarify the molecular mechanism of astaxanthin utilization in Exopalaemon carinicauda (E. carinicauda), we conducted a comparative transcriptome analysis on the intestine, hepatopancreas, and muscle of [...] Read more.
Astaxanthin plays a vital role in pigmentation, immune function, reproduction, and antioxidation in aquatic species. To clarify the molecular mechanism of astaxanthin utilization in Exopalaemon carinicauda (E. carinicauda), we conducted a comparative transcriptome analysis on the intestine, hepatopancreas, and muscle of E. carinicauda, fed with an astaxanthin diet and a normal diet. A total of 144 differentially expressed genes (DEGs) were identified in three tissues between the two groups. Genes related to absorption and transport, such as LDLR and the vitellogenin receptor, were upregulated in the intestine after astaxanthin supplementation, while the ileal sodium/bile acid cotransporter-like gene was downregulated. In the hepatopancreas, genes involved in lipid storage and degradation were significantly altered at the transcriptional level, including Kruppel 1-like, ACSBG2, δ(7)-sterol 5(6)-desaturase-like, and PNLIPRP2. In the muscle, the expression of the FABP gene was significantly upregulated, while several actin and troponin genes were significantly downregulated. Furthermore, GSEA analysis on the transcriptomes of three tissues revealed that astaxanthin supplementation influenced the expression of genes related to antioxidation and growth, indicating that astaxanthin may have a positive impact on the growth, development, and resistance of organisms. The data from this research provide valuable insights into elucidating the molecular mechanisms underlying astaxanthin absorption and metabolism and also offer guidance for the application of astaxanthin in the aquaculture of economically important crustaceans. Full article
(This article belongs to the Special Issue Novel Insights into Lipid Metabolism in Aquatic Animals)
Show Figures

Figure 1

29 pages, 4883 KiB  
Article
High-Fat Diet in Perinatal Period Promotes Liver Steatosis and Low Desaturation Capacity of Polyunsaturated Fatty Acids in Dams: A Link with Anxiety-Like Behavior in Rats
by Lorena Mercado-López, Yasna Muñoz, Camila Farias, María Paz Beyer, Robinson Carrasco-Gutiérrez, Angie Vanessa Caicedo-Paz, Alexies Dagnino-Subiabre, Alejandra Espinosa and Rodrigo Valenzuela
Nutrients 2025, 17(7), 1180; https://doi.org/10.3390/nu17071180 - 28 Mar 2025
Viewed by 869
Abstract
Background/Objectives: This study investigates the effects of a high-fat diet (HFD) during pregnancy and lactation on maternal and offspring health, focusing on behavioral, metabolic, and fatty acid composition outcomes in a rat model. Methods: Twelve female Sprague–Dawley rats were fed either a control [...] Read more.
Background/Objectives: This study investigates the effects of a high-fat diet (HFD) during pregnancy and lactation on maternal and offspring health, focusing on behavioral, metabolic, and fatty acid composition outcomes in a rat model. Methods: Twelve female Sprague–Dawley rats were fed either a control diet, CD (n = 6), or HFD (n = 6) for 12 weeks, encompassing mating, gestation, and lactation periods (18 weeks). Anxiety-like behavior, maternal behavior, depression-like behavior, and social play were studied. Post mortem, the liver function, hepatic steatosis, and fatty acid composition (erythrocytes, liver, adipose tissue) were evaluated. In regard to desaturase enzymes (Δ-6D and Δ-5D), liver activity, protein mass, and gene expression (RT-PCR) were analyzed. Additionally, gene expression of PPAR-α, ACOX, CPT1-α, SREBP-1c, ACC, and FAS was assessed. Statistical analysis was performed using Student’s t-test, mean ± SD (p < 0.05). Results: The HFD significantly increased maternal weight and anxiety-like behavior while reducing social interactions exclusively in male offspring (p < 0.05). It also led to a significant decrease in the synthesis and content of n-3 PUFAs in the analyzed tissues, induced hepatic steatosis, and upregulated the expression of pro-lipogenic genes in the maternal liver. Conclusions: These findings suggest that long-term HFD consumption alters tissue fatty acid composition, disrupts metabolic homeostasis, and contributes to behavioral changes, increasing anxiety-like behaviors in pregnant dams and reducing social interactions in male offspring. Overall, this study provides further insight into the detrimental effects of HFD consumption during the perinatal period. Full article
(This article belongs to the Special Issue Dietary Fatty Acids and Metabolic Health)
Show Figures

