Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = (partial) epithelial-to-mesenchymal transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 50380 KiB  
Review
Changes in Epithelial Cell Polarity and Adhesion Guide Human Endometrial Receptivity: How In Vitro Systems Help to Untangle Mechanistic Details
by Irmgard Classen-Linke, Volker U. Buck, Anna K. Sternberg, Matthias Kohlen, Liubov Izmaylova and Rudolf E. Leube
Biomolecules 2025, 15(8), 1057; https://doi.org/10.3390/biom15081057 - 22 Jul 2025
Viewed by 350
Abstract
Tissue remodeling of human endometrium occurs during the menstrual cycle to prepare for embryo adhesion and invasion. The ovarian steroid hormones 17β-estradiol and progesterone control the menstrual cycle to achieve the receptive state during the “window of implantation” (WOI). Here, we focus on [...] Read more.
Tissue remodeling of human endometrium occurs during the menstrual cycle to prepare for embryo adhesion and invasion. The ovarian steroid hormones 17β-estradiol and progesterone control the menstrual cycle to achieve the receptive state during the “window of implantation” (WOI). Here, we focus on the human endometrial epithelium and its changes in polarity, adhesion, cytoskeletal organization and the underlying extracellular matrix enabling embryo implantation. The adhesion and invasion of the trophoblast via the apical plasma membrane of epithelial cells is a unique cell biological process, which is coupled to partial epithelial–mesenchymal transition (EMT). Given the fundamental species differences during implantation, we restrict the review mainly to the human situation and focus on cell culture systems to study the interaction between human trophoblast and endometrial cells. We summarize current knowledge based on the relatively scarce in vivo data and the steadily growing in vitro observations using various cell culture systems. Full article
Show Figures

Figure 1

51 pages, 1586 KiB  
Review
ECM Mechanics Control Jamming-to-Unjamming Transition of Cancer Cells
by Claudia Tanja Mierke
Cells 2025, 14(13), 943; https://doi.org/10.3390/cells14130943 - 20 Jun 2025
Viewed by 1076
Abstract
Cancer metastasis constitutes a multifactorial phenomenon that continues to confound therapeutic strategies. The biochemical signals governing motile phenotypes have been extensively characterized, but mechanobiological interactions have only recently been integrated into cancer cell motility models and remain less well elucidated. The identification of [...] Read more.
Cancer metastasis constitutes a multifactorial phenomenon that continues to confound therapeutic strategies. The biochemical signals governing motile phenotypes have been extensively characterized, but mechanobiological interactions have only recently been integrated into cancer cell motility models and remain less well elucidated. The identification of the biochemically and mechanically controlled epithelial–mesenchymal transition (EMT) of cancer cells, which occurs either completely or partially, has led to a major breakthrough and a universal phenomenon in cancers. In addition, a relatively new theory based on mechanobiological aspects called “jamming-to-unjamming transition” is being proposed to explain the transition of cancer cells to an invasive phenotype. The latter transition may help to better understand the different types of 3D migration and invasion of cancer cells. Similarly to EMT, the transition from jamming to unjamming seems to be controlled by molecular and physical factors, including cell mechanics and mechanical cues from the extracellular matrix (ECM) of the tumor microenvironment (TME). It is challenging to grasp the distinctions between the transition from jamming to unjamming and EMT, as they appear to be the same at first glance. However, upon closer examination, the two transitions are quite separate. Moreover, it is still unclear whether both transitions may act synergistically. This review highlights the most important breakthroughs in the transition from jamming to unjamming, with a focus on mechanobiology and extracellular environmental aspects, and it compares them with those of EMT. In addition, the impact of the TME, such as ECM scaffold and cancer-associated fibroblasts (CAFs) on the jamming-to-unjamming transition is discussed. Finally, the research frontiers and future directions in the field of mechanobiological research in cancer metastasis are outlined. Full article
(This article belongs to the Special Issue Role of Extracellular Matrix in Cancer and Disease)
Show Figures

