Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = ß-amyloid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4537 KiB  
Article
Dysregulation of Inositol Polyphosphate 5-Phosphatase OCRL in Alzheimer’s Disease: Implications for Autophagy Dysfunction
by Kunie Ando, May Thazin Htut, Eugenia Maria Antonelli, Andreea-Claudia Kosa, Lidia Lopez-Gutierrez, Carolina Quintanilla-Sánchez, Emmanuel Aydin, Emilie Doeraene, Siranjeevi Nagaraj, Ana Raquel Ramos, Katia Coulonval, Pierre P. Roger, Jean-Pierre Brion and Karelle Leroy
Int. J. Mol. Sci. 2025, 26(12), 5827; https://doi.org/10.3390/ijms26125827 - 18 Jun 2025
Viewed by 596
Abstract
Autophagy is impaired in Alzheimer’s disease (AD), particularly at the stage of autophagosome–lysosome fusion. Recent studies suggest that the inositol polyphosphate 5-phosphatase OCRL (Lowe oculocerebrorenal syndrome protein) is involved in this fusion process; however, its role in AD pathophysiology remains largely unclear. In [...] Read more.
Autophagy is impaired in Alzheimer’s disease (AD), particularly at the stage of autophagosome–lysosome fusion. Recent studies suggest that the inositol polyphosphate 5-phosphatase OCRL (Lowe oculocerebrorenal syndrome protein) is involved in this fusion process; however, its role in AD pathophysiology remains largely unclear. In this study, we investigated the localization and expression of OCRL in post-mortem AD brains and in a 5XFAD transgenic mouse model. While OCRL RNA levels were not significantly altered, OCRL protein was markedly reduced in the RIPA-soluble fraction and positively correlated with the autophagy marker Beclin1. Immunohistochemical analysis revealed OCRL immunoreactivity in neuronal cytoplasm, granulovacuolar degeneration bodies, and plaque-associated dystrophic neurites in AD brains. Furthermore, OCRL overexpression in a FRET-based tau biosensor cell model significantly reduced the tau-seeding-induced FRET signal. These findings suggest that OCRL dysregulation may contribute to autophagic deficits and the progression of tau pathology in AD. Full article
Show Figures

Figure 1

25 pages, 9116 KiB  
Review
Cerebral Amyloid Angiopathy: Clinical Presentation, Sequelae and Neuroimaging Features—An Update
by Stefan Weidauer and Elke Hattingen
Biomedicines 2025, 13(3), 603; https://doi.org/10.3390/biomedicines13030603 - 1 Mar 2025
Cited by 1 | Viewed by 3087
Abstract
The prevalence of cerebral amyloid angiopathy (CAA) has been shown to increase with age, with rates reported to be around 50–60% in individuals over 80 years old who have cognitive impairment. The disease often presents as spontaneous lobar intracerebral hemorrhage (ICH), which carries [...] Read more.
The prevalence of cerebral amyloid angiopathy (CAA) has been shown to increase with age, with rates reported to be around 50–60% in individuals over 80 years old who have cognitive impairment. The disease often presents as spontaneous lobar intracerebral hemorrhage (ICH), which carries a high risk of recurrence, along with transient focal neurologic episodes (TFNE) and progressive cognitive decline, potentially leading to Alzheimer’s disease (AD). In addition to ICH, neuroradiologic findings of CAA include cortical and subcortical microbleeds (MB), cortical subarachnoid hemorrhage (cSAH) and cortical superficial siderosis (cSS). Non-hemorrhagic pathologies include dilated perivascular spaces in the centrum semiovale and multiple hyperintense lesions on T2-weighted magnetic resonance imaging (MRI). A definitive diagnosis of CAA still requires histological confirmation. The Boston criteria allow for the diagnosis of a probable or possible CAA by considering specific neurological and MRI findings. The recent version, 2.0, which includes additional non-hemorrhagic MRI findings, increases sensitivity while maintaining the same specificity. The characteristic MRI findings of autoantibody-related CAA-related inflammation (CAA-ri) are similar to the so-called “amyloid related imaging abnormalities” (ARIA) observed with amyloid antibody therapies, presenting in two variants: (a) vasogenic edema and leptomeningeal effusions (ARIA-E) and (b) hemorrhagic lesions (ARIA-H). Clinical and MRI findings enable the diagnosis of a probable or possible CAA-ri, with biopsy remaining the gold standard for confirmation. In contrast to spontaneous CAA-ri, only about 20% of patients treated with monoclonal antibodies who show proven ARIA on MRI also experience clinical symptoms, including headache, confusion, other psychopathological abnormalities, visual disturbances, nausea and vomiting. Recent findings indicate that treatment should be continued in cases of mild ARIA, with ongoing MRI and clinical monitoring. This review offers a concise update on CAA and its associated consequences. Full article
Show Figures