Figure 1

11 pages, 3050 KiB  
Article
Docosahexaenoic and Eicosapentaenoic Acid Supplementation Could Attenuate Negative Effects of Maternal Metabolic Syndrome on Liver Lipid Metabolism and Liver Betacellulin Expression in Male and Female Rat Offspring
by Tomislav Mašek, Petra Roškarić, Sunčica Sertić and Kristina Starčević
Metabolites 2025, 15(1), 32; https://doi.org/10.3390/metabo15010032 - 9 Jan 2025
Viewed by 1044
Abstract
Background/Objectives: This study investigated the effects of maternal metabolic syndrome during pregnancy on hepatic fatty acid metabolism and betacellulin expression in rat offspring. A rat model of maternal metabolic syndrome was created with a high-fructose diet (15% fructose in drinking water for [...] Read more.
Background/Objectives: This study investigated the effects of maternal metabolic syndrome during pregnancy on hepatic fatty acid metabolism and betacellulin expression in rat offspring. A rat model of maternal metabolic syndrome was created with a high-fructose diet (15% fructose in drinking water for six months). Methods: The females with metabolic syndrome were divided into the CON group, the HF group, which received fructose in drinking water, and the HF-DHA group, which received fructose in water and increased amounts of DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) in the diet (2.5% fish oil in the diet). The male and female offspring were killed at birth and their liver tissue was analyzed for the fatty acid profile and expression of Δ-9-desaturase and betacellulin. Results: When the rat offspring were exposed in utero to maternal fatty acids altered by the high-fructose diet, this resulted in a similarly altered fatty acid profile in the liver, with the most significant changes being Δ-9 desaturation and a dramatic increase in monounsaturated fatty acids. The offspring also showed an overexpression of hepatic betacellulin. Supplementation with DHA and EPA increased the DHA content and normalized the fatty acid composition of oleic acid, saturated fatty acids, linoleic acid and n3-docosapentaenoic acid in the offspring of mothers on a high-fructose diet. In addition, the DHA/EPA supplementation of fructose-fed mothers normalized hepatic Δ-9-desaturase and betacellulin overexpression in the offspring, suggesting that DHA/EPA supplementation affects not only the fatty acid content but also the liver function. Conclusions: The changes observed in this study suggest that DHA/EPA supplementation may modulate the effects of maternal programming on disorders of the lipid metabolism in the offspring. Full article
(This article belongs to the Special Issue Fat and Glucose Metabolism)
Show Figures

Figure 1

20 pages, 2385 KiB  
Article
A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis—A Pilot Study
by Thomai Mouskeftara, Georgios Kalopitas, Theodoros Liapikos, Konstantinos Arvanitakis, Eleni Theocharidou, Georgios Germanidis and Helen Gika
Int. J. Mol. Sci. 2024, 25(23), 13067; https://doi.org/10.3390/ijms252313067 - 5 Dec 2024
Cited by 1 | Viewed by 1887
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disorder in Western countries, encompassing a range of conditions from steatosis to Metabolic Dysfunction-Associated Steatohepatitis (MASH), which can potentially progress to cirrhosis. Lipidomics approaches have revealed significant alterations in the hepatic [...] Read more.
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disorder in Western countries, encompassing a range of conditions from steatosis to Metabolic Dysfunction-Associated Steatohepatitis (MASH), which can potentially progress to cirrhosis. Lipidomics approaches have revealed significant alterations in the hepatic lipidome associated with both steatosis and steatohepatitis, with these changes correlating with disease manifestation. While the transition from steatosis to MASH remains poorly understood, recent research indicates that both the quantity and quality of deposited lipids play a pivotal role in MASLD progression. In our study, we utilized untargeted and targeted analyses to identify intact lipids and fatty acids in liver biopsies from healthy controls and MASLD patients, categorized based on their histological findings. In total, 447 lipid species were identified, with 215 subjected to further statistical analysis. Univariate and multivariate analyses revealed alterations in triglyceride species and fatty acids, including FA 16:0, FA 16:1, FA 18:3 n6, the sum of MUFA, and the Δ9-desaturase activity ratio. This research provides insights into the connection between dysregulated lipid metabolism in the progression of MASLD, supporting previous findings. Further studies on lipid metabolism could improve risk assessment methods, particularly given the current limited understanding of the transition from steatosis to MASH. Full article
Show Figures