Figure 1

14 pages, 1255 KiB  
Review
The Relationships Among Perineural Invasion, Tumor–Nerve Interaction and Immunosuppression in Cancer
by Jozsef Dudas, Rudolf Glueckert, Maria do Carmo Greier and Benedikt Gabriel Hofauer
Onco 2025, 5(2), 25; https://doi.org/10.3390/onco5020025 - 23 May 2025
Viewed by 1291
Abstract
Tumor cells and the tumor microenvironment (TME) produce factors, including neurotrophins, that induce axonogenesis and neurogenesis, and increase local nerve density. Proliferative growing cancer cell clusters and disseminated invasive tumor cells undergoing partial epithelial-to-mesenchymal transition (pEMT) can invade peripheral nerves. In the early [...] Read more.
Tumor cells and the tumor microenvironment (TME) produce factors, including neurotrophins, that induce axonogenesis and neurogenesis, and increase local nerve density. Proliferative growing cancer cell clusters and disseminated invasive tumor cells undergoing partial epithelial-to-mesenchymal transition (pEMT) can invade peripheral nerves. In the early stages of tumor–nerve interactions, Schwann cells (SCs) dedifferentiate, become activated and migrate to cancer cell nests; later, they induce pEMT in tumor cells and activate tumor cell migration along nerves. The SC–tumor–nerve interaction attracts myeloid-derived suppressor cells (MDSCs) and inflammatory monocytes, and the latter differentiate into macrophages. SCs and MDSCs are responsible for the activation of transforming growth factor-beta (TGF-beta) signaling. Intra-tumoral innervation is followed by perineural invasion (PNI), which has an unfavorable prognosis. What are the interventional options against PNI: local reduction in tumor nerves or inhibition of TGF-beta-related events, inhibition of downstream signaling of TGF-beta or immune activation, or intervention against immunosuppression? This systematic review is based on the Prisma 2009 search method and provides an overview of tumor–nerve interaction. Full article
Show Figures

Figure 1

17 pages, 11192 KiB  
Article
Mechanism of Tumor Budding in Patient-Derived Metachronous Oral Primary Squamous Cell Carcinoma Cell Lines
by Takayuki Omae, Yuji Omori, Yuna Makihara, Koji Yamanegi, Soutaro Hanawa, Kyohei Yoshikawa, Kazuma Noguchi and Hiromitsu Kishimoto
Int. J. Mol. Sci. 2025, 26(7), 3347; https://doi.org/10.3390/ijms26073347 - 3 Apr 2025
Viewed by 642
Abstract
Tumor budding (TB) occurs at the deepest site of tumor invasion and is a significant prognostic indicator of cervical metastasis in oral squamous cell carcinoma (OSCC). The mechanism of TB, however, remains unclear. This study investigated the roles of the tumor microenvironment and [...] Read more.
Tumor budding (TB) occurs at the deepest site of tumor invasion and is a significant prognostic indicator of cervical metastasis in oral squamous cell carcinoma (OSCC). The mechanism of TB, however, remains unclear. This study investigated the roles of the tumor microenvironment and partial epithelial–mesenchymal transition (p-EMT) in TB expression using molecular and cellular physiological analyses. We established oral metachronous carcinoma cell lines (gingival carcinoma: 020, tongue carcinoma with high TB expression: 020G) from two cancers with pathologically different TB in the same patient and subjected them to exome analysis to detect gene mutations related to carcinogenesis and malignancy. Differences in EMT expression induced by transforming growth factor-β (TGF-β) between 020 and 020G were analyzed by Western blotting and reverse transcription polymerase chain reaction, and TGF-β-induced changes in cell morphology, proliferation, migration, and invasive ability were also examined. TGF-β expression was observed in the deepest tumor invasion microenvironment. TGF-β also induced the expression of several p-EMT markers and increased the migration and invasive abilities of 020G compared with 020 cells. In conclusion, TGF-β in the deep-tumor microenvironment can induce p-EMT in tumor cells, expressed as TB. Full article
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
PDLIM3 Regulates Migration and Invasion of Head and Neck Squamous Cell Carcinoma via YAP–Mediated Epithelial–Mesenchymal Transition
by Fan Yang, Ying Zhou, You Zhang, Weideng Wei, Fei Huang, Dan Yang, Yixin Zhang, Ruiyang Zhang, Xiaoqiang Xia, Qianming Chen, Yuchen Jiang and Xiaodong Feng
Int. J. Mol. Sci. 2025, 26(7), 3147; https://doi.org/10.3390/ijms26073147 - 28 Mar 2025
Cited by 1 | Viewed by 594
Abstract
Despite significant progress in characterizing the omics landscape of head and neck squamous cell carcinoma (HNSCC), the development of precision therapies remains limited. One key factor contributing to this challenge is the marked molecular heterogeneity of HNSCC. Further investigation of molecular profiles within [...] Read more.
Despite significant progress in characterizing the omics landscape of head and neck squamous cell carcinoma (HNSCC), the development of precision therapies remains limited. One key factor contributing to this challenge is the marked molecular heterogeneity of HNSCC. Further investigation of molecular profiles within HNSCC may facilitate the improvement in more effective precision treatments. Here, we focus on the dysregulation of PDZ and LIM domain protein 3 (PDLIM3) in HNSCC. The expression levels of PDLIM3 were analyzed using public datasets to assess its potential role in tumor progression. We found that PDLIM3 was downregulated in pan–cancer and HNSCC. The prognostic significance of PDLIM3 was evaluated through tissue microarray, and the downregulation of PDLIM3 was correlated with poor HNSCC prognosis. Investigating the implications of PDLIM3 for tumor metastatic ability in vitro, we found that PDLIM3 suppressed the migration and invasion of HNSCC, accompanied by partially impeding the process of epithelial–mesenchymal transition (EMT). Furthermore, PDLIM3 inhibited the transcriptional activity of Yes–associated protein (YAP), suggesting that YAP may be involved in the PDLIM3–mediated suppression of HNSCC metastatic ability. Our findings identify a potential signaling axis wherein PDLIM3 regulates YAP–EMT, thereby influencing tumor metastatic ability, and suggest the potential role of PDLIM3 as a tumor suppressor and prognostic biomarker for HNSCC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 609 KiB  
Review
The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity
by Chun Yang, Rui Wang and Pierre Hardy
Cells 2025, 14(2), 132; https://doi.org/10.3390/cells14020132 - 17 Jan 2025
Viewed by 1552
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial–mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both [...] Read more.
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial–mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells’ biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