Figure 1

21 pages, 5980 KiB  
Article
Amelioration of Serum Aβ Levels and Cognitive Impairment in APPPS1 Transgenic Mice Following Symbiotic Administration
by Chiara Traini, Irene Bulli, Giorgia Sarti, Fabio Morecchiato, Marco Coppi, Gian Maria Rossolini, Vincenzo Di Pilato and Maria Giuliana Vannucchi
Nutrients 2024, 16(15), 2381; https://doi.org/10.3390/nu16152381 - 23 Jul 2024
Cited by 4 | Viewed by 1963
Abstract
Alzheimer’s disease (AD) is a neurodegenerative process responsible for almost 70% of all cases of dementia. The clinical signs consist in progressive and irreversible loss of memory, cognitive, and behavioral functions. The main histopathological hallmark is the accumulation of amyloid-ß (Aß) peptide fibrils [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative process responsible for almost 70% of all cases of dementia. The clinical signs consist in progressive and irreversible loss of memory, cognitive, and behavioral functions. The main histopathological hallmark is the accumulation of amyloid-ß (Aß) peptide fibrils in the brain. To date, the origin of Aß has not been determined. Recent studies have shown that the gut microbiota produces Aß, and dysbiotic states have been identified in AD patients and animal models of AD. Starting from the hypothesis that maintaining or restoring the microbiota’s eubiosis is essential to control Aß’s production and deposition in the brain, we used a mixture of probiotics and prebiotics (symbiotic) to treat APPPS1 male and female mice, an animal model of AD, from 2 to 8 months of age and evaluated their cognitive performances, mucus secretion, Aβ serum concentration, and microbiota composition. The results showed that the treatment was able to prevent the memory deficits, the reduced mucus secretion, the increased Aβ blood levels, and the imbalance in the gut microbiota found in APPPS1 mice. The present study demonstrates that the gut–brain axis plays a critical role in the genesis of cognitive impairment, and that modulation of the gut microbiota can ameliorate AD’s symptomatology. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

20 pages, 13210 KiB  
Review
Overview of the Current Knowledge and Conventional MRI Characteristics of Peri- and Para-Vascular Spaces
by Marco Parillo, Federica Vaccarino, Gianfranco Di Gennaro, Sumeet Kumar, Johan Van Goethem, Bruno Beomonte Zobel, Carlo Cosimo Quattrocchi, Paul M. Parizel and Carlo Augusto Mallio
Brain Sci. 2024, 14(2), 138; https://doi.org/10.3390/brainsci14020138 - 28 Jan 2024
Cited by 6 | Viewed by 4179
Abstract
Brain spaces around (perivascular spaces) and alongside (paravascular or Virchow–Robin spaces) vessels have gained significant attention in recent years due to the advancements of in vivo imaging tools and to their crucial role in maintaining brain health, contributing to the anatomic foundation of [...] Read more.
Brain spaces around (perivascular spaces) and alongside (paravascular or Virchow–Robin spaces) vessels have gained significant attention in recent years due to the advancements of in vivo imaging tools and to their crucial role in maintaining brain health, contributing to the anatomic foundation of the glymphatic system. In fact, it is widely accepted that peri- and para-vascular spaces function as waste clearance pathways for the brain for materials such as ß-amyloid by allowing exchange between cerebrospinal fluid and interstitial fluid. Visible brain spaces on magnetic resonance imaging are often a normal finding, but they have also been associated with a wide range of neurological and systemic conditions, suggesting their potential as early indicators of intracranial pressure and neurofluid imbalance. Nonetheless, several aspects of these spaces are still controversial. This article offers an overview of the current knowledge and magnetic resonance imaging characteristics of peri- and para-vascular spaces, which can help in daily clinical practice image description and interpretation. This paper is organized into different sections, including the microscopic anatomy of peri- and para-vascular spaces, their associations with pathological and physiological events, and their differential diagnosis. Full article
Show Figures