Figure 1

15 pages, 1190 KiB  
Article
Improving the Synthesis of Odd-Chain Fatty Acids in the Oleaginous Yeast Yarrowia lipolytica
by Nour Tabaa Chalabi, Sally El Kantar, Camilla Pires De Souza, Anissa Khelfa, Jean-Marc Nicaud, Espérance Debs, Nicolas Louka and Mohamed Koubaa
Fermentation 2024, 10(12), 597; https://doi.org/10.3390/fermentation10120597 - 22 Nov 2024
Cited by 2 | Viewed by 1834
Abstract
(1) Background: Odd-chain fatty acids (OCFAs) have garnered attention for their potential health benefits and unique roles in various biochemical pathways. Yarrowia lipolytica, a versatile yeast species, is increasingly studied for its capability to produce OCFAs under controlled genetic and environmental conditions. [...] Read more.
(1) Background: Odd-chain fatty acids (OCFAs) have garnered attention for their potential health benefits and unique roles in various biochemical pathways. Yarrowia lipolytica, a versatile yeast species, is increasingly studied for its capability to produce OCFAs under controlled genetic and environmental conditions. However, optimizing the synthesis of specific OCFAs, such as cis-9-heptadecenoic acid (C17:1), remains a challenge. (2) Methods: The gene coding for the Δ9 fatty acid desaturase, YlOLE1, and the gene coding the diacylglycerol O-acyltransferase 2, YlDGA2, were overexpressed in Y. lipolytica. With the engineered strain, the main goal was to fine-tune the production of OCFA-enriched lipids by optimizing the concentrations of sodium propionate and sodium acetate used as precursors for synthesizing odd- and even-chain fatty acids, respectively. (3) Results: In the strain overexpressing only YlDGA2, no significant changes in fatty acid composition or lipid content were observed compared to the control strain. However, in the strain overexpressing both genes, while no significant changes in lipid content were noted, a significant increase was observed in OCFA content. The optimal conditions for maximizing the cell density and the C17:1 content in lipids were found to be 2.23 g/L of sodium propionate and 17.48 g/L of sodium acetate. These conditions resulted in a cell density (optical density at 600 nm) of 19.5 ± 0.46 and a C17:1 content of 45.56% ± 1.29 in the culture medium after 168 h of fermentation. (4) Conclusions: By overexpressing the YlOLE1 gene and optimizing the concentrations of fatty acid precursors, it was possible to increase the content of OCFAs, mainly C17:1, in lipids synthesized by Y. lipolytica. Full article
Show Figures