18 pages, 2615 KiB  
Article
The Vimentin-Targeting Drug ALD-R491 Partially Reverts the Epithelial-to-Mesenchymal Transition and Vimentin Interactome of Lung Cancer Cells
by Marieke Rosier, Anja Krstulović, Hyejeong Rosemary Kim, Nihardeep Kaur, Erhumuoghene Mary Enakireru, Deebie Symmes, Katalin Dobra, Ruihuan Chen, Caroline A. Evans and Annica K. B. Gad
Cancers 2025, 17(1), 81; https://doi.org/10.3390/cancers17010081 - 30 Dec 2024
Viewed by 1683
Abstract
Background: The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. Methods: To clarify this, we induced EMT in lung cancer cells with [...] Read more.
Background: The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. Methods: To clarify this, we induced EMT in lung cancer cells with TGF-β1, followed by treatment with the vimentin-targeting drug ALD-R491, live-cell imaging, and quantitative proteomics. Results: We identified 838 proteins in the intermediate filament fraction of cells. TGF-β1 treatment increased the proportion of vimentin in this fraction and the levels of 24 proteins. Variants of fibronectin showed the most pronounced increase (137-fold), followed by regulators of the cytoskeleton, cell motility, and division, such as the mRNA-splicing protein SON. TGF-β1 increased cell spreading and cell migration speed, and changed a positive correlation between cell migration speed and persistence to negative. ALD-R491 reversed these mesenchymal phenotypes to epithelial and the binding of RNA-binding proteins, including SON. Conclusions: These findings present many new interactors of intermediate filaments, describe how EMT and vimentin filament dynamics influence the intermediate filament interactome, and present ALD-R491 as a possible EMT-inhibitor. The observations support the hypothesis that the dynamic turnover of vimentin filaments and their interacting proteins govern mesenchymal cell migration, EMT, cell invasion, and cancer metastasis. Full article
(This article belongs to the Special Issue Extracellular Matrix Proteins in Cancer)
Show Figures