Figure 1

34 pages, 1314 KiB  
Review
Monoclonal Antibody Therapy in Alzheimer’s Disease
by Monica Neațu, Anca Covaliu, Iulia Ioniță, Ana Jugurt, Eugenia Irene Davidescu and Bogdan Ovidiu Popescu
Pharmaceutics 2024, 16(1), 60; https://doi.org/10.3390/pharmaceutics16010060 - 29 Dec 2023
Cited by 19 | Viewed by 5901
Abstract
Alzheimer’s disease is a neurodegenerative condition marked by the progressive deterioration of cognitive abilities, memory impairment, and the accumulation of abnormal proteins, specifically beta-amyloid plaques and tau tangles, within the brain. Despite extensive research efforts, Alzheimer’s disease remains without a cure, presenting a [...] Read more.
Alzheimer’s disease is a neurodegenerative condition marked by the progressive deterioration of cognitive abilities, memory impairment, and the accumulation of abnormal proteins, specifically beta-amyloid plaques and tau tangles, within the brain. Despite extensive research efforts, Alzheimer’s disease remains without a cure, presenting a significant global healthcare challenge. Recently, there has been an increased focus on antibody-based treatments as a potentially effective method for dealing with Alzheimer’s disease. This paper offers a comprehensive overview of the current status of research on antibody-based molecules as therapies for Alzheimer’s disease. We will briefly mention their mechanisms of action, therapeutic efficacy, and safety profiles while addressing the challenges and limitations encountered during their development. We also highlight some crucial considerations in antibody-based treatment development, including patient selection criteria, dosing regimens, or safety concerns. In conclusion, antibody-based therapies present a hopeful outlook for addressing Alzheimer’s disease. While challenges remain, the accumulating evidence suggests that these therapies may offer substantial promise in ameliorating or preventing the progression of this debilitating condition, thus potentially enhancing the quality of life for the millions of individuals and families affected by Alzheimer’s disease worldwide. Full article
Show Figures

Figure 1

16 pages, 6559 KiB  
Article
Aggregation and Oligomerization Characterization of ß-Lactoglobulin Protein Using a Solid-State Nanopore Sensor
by Mitu C. Acharjee, Brad Ledden, Brian Thomas, Xianglan He, Troy Messina, Jason Giurleo, David Talaga and Jiali Li
Sensors 2024, 24(1), 81; https://doi.org/10.3390/s24010081 - 22 Dec 2023
Cited by 3 | Viewed by 2009
Abstract
Protein aggregation is linked to many chronic and devastating neurodegenerative human diseases and is strongly associated with aging. This work demonstrates that protein aggregation and oligomerization can be evaluated by a solid-state nanopore method at the single molecule level. A silicon nitride nanopore [...] Read more.
Protein aggregation is linked to many chronic and devastating neurodegenerative human diseases and is strongly associated with aging. This work demonstrates that protein aggregation and oligomerization can be evaluated by a solid-state nanopore method at the single molecule level. A silicon nitride nanopore sensor was used to characterize both the amyloidogenic and native-state oligomerization of a model protein ß-lactoglobulin variant A (βLGa). The findings from the nanopore measurements are validated against atomic force microscopy (AFM) and dynamic light scattering (DLS) data, comparing βLGa aggregation from the same samples at various stages. By calibrating with linear and circular dsDNA, this study estimates the amyloid fibrils’ length and diameter, the quantity of the βLGa aggregates, and their distribution. The nanopore results align with the DLS and AFM data and offer additional insight at the level of individual protein molecular assemblies. As a further demonstration of the nanopore technique, βLGa self-association and aggregation at pH 4.6 as a function of temperature were measured at high (2 M KCl) and low (0.1 M KCl) ionic strength. This research highlights the advantages and limitations of using solid-state nanopore methods for analyzing protein aggregation. Full article
(This article belongs to the Special Issue Nanosensors for Chemical and Biological Detection)
Show Figures