Figure 1

11 pages, 877 KiB  
Article
Metabolic Reprogramming of Phospholipid Fatty Acids as a Signature of Lung Cancer Type
by Marija Paunovic, Ana Stojanovic, Biljana Pokimica, Jasmina Debeljak Martacic, Zorica Cvetkovic, Nebojsa Ivanovic and Vesna Vucic
Cancers 2024, 16(19), 3320; https://doi.org/10.3390/cancers16193320 - 28 Sep 2024
Cited by 5 | Viewed by 1454
Abstract
Background: Lung cancer is one of the leading causes of cancer-related mortality. Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) differ in aggressiveness, proliferation speed, metastasis propensity, and prognosis. Since tumor cells notably change lipid metabolism, especially phospholipids and fatty [...] Read more.
Background: Lung cancer is one of the leading causes of cancer-related mortality. Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) differ in aggressiveness, proliferation speed, metastasis propensity, and prognosis. Since tumor cells notably change lipid metabolism, especially phospholipids and fatty acids (FA), this study aimed to identify FA alterations in lung cancer tissues. Methods: Our study included patients with newly diagnosed, histologically confirmed SCLC (n = 27) and NSCLC (n = 37). Samples were collected from both malignant and healthy tissues from each patient, providing they were within subject design. Results: In both NSCLC and SCLC tumor tissues, FA contents were shifted toward pro-inflammatory profiles, with increased levels of some individual n-6 polyunsaturated FA (PUFA), particularly arachidonic acid, and elevated activity of Δ6 desaturase. Compared to healthy counterparts, lower levels of alpha-linolenic acid (18:3n-3) and total saturated FA (SFA) were found in NSCLC, while decreased levels of linoleic acid (18:2n-6) and all individual n-3 FA were found in SCLC tissue in comparison to the healthy tissue control. When mutually compared, SCLC tissue had higher levels of total SFA, especially stearic acid, while higher levels of linoleic acid, total PUFA, and n-3 and n-6 PUFA were detected in NSCLC. Estimated activities of Δ6 desaturase and elongase were higher in SCLC than in NSCLC. Conclusions: Our findings indicate a notable impairment of lipid metabolism in two types of lung cancer tissues. These type-specific alterations may be associated with differences in their progression and also point out different therapeutic targets. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

11 pages, 2994 KiB  
Article
Effects of Soybean Isoflavones on the Growth Performance and Lipid Metabolism of the Juvenile Chinese Mitten Crab Eriocheir sinensis
by Mengyu Shi, Yisong He, Jiajun Zheng, Yang Xu, Yue Tan, Li Jia, Liqiao Chen, Jinyun Ye and Changle Qi
Fishes 2024, 9(9), 335; https://doi.org/10.3390/fishes9090335 - 26 Aug 2024
Viewed by 1173
Abstract
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and [...] Read more.
In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and 15%). The groups were named as follows: NF-0 group (10% fat and 0% SIFs), NF-0.004 group (10% fat and 0.004% SIFs), NF-0.008 group (10% fat and 0.008% SIFs), HF-0 group (15% fat and 0% SIFs), HF-0.004 group (15% fat and 0.004% SIFs) and HF-0.008 group (15% fat and 0.008% SIFs). All crabs with an initial weight of 0.4 ± 0.03 g were fed for 8 weeks. The results showed that dietary supplementation with 0.004% or 0.008% SIFs significantly increased the weight gain and specific growth rate of crabs. Diets supplemented with 0.004% or 0.008% SIFs significantly reduced the content of non-esterified free fatty acids and triglycerides in the hepatopancreas of crabs at the 10% dietary lipid level. Dietary SIFs significantly decreased the relative mRNA expressions of elongase of very-long-chain fatty acids 6 (elovl6), triglyceride lipase (tgl), sterol regulatory element-binding protein 1 (srebp-1), carnitine palmitoyltransferase-1a (cpt-1a), fatty acid transporter protein 4 (fatp4), carnitine palmitoyltransferase-2 (cpt-2), Δ9 fatty acyl desaturase (Δ9 fad), carnitine palmitoyltransferase-1b (cpt-1b), fatty acid-binding protein 10 (fabp10) and microsomal triglyceride transfer protein (mttp) in the hepatopancreas of crabs. At the 15% dietary lipid level, 0.008% SIFs significantly increased the relative mRNA expressions of fatty acid-binding protein 3 (fabp3), carnitine acetyltransferase (caat), fatp4, fabp10, tgl, cpt-1a, cpt-1b and cpt-2 and significantly down-regulated the relative mRNA expressions of Δ9 fad and srebp-1. In conclusion, SIFs can improve the growth and utilization of a high-fat diet by inhibiting genes related to lipid synthesis and promoting lipid decomposition in juvenile Chinese mitten crabs. Full article
Show Figures