Figure 1

18 pages, 4974 KiB  
Article
MOMAST® Downregulates AQP3 Expression and Function in Human Colon Cells
by Ines Angelini, Mariangela Centrone, Giusy Rita Caponio, Annarita Di Mise, Andrea Gerbino, Marianna Ranieri, Giovanna Valenti and Grazia Tamma
Antioxidants 2025, 14(1), 26; https://doi.org/10.3390/antiox14010026 - 28 Dec 2024
Viewed by 1230
Abstract
The water channel AQP3 is an aquaglyceroporin expressed in villus epithelial cells, and it plays a role in water transport across human colonic surface cells. Beyond water, AQP3 can mediate glycerol and H2O2 transport. Abnormal expression and function of AQP3 [...] Read more.
The water channel AQP3 is an aquaglyceroporin expressed in villus epithelial cells, and it plays a role in water transport across human colonic surface cells. Beyond water, AQP3 can mediate glycerol and H2O2 transport. Abnormal expression and function of AQP3 have been found in various diseases often characterized by altered cell growth and proliferation. Here, the beneficial effects of MOMAST® have been evaluated. MOMAST® is an antioxidant-patented natural phenolic complex obtained from olive wastewater (OWW) of the Coratina cultivar. Treatment of human colon HCT8 cells with MOMAST® reduced cell viability. Confocal studies and Western Blotting analysis demonstrated that treatment with MOMAST® significantly decreased the staining and the expression of AQP3. Importantly, functional studies revealed that the reduction of AQP3 abundance correlates with a significant decrease in glycerol and H2O2 uptake. Indeed, the H2O2 transport was partially but significantly reduced in the presence of MOMAST® or DFP00173, a selective inhibitor of AQP3. In addition, the MOMAST®-induced AQP3 decrease was associated with reduced epithelial-mesenchymal transition (EMT)-related proteins such as vimentin and β-catenin. Together, these findings propose MOMAST® as a potential adjuvant in colon diseases associated with abnormal cell growth by targeting AQP3. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 8337 KiB  
Article
Partial Inhibition of Epithelial-to-Mesenchymal Transition (EMT) Phenotypes by Placenta-Derived DBMSCs in Human Breast Cancer Cell Lines, In Vitro
by Yasser Basmaeil, Abdullah Al Subayyil, Haya Bin Kulayb, Altaf A. Kondkar, Maha Alrodayyan and Tanvir Khatlani
Cells 2024, 13(24), 2131; https://doi.org/10.3390/cells13242131 - 23 Dec 2024
Viewed by 1158
Abstract
Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We [...] Read more.
Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We have previously reported the isolation and characterization of placenta-derived decidua basalis mesenchymal stem cells (DBMSCs), which demonstrated higher levels of pro-migratory and anti-apoptotic genes, indicating potential anti-cancer effects. In this study, we analyzed the anti-cancer effects of DBMSCs on human breast cancer cell lines MDA231 and MCF7, with MCF 10A used as control. We also investigated how these cancer cells lines affect the functional competence of DBMSCs. By co-culturing DBMSCs with cancer cells, we analyzed changes in functions of both cell types, as well as alterations in their genomic and proteomic profile. Our results showed that treatment with DBMSCs significantly reduced the functionality of MDA231 and MCF7 cells, while MCF 10A cells remained unaffected. DBMSC treatment decreased epithelial-to-mesenchymal transition (EMT)-related protein levels in MDA231 cells and modulated expression of other cancer-related genes in MDA231 and MCF7 cells. Although cancer cells reduced DBMSC proliferation, they increased their expression of anti-apoptotic genes. These findings suggest that DBMSCs can inhibit EMT-related proteins and reduce the invasive characteristics of MDA231 and MCF7 breast cancer cells, highlighting their potential as candidates for cell-based cancer therapies. Full article
Show Figures