Graphical abstract

10 pages, 2594 KiB  
Case Report
PSEN1 His214Asn Mutation in a Korean Patient with Familial EOAD and the Importance of Histidine–Tryptophan Interactions in TM-4 Stability
by Eva Bagyinszky, Minju Kim, Young Ho Park, Seong Soo A. An and SangYun Kim
Int. J. Mol. Sci. 2024, 25(1), 116; https://doi.org/10.3390/ijms25010116 - 21 Dec 2023
Cited by 2 | Viewed by 1450
Abstract
A pathogenic mutation in presenilin-1 (PSEN1), His214Asn, was found in a male patient with memory decline at the age of 41 in Korea for the first time. The proband patient was associated with a positive family history from his father, paternal [...] Read more.
A pathogenic mutation in presenilin-1 (PSEN1), His214Asn, was found in a male patient with memory decline at the age of 41 in Korea for the first time. The proband patient was associated with a positive family history from his father, paternal aunt, and paternal grandmother without genetic testing. He was diagnosed with early onset Alzheimer’s disease (EOAD). PSEN1 His214Asn was initially reported in an Italian family, where the patient developed phenotypes similar to the current proband patient. Magnetic resonance imaging (MRI) scans revealed a mild hippocampal atrophy. The amyloid positron emission tomography (amyloid-PET) was positive, along with the positive test results of the increased amyloid ß (Aβ) oligomerization tendency with blood. The PSEN1 His214 amino acid position plays a significant role in the gamma–secretase function, especially from three additional reported mutations in this residue: His214Asp, His214Tyr, and His214Arg. The structure prediction model revealed that PSEN1 protein His214 may interact with Trp215 of His-Trp cation-π interaction, and the mutations of His214 would destroy this interaction. The His-Trp cation-π interaction between His214 and Trp215 would play a crucial structural role in stabilizing the 4th transmembrane domain of PSEN1 protein, especially when aromatic residues were often reported in the membrane interface of the lipid–extracellular region of alpha helices or beta sheets. The His214Asn would alter the cleavage dynamics of gamma–secretase from the disappeared interactions between His214 and Trp215 inside of the helix, resulting in elevated amyloid production. Hence, the increased Aβ was reflected in the increased Aβ oligomerization tendency and the accumulations of Aβ in the brain from amyloid-PET, leading to EOAD. Full article
(This article belongs to the Special Issue The Role of Genetics in Dementia)
Show Figures