Figure 1

14 pages, 724 KiB  
Article
Alleviating Heat Stress in Fattening Pigs: Low-Intensity Showers in Critical Hours Alter Body External Temperature, Feeding Pattern, Carcass Composition, and Meat Quality Characteristics
by José Segura, Luis Calvo, Rosa Escudero, Ana Isabel Rodríguez, Álvaro Olivares, Beatriz Jiménez-Gómez and Clemente José López-Bote
Animals 2024, 14(11), 1661; https://doi.org/10.3390/ani14111661 - 1 Jun 2024
Cited by 1 | Viewed by 1963
Abstract
Heat stress is a significant environmental problem that has a detrimental impact on animal welfare and production efficiency in swine farms. The current study was conducted to assess the effect of low-intensity showers, provided during critical high-temperature hours daily, on body external temperature, [...] Read more.
Heat stress is a significant environmental problem that has a detrimental impact on animal welfare and production efficiency in swine farms. The current study was conducted to assess the effect of low-intensity showers, provided during critical high-temperature hours daily, on body external temperature, feeding pattern, and carcass and meat quality characteristics in fattening pigs. A total of 400 animals (200 barrows and 200 gilts) were randomly allotted in 40 pens. A shower nozzle was installed over 20 pens (half barrows and half gilts) where pigs received a low-intensity shower for 2 min in 30 min intervals from 12 to 19 h (SHO group). Another group without showers was also considered (CON). Feeder occupancy measurement, thermographic measures, and carcass and meat quality parameters were studied. In the periods with higher environmental temperatures, SHO animals showed an increase in the feeder occupancy rate compared to the CON group. A decrease in temperature was observed after the shower, regardless of the anatomical location (p < 0.005). The treatment with showers led to higher values than in the CON group of 4.72%, 3.87%, 11.8%, and 15.1% for hot carcass weight, lean meat yield, and fat thickness in Longissimus Dorsi (LD) and Gluteus Medius muscles, respectively (p < 0.01). Pork from CON showed a 14.9% higher value of drip loss, and 18.9% higher malondialdehyde concentration than SHO (p < 0.01); meanwhile, intramuscular fat content was 22.8% higher in SHO than in CON (p < 0.01). On the other hand, the CON group exhibited higher L* (2.13%) and lower a* and b* values (15.8% and 8.97%) compared to the SHO group. However, the pH20h of the CON group was significantly lower than that of the SHO group (p < 0.001), indicating a softer pH decrease. Related to fatty acids in subcutaneous outer and inner layers and intramuscular fat, the CON group showed higher ΣSFA and lower ΣMUFA and Δ9-desaturase indexes than SHO (p < 0.05). In conclusion, the amelioration of heat stress through showers at critical times should be considered an interesting tool that improves both carcass and meat quality, as well as animal welfare. Full article
(This article belongs to the Special Issue Welfare-Enhanced Meat Production)
Show Figures

Figure 1

19 pages, 4508 KiB  
Article
Activation of Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) in Keratinocytes by Endogenous Fatty Acids
by Bokai Zhu, Xiaoyang Zhu, Michael G. Borland, Douglas H. Ralph, Christopher R. Chiaro, Kristopher W. Krausz, James M. Ntambi, Adam B. Glick, Andrew D. Patterson, Gary H. Perdew, Frank J. Gonzalez and Jeffrey M. Peters
Biomolecules 2024, 14(6), 606; https://doi.org/10.3390/biom14060606 - 21 May 2024
Cited by 1 | Viewed by 3207
Abstract
Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in keratinocytes. The phorbol ester treatment or HRAS [...] Read more.
Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARβ/δ activity. Fatty acids caused PPARβ/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARβ/δ ligands. The activation of PPARβ/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARβ/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARβ/δ. The results from these studies demonstrate that PPARβ/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components. Full article
Show Figures