Figure 1

32 pages, 9671 KiB  
Article
Ten Hypermethylated lncRNA Genes Are Specifically Involved in the Initiation, Progression, and Lymphatic and Peritoneal Metastasis of Epithelial Ovarian Cancer
by Eleonora A. Braga, Alexey M. Burdennyy, Leonid A. Uroshlev, Danila M. Zaichenko, Elena A. Filippova, Svetlana S. Lukina, Irina V. Pronina, Iana R. Astafeva, Marina V. Fridman, Tatiana P. Kazubskaya, Vitaly I. Loginov, Alexey A. Dmitriev, Aleksey A. Moskovtsev and Nikolay E. Kushlinskii
Int. J. Mol. Sci. 2024, 25(21), 11843; https://doi.org/10.3390/ijms252111843 - 4 Nov 2024
Cited by 1 | Viewed by 1714
Abstract
Abstract: Our work aimed to evaluate and differentiate the role of ten lncRNA genes (GAS5, HAND2-AS1, KCNK15-AS1, MAGI2-AS3, MEG3, SEMA3B-AS1, SNHG6, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in the development and progression of epithelial [...] Read more.
Abstract: Our work aimed to evaluate and differentiate the role of ten lncRNA genes (GAS5, HAND2-AS1, KCNK15-AS1, MAGI2-AS3, MEG3, SEMA3B-AS1, SNHG6, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in the development and progression of epithelial ovarian cancer (EOC). A representative set of clinical samples was used: 140 primary tumors from patients without and with metastases and 59 peritoneal metastases. Using MS-qPCR, we demonstrated an increase in methylation levels of all ten lncRNA genes in tumors compared to normal tissues (p < 0.001). Using RT-qPCR, we showed downregulation and an inverse relationship between methylation and expression levels for ten lncRNAs (rs < −0.5). We further identified lncRNA genes that were specifically hypermethylated in tumors from patients with metastases to lymph nodes (HAND2-AS1), peritoneum (KCNK15-AS1, MEG3, and SEMA3B-AS1), and greater omentum (MEG3, SEMA3B-AS1, and ZNF667-AS1). The same four lncRNA genes involved in peritoneal spread were associated with clinical stage and tumor extent (p < 0.001). Interestingly, we found a reversion from increase to decrease in the hypermethylation level of five metastasis-related lncRNA genes (MEG3, SEMA3B-AS1, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in 59 peritoneal metastases. This reversion may be associated with partial epithelial–mesenchymal transition (EMT) in metastatic cells, as indicated by a decrease in the level of the EMT marker, CDH1 mRNA (p < 0.01). Furthermore, novel mRNA targets and regulated miRNAs were predicted for a number of the studied lncRNAs using the NCBI GEO datasets and analyzed by RT-qPCR and transfection of SKOV3 and OVCAR3 cells. In addition, hypermethylation of SEMA3B-AS1, SSTR5-AS1, and ZNF667-AS1 genes was proposed as a marker for overall survival in patients with EOC. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