Figure 1

26 pages, 2632 KiB  
Review
Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer’s and Parkinson’s Diseases: Insights into Current Medications
by Deepa Gautam, Ulhas P. Naik, Meghna U. Naik, Santosh K. Yadav, Rameshwar Nath Chaurasia and Debabrata Dash
Biomolecules 2023, 13(11), 1609; https://doi.org/10.3390/biom13111609 - 3 Nov 2023
Cited by 14 | Viewed by 4097
Abstract
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer’s disease (AD) and Parkinson’s disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role [...] Read more.
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer’s disease (AD) and Parkinson’s disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role of neurotransmitters. The possible functions that platelets may play in neurodegenerative illnesses including PD and AD are becoming more acknowledged. In AD, platelets have been investigated for their ability to generate amyloid-ß (Aß) peptides, contributing to the formation of neurotoxic plaques. Moreover, platelets are considered biomarkers for early AD diagnosis. In PD, platelets have been studied for their involvement in oxidative stress and mitochondrial dysfunction, which are key factors in the disease’s pathogenesis. Emerging research shows that platelets, which release glutamate upon activation, also play a role in these disorders. Decreased glutamate uptake in platelets has been observed in Alzheimer’s and Parkinson’s patients, pointing to a systemic dysfunction in glutamate handling. This paper aims to elucidate the critical role that glutamate receptors play in the pathophysiology of both AD and PD. Utilizing data from clinical trials, animal models, and cellular studies, we reviewed how glutamate receptors dysfunction contributes to neurodegenerative (ND) processes such as excitotoxicity, synaptic loss, and cognitive impairment. The paper also reviews all current medications including glutamate receptor antagonists for AD and PD, highlighting their mode of action and limitations. A deeper understanding of glutamate receptor involvement including its systemic regulation by platelets could open new avenues for more effective treatments, potentially slowing disease progression and improving patient outcomes. Full article
(This article belongs to the Special Issue Glutamate and Glutamate Receptors in Health and Diseases)
Show Figures

Figure 1

18 pages, 798 KiB  
Review
Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer’s Disease: A Recent Systematic Review
by Constantin Munteanu, Daniel Andrei Iordan, Mihail Hoteteu, Cristina Popescu, Ruxandra Postoiu, Ilie Onu and Gelu Onose
Int. J. Mol. Sci. 2023, 24(20), 15481; https://doi.org/10.3390/ijms242015481 - 23 Oct 2023
Cited by 16 | Viewed by 3174
Abstract
In the rapidly evolving field of Alzheimer’s Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily [...] Read more.
In the rapidly evolving field of Alzheimer’s Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S’s dual role, delineating its regulatory functions in critical cellular processes—such as neurotransmission, inflammation, and oxidative stress homeostasis—while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

33 pages, 21692 KiB  
Review
Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing
by Orsolya Toke
Int. J. Mol. Sci. 2023, 24(17), 13637; https://doi.org/10.3390/ijms241713637 - 4 Sep 2023
Cited by 5 | Viewed by 2867
Abstract
Solid-state NMR (ss-NMR) is a powerful tool to investigate noncrystallizable, poorly soluble molecular systems, such as membrane proteins, amyloids, and cell walls, in environments that closely resemble their physical sites of action. Rotational-echo double resonance (REDOR) is an ss-NMR methodology, which by reintroducing [...] Read more.
Solid-state NMR (ss-NMR) is a powerful tool to investigate noncrystallizable, poorly soluble molecular systems, such as membrane proteins, amyloids, and cell walls, in environments that closely resemble their physical sites of action. Rotational-echo double resonance (REDOR) is an ss-NMR methodology, which by reintroducing heteronuclear dipolar coupling under magic angle spinning conditions provides intramolecular and intermolecular distance restraints at the atomic level. In addition, REDOR can be exploited as a selection tool to filter spectra based on dipolar couplings. Used extensively as a spectroscopic ruler between isolated spins in site-specifically labeled systems and more recently as a building block in multidimensional ss-NMR pulse sequences allowing the simultaneous measurement of multiple distances, REDOR yields atomic-scale information on the structure and interaction of proteins. By extending REDOR to the determination of 1H–X dipolar couplings in recent years, the limit of measurable distances has reached ~15–20 Å, making it an attractive method of choice for the study of complex biomolecular assemblies. Following a methodological introduction including the most recent implementations, examples are discussed to illustrate the versatility of REDOR in the study of biological systems. Full article
Show Figures