Figure 1

18 pages, 2867 KiB  
Article
Long-Term Effect of Maternal Antioxidant Supplementation on the Lipid Profile of the Progeny According to the Sow’s Parity Number
by Gerardo Gómez, Hernan D. Laviano, Juan García-Casco, Maria Muñoz, Fernando Gómez, Fernando Sánchez-Esquiliche, Antonio González-Bulnes, Clemente López-Bote, Cristina Óvilo and Ana I. Rey
Antioxidants 2024, 13(3), 379; https://doi.org/10.3390/antiox13030379 - 20 Mar 2024
Cited by 2 | Viewed by 1999 | Correction
Abstract
Pig feeding prior to the extensive fattening phase might affect the final lipid profile and product quality. This study evaluates how maternal supplementation with vitamin E (VITE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg), or combined administration (VE + HXT) affects the piglet’s plasma [...] Read more.
Pig feeding prior to the extensive fattening phase might affect the final lipid profile and product quality. This study evaluates how maternal supplementation with vitamin E (VITE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg), or combined administration (VE + HXT) affects the piglet’s plasma and tissues’ fatty acid profiles and lipid stability according to the sow’s parity number (PN), as well as the possible changes to the lipid profile after extensive feeding. The sows’ PN affected the total fatty acid profile of plasma, muscle, and liver of piglets, with lower Δ-9 and Δ-6 desaturase indices but higher Δ-5 in those from primiparous (P) than multiparous (M) sows. Dietary VITE was more effective at decreasing C16:0 and saturated fatty acids in the muscle of piglets born from M than P sows, and modified the liver phospholipids in a different way. Sows’ supplementation with HXT increased C18:2n-6 in triglycerides and polyunsaturated fatty acids (PUFA) in muscle phospholipids. In the liver, HXT supplementation also increased free-PUFA and free-n-3 fatty acids. However, lipid oxidation of piglets’ tissues was not affected by the antioxidant supplementation, and it was higher in the livers of piglets born from M sows. The fatty acid profile in the muscle of pigs after extensive feeding was not affected by the PN, but it was by the sows’ antioxidant supplementation, with positive effects on quality by both compounds. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Animal Nutrition)
Show Figures

Graphical abstract

13 pages, 5456 KiB  
Article
Characterization and Functional Analysis of Fads Reveals Δ5 Desaturation Activity during Long-Chain Polyunsaturated Fatty Acid Biosynthesis in Dwarf Surf Clam Mulinia lateralis
by Tianhao Teng, Zhenghua Zheng, Wenqian Jiao, Na Liu, Ao Wang, Mengjiao Liu, Le Xie, Zujing Yang, Jingjie Hu and Zhenmin Bao
Genes 2024, 15(3), 365; https://doi.org/10.3390/genes15030365 - 15 Mar 2024
Cited by 1 | Viewed by 2308
Abstract
Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated [...] Read more.
Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2164 KiB  
Article
Identification of Conjugated Dienes of Fatty Acids in Vischeria sp. IPPAS C-70 under Oxidative Stress
by Roman A. Sidorov, Alexander Y. Starikov, Maria A. Sinetova, Elizaveta V. Guilmisarian and Dmitry A. Los
Int. J. Mol. Sci. 2024, 25(6), 3239; https://doi.org/10.3390/ijms25063239 - 13 Mar 2024
Cited by 2 | Viewed by 2105
Abstract
The microalgae Vischeria sp. IPPAS C-70 produces eicosapentaenoic acid. Several stresses cause the formation of fatty acid peaks that resemble hexadecadienoic acids. We used the integrated technique including TLC, HPLC, and GC–MS to search and determine these fatty acids. Double bond positioning in [...] Read more.
The microalgae Vischeria sp. IPPAS C-70 produces eicosapentaenoic acid. Several stresses cause the formation of fatty acid peaks that resemble hexadecadienoic acids. We used the integrated technique including TLC, HPLC, and GC–MS to search and determine these fatty acids. Double bond positioning in these fatty acids indicated that they were conjugated dienes and allenes. We identified and described natural nine isomers of C16 polyunsaturated fatty acids, including common methylene-interrupted dienes (Δ6,9-16:2, Δ7,10-16:2, Δ9,12-16:2), and unusual conjugated dienes (Δ6,8-, Δ7,9-, Δ8,10-, Δ9,11-, and Δ10,12-16:2), as well as allenic diene (Δ9,10-16:2). We hypothesize that the formation of conjugated dienes and allenes among fatty acids is the result of oxidative stress caused by H2O2. Hydrogen peroxide also caused an increase in saturated at the expense of unsaturated fatty acids, suggesting inhibition either fatty acid desaturases activities or the corresponding gene expression. Full article
Show Figures