17 pages, 2450 KiB  
Article
TGF-β Signaling Loop in Pancreatic Ductal Adenocarcinoma Activates Fibroblasts and Increases Tumor Cell Aggressiveness
by Noemi di Miceli, Chiara Baioni, Linda Barbieri, Davide Danielli, Emiliano Sala, Lucia Salvioni, Stefania Garbujo, Miriam Colombo, Davide Prosperi, Metello Innocenti and Luisa Fiandra
Cancers 2024, 16(21), 3705; https://doi.org/10.3390/cancers16213705 - 1 Nov 2024
Cited by 2 | Viewed by 2264
Abstract
Background: The interaction between cancer cells and cancer-associated fibroblasts (CAFs) is a key determinant of the rapid progression, high invasiveness, and chemoresistance of aggressive desmoplastic cancers such as pancreatic ductal adenocarcinoma (PDAC). Tumor cells are known to reprogram fibroblasts into CAFs by secreting [...] Read more.
Background: The interaction between cancer cells and cancer-associated fibroblasts (CAFs) is a key determinant of the rapid progression, high invasiveness, and chemoresistance of aggressive desmoplastic cancers such as pancreatic ductal adenocarcinoma (PDAC). Tumor cells are known to reprogram fibroblasts into CAFs by secreting transforming growth factor beta (TGF-β), amongst other cytokines. In turn, CAFs produce soluble factors that promote tumor-cell invasiveness and chemoresistance, including TGF-β itself, which has a major role in myofibroblastic CAFs. Such a high level of complexity has hampered progress toward a clear view of the TGFβ signaling loop between stromal fibroblasts and PDAC cells. Methods: Here, we tackled this issue by using co-culture settings that allow paracrine signaling alone (transwell systems) or paracrine and contact-mediated signaling (3D spheroids). Results: We found that TGF-β is critically involved in the activation of normal human fibroblasts into alpha-smooth muscle actin (α-SMA)-positive CAFs. The TGF-β released by CAFs accounted for the enhanced proliferation and resistance to gemcitabine of PDAC cells. This was accompanied by a partial epithelial-to-mesenchymal transition in PDAC cells, with no increase in their migratory abilities. Nevertheless, 3D heterospheroids comprising PDAC cells and fibroblasts allowed monitoring the pro-invasive effects of CAFs on cancer cells, possibly due to combined paracrine and physical contact-mediated signals. Conclusions: We conclude that TGF-β is only one of the players that mediates the communication between PDAC cells and fibroblasts and controls the acquisition of aggressive phenotypes. Hence, these advanced in vitro models may be exploited to further investigate these events and to design innovative anti-PDAC therapies. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

18 pages, 5312 KiB  
Article
A Novel Strategy for Glioblastoma Treatment by Natural Bioactive Molecules Showed a Highly Effective Anti-Cancer Potential
by Alessandro Giammona, Mauro Commisso, Marcella Bonanomi, Sofia Remedia, Linda Avesani, Danilo Porro, Daniela Gaglio, Gloria Bertoli and Alessia Lo Dico
Nutrients 2024, 16(15), 2389; https://doi.org/10.3390/nu16152389 - 23 Jul 2024
Cited by 3 | Viewed by 2613
Abstract
Glioblastoma (GBM) is a severe form of brain tumor that has a high fatality rate. It grows aggressively and most of the time results in resistance to traditional treatments like chemo- and radiotherapy and surgery. Biodiversity, beyond representing a big resource for [...] Read more.
Glioblastoma (GBM) is a severe form of brain tumor that has a high fatality rate. It grows aggressively and most of the time results in resistance to traditional treatments like chemo- and radiotherapy and surgery. Biodiversity, beyond representing a big resource for human well-being, provides several natural compounds that have shown great potential as anticancer drugs. Many of them are being extensively researched and significantly slow GBM progression by reducing the proliferation rate, migration, and inflammation and also by modulating oxidative stress. Here, the use of some natural compounds, such as Allium lusitanicum, Succisa pratensis, and Dianthus superbus, was explored to tackle GBM; they showed their impact on cell number reduction, which was partially given by cell cycle quiescence. Furthermore, a reduced cell migration ability was reported, accomplished by morphological cytoskeleton changes, which even highlighted a mesenchymal–epithelial transition. Furthermore, metabolic studies showed an induced cell oxidative stress modulation and a massive metabolic rearrangement. Therefore, a new therapeutic option was suggested to overcome the limitations of conventional treatments and thereby improve patient outcomes. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health)
Show Figures