Figure 1

15 pages, 1235 KiB  
Article
Clinical Characteristics, Neuroimaging Markers, and Outcomes in Patients with Cerebral Amyloid Angiopathy: A Prospective Cohort Study
by Aikaterini Theodorou, Lina Palaiodimou, Georgia Papagiannopoulou, Odysseas Kargiotis, Klearchos Psychogios, Apostolos Safouris, Eleni Bakola, Maria Chondrogianni, Vasiliki Kotsali-Peteinelli, Konstantinos Melanis, Athanasios Tsibonakis, Elissavet Andreadou, Sofia Vasilopoulou, Stefanos Lachanis, Georgios Velonakis, Elias Tzavellas, John S. Tzartos, Konstantinos Voumvourakis, Georgios P. Paraskevas and Georgios Tsivgoulis
J. Clin. Med. 2023, 12(17), 5591; https://doi.org/10.3390/jcm12175591 - 27 Aug 2023
Cited by 3 | Viewed by 2138
Abstract
Background and purpose: Sporadic cerebral amyloid angiopathy (CAA) is a small vessel disease, resulting from progressive amyloid-β deposition in the media/adventitia of cortical and leptomeningeal arterioles. We sought to assess the prevalence of baseline characteristics, clinical and radiological findings, as well as outcomes [...] Read more.
Background and purpose: Sporadic cerebral amyloid angiopathy (CAA) is a small vessel disease, resulting from progressive amyloid-β deposition in the media/adventitia of cortical and leptomeningeal arterioles. We sought to assess the prevalence of baseline characteristics, clinical and radiological findings, as well as outcomes among patients with CAA, in the largest study to date conducted in Greece. Methods: Sixty-eight patients fulfilling the Boston Criteria v1.5 for probable/possible CAA were enrolled and followed for at least twelve months. Magnetic Resonance Imaging was used to assess specific neuroimaging markers. Data regarding cerebrospinal fluid biomarker profile and Apolipoprotein-E genotype were collected. Multiple logistic regression analyses were performed to identify predictors of clinical phenotypes. Cox-proportional hazard regression models were used to calculate associations with the risk of recurrent intracerebral hemorrhage (ICH). Results: Focal neurological deficits (75%), cognitive decline (57%), and transient focal neurological episodes (TFNEs; 21%) were the most common clinical manifestations. Hemorrhagic lesions, including lobar cerebral microbleeds (CMBs; 93%), cortical superficial siderosis (cSS; 48%), and lobar ICH (43%) were the most prevalent neuroimaging findings. cSS was independently associated with the likelihood of TFNEs at presentation (OR: 4.504, 95%CI:1.258–19.088), while multiple (>10) lobar CMBs were independently associated with cognitive decline at presentation (OR:5.418, 95%CI:1.316–28.497). cSS emerged as the only risk factor of recurrent ICH (HR:4.238, 95%CI:1.509–11.900) during a median follow-up of 20 months. Conclusions: cSS was independently associated with TFNEs at presentation and ICH recurrence at follow-up, while a higher burden of lobar CMBs with cognitive decline at baseline. These findings highlight the prognostic value of neuroimaging markers, which may influence clinical decision-making. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

22 pages, 1724 KiB  
Article
Sideritis scardica Extracts Demonstrate Neuroprotective Activity against Aβ25–35 Toxicity
by Antonis Ververis, Kristia Ioannou, Sotiris Kyriakou, Niki Violaki, Mihalis I. Panayiotidis, Michael Plioukas and Kyproula Christodoulou
Plants 2023, 12(8), 1716; https://doi.org/10.3390/plants12081716 - 20 Apr 2023
Cited by 13 | Viewed by 4492
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative condition, primarily affecting seniors. Despite the significant time and money spent over the past few decades, no therapy has been developed yet. In recent years, the research has focused on ameliorating the cytotoxic amyloid beta [...] Read more.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative condition, primarily affecting seniors. Despite the significant time and money spent over the past few decades, no therapy has been developed yet. In recent years, the research has focused on ameliorating the cytotoxic amyloid beta (Aβ) peptide aggregates and the increased elevated oxidative stress, two interconnected main AD hallmarks. Medicinal plants constitute a large pool for identifying bioactive compounds or mixtures with a therapeutic effect. Sideritis scardica (SS) has been previously characterized as neuroprotective toward AD. We investigated this ability of SS by generating eight distinct solvent fractions, which were chemically characterized and assessed for their antioxidant and neuroprotective potential. The majority of the fractions were rich in phenolics and flavonoids, and all except one showed significant antioxidant activity. Additionally, four SS extracts partly rescued the viability in Aβ25–35-treated SH-SY5Y human neuroblastoma cells, with the initial aqueous extract being the most potent and demonstrating similar activity in retinoic-acid-differentiated cells as well. These extracts were rich in neuroprotective substances, such as apigenin, myricetin-3-galactoside, and ellagic acid. Our findings indicate that specific SS mixtures can benefit the pharmaceutical industry to develop herbal drugs and functional food products that may alleviate AD. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