Figure 1

17 pages, 3164 KiB  
Article
Reconstruction of Long-Chain Polyunsaturated Acid Synthesis Pathways in Marine Red Microalga Porphyridium cruentum Using Lipidomics and Transcriptomics
by Tao Li, Chulin Li, Weinan Wang, Hualian Wu, Houbo Wu, Jin Xu and Wenzhou Xiang
Mar. Drugs 2024, 22(2), 82; https://doi.org/10.3390/md22020082 - 9 Feb 2024
Cited by 2 | Viewed by 2614
Abstract
The marine red microalga Porphyridium can simultaneously synthesize long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (C20:5, EPA) and arachidonic acid (C20:4, ARA). However, the distribution and synthesis pathways of EPA and ARA in Porphyridium are not clearly understood. In this study, Porphyridium cruentum [...] Read more.
The marine red microalga Porphyridium can simultaneously synthesize long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (C20:5, EPA) and arachidonic acid (C20:4, ARA). However, the distribution and synthesis pathways of EPA and ARA in Porphyridium are not clearly understood. In this study, Porphyridium cruentum CCALA 415 was cultured in nitrogen-replete and nitrogen-limited conditions. Fatty acid content determination, transcriptomic, and lipidomic analyses were used to investigate the synthesis of ARA and EPA. The results show that membrane lipids were the main components of lipids, while storage lipids were present in a small proportion in CCALA 415. Nitrogen limitation enhanced the synthesis of storage lipids and ω6 fatty acids while inhibiting the synthesis of membrane lipids and ω3 fatty acids. A total of 217 glycerolipid molecular species were identified, and the most abundant species included monogalactosyldiglyceride (C16:0/C20:5) (MGDG) and phosphatidylcholine (C16:0/C20:4) (PC). ARA was mainly distributed in PC, and EPA was mainly distributed in MGDG. Among all the fatty acid desaturases (FADs), the expressions of Δ5FAD, Δ6FAD, Δ9FAD, and Δ12FAD were up-regulated, whereas those of Δ15FAD and Δ17FAD were down-regulated. Based on these results, only a small proportion of EPA was synthesized through the ω3 pathway, while the majority of EPA was synthesized through the ω6 pathway. ARA synthesized in the ER was likely shuttled into the chloroplast by DAG and was converted into EPA by Δ17FAD. Full article
(This article belongs to the Special Issue Marine Lipids 2023)
Show Figures