Figure 1

17 pages, 4525 KiB  
Article
Proteomic Changes Induced by the Immunosuppressant Everolimus in Human Podocytes
by Maurizio Bruschi, Simona Granata, Giovanni Candiano, Andrea Petretto, Martina Bartolucci, Xhuliana Kajana, Sonia Spinelli, Alberto Verlato, Michele Provenzano and Gianluigi Zaza
Int. J. Mol. Sci. 2024, 25(13), 7336; https://doi.org/10.3390/ijms25137336 - 4 Jul 2024
Viewed by 1437
Abstract
mTOR inhibitors (mTOR-Is) may induce proteinuria in kidney transplant recipients through podocyte damage. However, the mechanism has only been partially defined. Total cell lysates and supernatants of immortalized human podocytes treated with different doses of everolimus (EVE) (10, 100, 200, and 500 nM) [...] Read more.
mTOR inhibitors (mTOR-Is) may induce proteinuria in kidney transplant recipients through podocyte damage. However, the mechanism has only been partially defined. Total cell lysates and supernatants of immortalized human podocytes treated with different doses of everolimus (EVE) (10, 100, 200, and 500 nM) for 24 h were subjected to mass spectrometry-based proteomics. Support vector machine and partial least squares discriminant analysis were used for data analysis. The results were validated in urine samples from 28 kidney transplant recipients receiving EVE as part of their immunosuppressive therapy. We identified more than 7000 differentially expressed proteins involved in several pathways, including kinases, cell cycle regulation, epithelial–mesenchymal transition, and protein synthesis, according to gene ontology. Among these, after statistical analysis, 65 showed an expression level significantly and directly correlated with EVE dosage. Polo-Like Kinase 1 (PLK1) content was increased, whereas osteopontin (SPP1) content was reduced in podocytes and supernatants in a dose-dependent manner and significantly correlated with EVE dose (p < 0.0001, FDR < 5%). Similar results were obtained in the urine of kidney transplant patients. This study analyzed the impact of different doses of mTOR-Is on podocytes, helping to understand not only the biological basis of their therapeutic effects but also the possible mechanisms underlying proteinuria. Full article
(This article belongs to the Special Issue Novel Biomarkers and Therapeutic Strategies in Nephropathy)
Show Figures

Figure 1

17 pages, 4158 KiB  
Article
Identification of New Chemoresistance-Associated Genes in Triple-Negative Breast Cancer by Single-Cell Transcriptomic Analysis
by Spyros Foutadakis, Dimitrios Kordias, Giannis Vatsellas and Angeliki Magklara
Int. J. Mol. Sci. 2024, 25(13), 6853; https://doi.org/10.3390/ijms25136853 - 22 Jun 2024
Cited by 2 | Viewed by 3063
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive mammary neoplasia with a high fatality rate, mainly because of the development of resistance to administered chemotherapy, the standard treatment for this disease. In this study, we employ both bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) [...] Read more.
Triple-negative breast cancer (TNBC) is a particularly aggressive mammary neoplasia with a high fatality rate, mainly because of the development of resistance to administered chemotherapy, the standard treatment for this disease. In this study, we employ both bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) to investigate the transcriptional landscape of TNBC cells cultured in two-dimensional monolayers or three-dimensional spheroids, before and after developing resistance to the chemotherapeutic agents paclitaxel and doxorubicin. Our findings reveal significant transcriptional heterogeneity within the TNBC cell populations, with the scRNA-seq identifying rare subsets of cells that express resistance-associated genes not detected by the bulk RNA-seq. Furthermore, we observe a partial shift towards a highly mesenchymal phenotype in chemoresistant cells, suggesting the epithelial-to-mesenchymal transition (EMT) as a prevalent mechanism of resistance in subgroups of these cells. These insights highlight potential therapeutic targets, such as the PDGF signaling pathway mediating EMT, which could be exploited in this setting. Our study underscores the importance of single-cell approaches in understanding tumor heterogeneity and developing more effective, personalized treatment strategies to overcome chemoresistance in TNBC. Full article
Show Figures

Figure 1

19 pages, 2826 KiB  
Article
The Impact of Inadequate Exposure to Epidermal Growth Factor Receptor–Tyrosine Kinase Inhibitors on the Development of Resistance in Non-Small-Cell Lung Cancer Cells
by Daniela Frezzetti, Vincenza Caridi, Laura Marra, Rosa Camerlingo, Amelia D’Alessio, Francesco Russo, Serena Dotolo, Anna Maria Rachiglio, Riziero Esposito Abate, Marianna Gallo, Monica Rosaria Maiello, Alessandro Morabito, Nicola Normanno and Antonella De Luca
Int. J. Mol. Sci. 2024, 25(9), 4844; https://doi.org/10.3390/ijms25094844 - 29 Apr 2024
Cited by 2 | Viewed by 1677
Abstract
Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR–tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to [...] Read more.
Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR–tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial–mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-β1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance. Full article
Show Figures

Figure 1

Back to TopTop