16 pages, 1857 KiB  
Article
Angiotensin II Receptor Blockers Reduce Tau/Aß42 Ratio: A Cerebrospinal Fluid Biomarkers’ Case-Control Study
by Gemma García-Lluch, Carmen Peña-Bautista, Lucrecia Moreno Royo, Miguel Baquero, Antonio José Cañada-Martínez and Consuelo Cháfer-Pericás
Pharmaceutics 2023, 15(3), 924; https://doi.org/10.3390/pharmaceutics15030924 - 12 Mar 2023
Cited by 5 | Viewed by 2684
Abstract
(1) Background: The role of antihypertensives in Alzheimer’s Disease (AD) prevention is controversial. This case-control study aims to assess whether antihypertensive medication has a protective role by studying its association with amyloid and tau abnormal levels. Furthermore, it suggests a holistic view of [...] Read more.
(1) Background: The role of antihypertensives in Alzheimer’s Disease (AD) prevention is controversial. This case-control study aims to assess whether antihypertensive medication has a protective role by studying its association with amyloid and tau abnormal levels. Furthermore, it suggests a holistic view of the involved pathways between renin-angiotensin drugs and the tau/amyloidß42 ratio (tau/Aß42 ratio); (2) Methods: The medical records of the participant patients were reviewed, with a focus on prescribed antihypertensive drugs and clinical variables, such as arterial blood pressure. The Anatomical Therapeutic Chemical classification was used to classify each drug. The patients were divided into two groups: patients with AD diagnosis (cases) and cognitively healthy patients (control); (3) Results: Age and high systolic blood pressure are associated with a higher risk of developing AD. In addition, combinations of angiotensin II receptor blockers are associated with a 30% lower t-tau/Aß42 ratio than plain angiotensin-converting enzyme inhibitor consumption; (4) Conclusions: Angiotensin II receptor blockers may play a potential role in neuroprotection and AD prevention. Likewise, several mechanisms, such as the PI3K/Akt/GSK3ß or the ACE1/AngII/AT1R axis, may link cardiovascular pathologies and AD presence, making its modulation a pivotal point in AD prevention. The present work highlights the central pathways in which antihypertensives may affect the presence of pathological amyloid and tau hyperphosphorylation. Full article
Show Figures