Figure 1

10 pages, 865 KiB  
Article
The Specificities of Lysophosphatidic Acid Acyltransferase and Fatty Acid Desaturase Determine the High Content of Myristic and Myristoleic Acids in Cyanobacterium sp. IPPAS B-1200
by Alexander Y. Starikov, Roman A. Sidorov, Kirill S. Mironov and Dmitry A. Los
Int. J. Mol. Sci. 2024, 25(2), 774; https://doi.org/10.3390/ijms25020774 - 7 Jan 2024
Cited by 2 | Viewed by 1667
Abstract
The cyanobacterial strain Cyanobacterium sp. IPPAS B-1200 isolated from Lake Balkhash is characterized by high relative amounts of myristic (30%) and myristoleic (10%) acids. The remaining fatty acids (FAs) are represented mainly by palmitic (20%) and palmitoleic (40%) acids. We expressed the genes [...] Read more.
The cyanobacterial strain Cyanobacterium sp. IPPAS B-1200 isolated from Lake Balkhash is characterized by high relative amounts of myristic (30%) and myristoleic (10%) acids. The remaining fatty acids (FAs) are represented mainly by palmitic (20%) and palmitoleic (40%) acids. We expressed the genes for lysophosphatidic acid acyltransferase (LPAAT; EC 2.3.1.51) and Δ9 fatty acid desaturase (FAD; EC 1.14.19.1) from Cyanobacterium sp. IPPAS B-1200 in Synechococcus elongatus PCC 7942, which synthesizes myristic and myristoleic acids at the level of 0.5–1% and produces mainly palmitic (~60%) and palmitoleic (35%) acids. S. elongatus cells that expressed foreign LPAAT synthesized myristic acid at 26%, but did not produce myristoleic acid, suggesting that Δ9-FAD of S. elongatus cannot desaturate FAs with chain lengths less than C16. Synechococcus cells that co-expressed LPAAT and Δ9-FAD of Cyanobacterium synthesized up to 45% palmitoleic and 9% myristoleic acid, suggesting that Δ9-FAD of Cyanobacterium is capable of desaturating saturated acyl chains of any length. Full article
Show Figures

Figure 1

17 pages, 331 KiB  
Article
Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil
by Małgorzata Białek, Agnieszka Białek, Wiktoria Wojtak and Marian Czauderna
Animals 2024, 14(1), 133; https://doi.org/10.3390/ani14010133 - 29 Dec 2023
Cited by 2 | Viewed by 2027
Abstract
The purpose of our study was to investigate the effect of 0.35 mg Se/kg basal diet (BD) (Se as sodium selenate (Se6) and yeast rich in seleno-methionine (SeYe)) and 0.1% carnosic acid (CA) supplementation to the diet containing 1% [...] Read more.
The purpose of our study was to investigate the effect of 0.35 mg Se/kg basal diet (BD) (Se as sodium selenate (Se6) and yeast rich in seleno-methionine (SeYe)) and 0.1% carnosic acid (CA) supplementation to the diet containing 1% fish oil (F-O) and 2% rapeseed oil (R-O) on the contents of fatty acids (FA), malondialdehyde (MDA), tocopherols (Ts), and total cholesterol (TCh) in lambs’ spleens. A total of 24 male lambs (4 groups per 6 animals) have been fed: the control diet—the basal diet (BD) enriched in F-O and R-O; the CA diet—BD enriched in F-O, R-O, and CA; the SeYeCA diet—BD enriched in F-O, R-O, CA, and SeYe; the Se6CA diet—BD enriched in F-O, R-O, CA, and Se6. Dietary modifications affected the profiles of saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids in spleens. The SeYeCA and Se6CA diets increased the docosapentaenoic acid preference in Δ4-desaturase; hence, a higher content of docosahexaenoic acid was found in the spleens of SeYe- or Se6-treated lambs than in spleens of animals receiving the CA and control diets. The SeYeCA and Se6CA diets increased the concentration ratio of n-3long-chain PUFA (n-3LPUFA) to FA (n-3LPUFA/FA) in spleens compared to the control and CA diets. The content of n-3PUFA was higher in the spleens of Se6 treated lambs than in spleens of animals receiving the SeYeCA, CA, and control diets. The Se6CA diet increased the content of c9t11CLA in the spleen compared to the control, CA, and SeYeCA diets. Experimental diets reduced the level of atherogenic FA, the content ratios of n-6PUFA/n-3PUFA and n-6LPUFA/n-3LPUFA, and improved the content ratio of MUFA/FA and the value of the hypocholesterolemic/hypercholesterolemic FA ratio in the spleen in comparison with the control diet. The experimental diets supplemented with SeYe or Se6 increased levels of TCh and Ts in spleens in comparison with the CA and control CA diets. The present studies documented that Se6, SeYe, and CA influenced the metabolism of FA, Ts, and cholesterol in spleens. Full article
(This article belongs to the Section Small Ruminants)
Back to TopTop