Graphical abstract

26 pages, 4838 KiB  
Article
Characterization and Optimization of Culture Conditions for Aurantiochytrium sp. SC145 Isolated from Sand Cay (Son Ca) Island, Vietnam, and Antioxidative and Neuroprotective Activities of Its Polyunsaturated Fatty Acid Mixture
by Hoang Thi Minh Hien, Le Thi Thom, Nguyen Cam Ha, Luu Thi Tam, Ngo Thi Hoai Thu, Tru Van Nguyen, Vu Thi Loan, Nguyen Trong Dan and Dang Diem Hong
Mar. Drugs 2022, 20(12), 780; https://doi.org/10.3390/md20120780 - 14 Dec 2022
Cited by 9 | Viewed by 3334
Abstract
Aurantiochytrium is a heterotrophic marine microalga that has potential industrial applications. The main objectives of this study were to isolate an Aurantiochytrium strain from Sand Cay (Son Ca) Island, Vietnam, optimize its culture conditions, determine its nutritional composition, extract polyunsaturated fatty acids (PUFAs) [...] Read more.
Aurantiochytrium is a heterotrophic marine microalga that has potential industrial applications. The main objectives of this study were to isolate an Aurantiochytrium strain from Sand Cay (Son Ca) Island, Vietnam, optimize its culture conditions, determine its nutritional composition, extract polyunsaturated fatty acids (PUFAs) in the free (FFA) and the alkyl ester (FAAE) forms, and evaluate the antioxidation and neuroprotection properties of the PUFAs. Aurantiochytrium sp. SC145 can be grown stably under laboratory conditions. Its culture conditions were optimized for a dry cell weight (DCW) of 31.18 g/L, with total lipids comprising 25.29%, proteins 7.93%, carbohydrates 15.21%, and carotenoid at 143.67 µg/L of DCW. The FAAEs and FFAs extracted from Aurantiochytrium sp. SC145 were rich in omega 3–6–9 fatty acids (40.73% and 44.00% of total fatty acids, respectively). No acute or subchronic oral toxicity was determined in mice fed with the PUFAs in FFA or FAAE forms at different doses over 90 days. Furthermore, the PUFAs in the FFA or FAAE forms and their main constituents of EPA, DHA, and ALA showed antioxidant and AChE inhibitory properties and neuroprotective activities against damage caused by H2O2- and amyloid-ß protein fragment 25–35 (Aβ25-35)-induced C6 cells. These data suggest that PUFAs extracted from Aurantiochytrium sp. SC145 may be a potential therapeutic target for the treatment of neurodegenerative disorders. Full article
(This article belongs to the Special Issue Marine Thraustochytrids: Biology and Biotechnology)
Show Figures

Graphical abstract

6 pages, 1236 KiB  
Case Report
CNS Superficial Siderosis Mimicking a Motor Neuron Disease
by Sergio Castro-Gomez, Julius Binder, Arndt-Hendrik Schievelkamp and Michael Thomas Heneka
Brain Sci. 2022, 12(11), 1558; https://doi.org/10.3390/brainsci12111558 - 16 Nov 2022
Cited by 2 | Viewed by 2899
Abstract
Superficial siderosis of the central nervous system (SS-CNS) is a rare condition characterized by a hemosiderin accumulation along the subpial surfaces and arises from an intermittent chronic bleeding in the subarachnoid space usually as a result of a chronic subarachnoid hemorrhage by trauma, [...] Read more.
Superficial siderosis of the central nervous system (SS-CNS) is a rare condition characterized by a hemosiderin accumulation along the subpial surfaces and arises from an intermittent chronic bleeding in the subarachnoid space usually as a result of a chronic subarachnoid hemorrhage by trauma, vascular malformations, CNS tumors, or cerebral amyloid angiopathy (CAA). We present a 61-year-old male with a 12-year history of limb weakness, muscle wasting, cramps, clumsiness, progressive unsteady gait, and fine motor impairments. His medical history included the resection of a left parietal meningioma and a myxopapillary ependymoma near the conus terminalis (L3/4) at the age of 51 years. The clinical examination revealed a motor neuron syndrome with a clear bilateral wasting of the hand muscles, a diffuse atrophy of the shoulder and calf muscles, and a weakness of the arms, fingers, hips, and feet. Deep tendon reflexes were symmetrically briskly hyperactive. Standing and walking were only possible with a support. Magnetic resonance imaging of the entire neuroaxis showed progressive severe cerebral, brainstem, and spinal superficial siderosis in form of extensive hypointensities on T2-weighted gradient-echo images and susceptibility-weighted sequences. Despite a successful neurosurgical removal of the tumors and delaed medical treatment with an iron chelator for one year, we observed no clinical recovery or stability in our patient, making this case unique, and suggesting an irreversible neurodegenerative process. This case reinforces the need of including SS-CNS in the list of amyotrophic lateral sclerosis (ALS)-mimics and demonstrates the fundamental use of a complete neuraxial MRI investigation on evaluating possible ALS cases. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop