ECM Mechanics Control Jamming-to-Unjamming Transition of Cancer Cells
Abstract
1. Introduction to Jamming-to-Unjamming Transition in Cancer
2. Cell- and Tissue-Intrinsic Factors Contribute to Jamming-to-Unjamming Transition
2.1. Cell Density
2.2. Cell and Nuclear Shape
2.3. Cell–Cell Adhesion
2.4. Cell Deformability and Energy
- Preferred shape (p0): Factors that cause an elevation in cortical tension will result in a reduction of p0 and thus lead to a jamming of the system. Contradictorily, factors that lead to enhanced cell–cell adhesion cause an elevation of p0 and abolish the system’s jamming.
- Propulsion: Even random and non-correlated self-propulsion can produce forces strong enough to overcome energy barriers and unjam the congested layer. When the layer cells unjam in this manner, this occurs when the cells achieve a characteristic shape index of q = 3.81.
- Persistence: Self-propulsion forces can be even more effective in unjamming the layer when they continue for an extended period of time [99].
2.5. Cell Compaction, Receptor Clustering, Mechanical Heterogeneity, and Rigidity Percolation
2.6. Magnitude of Cellular Forces and Persistence Time for These Forces
2.7. Viscoelasticity
3. Impact of the Tumor Microenvironment (TME) on the Jamming-to-Unjamming Transition
3.1. Matrix Stiffness and Physical Constraints Govern Jamming-to-Unjamming Transitions
3.2. Impact of Fibroblasts in the TME, Such as Cancer-Associated Fibroblasts (CAFs), on the Unjamming Transition
3.3. Temperature and Pressure Impact (Un)Jamming Transition Through the Control of Fluctuations
3.4. Control of Mechanosensitive Ion Channels and Transcription Factors in Unjamming Transitions
4. Mechanochemical Cell–ECM Interactions Link EMT and Unjamming States in 3D Invasion
4.1. Classical Role of EMT in Cancer Progression
Features | EMT | Jamming-to-Unjamming Transition |
---|---|---|
Molecular features: | ||
Alterations in gene expression | Downregulation of epithelial hallmarks like E-cadherin, claudins, and desmosomes, and upregulation of mesenchymal hallmarks like fibronectin, N-cadherin, and vimentin [246,259,260,261]. | Downregulation of epithelial hallmarks like E-cadherin, and increased expression of N-cadherin. Vimentin causes no unjamming [203]; therefore, it can be hypothesized that E-cadherin expression and its localization are necessary for compression-induced unjamming transitions. |
Regulation of transcription factors | A group of transcription factors, comprising two double zinc finger and homeodomain factors, such as ZEB1/2, the Snail family of zinc finger proteins (SNAI1/2/3), the family of bHLH factors (TWIST1/2, E12/E47), Krüppel-like factor 8 (KLF8), and Brachyury becomes active [262,263,264,265,266,267,268,269,270]. | Activation of activator protein 1 (AP-1) transcription factors like JUN, JUNB, and ATF3 in unjamming [271]. |
Signal transduction routes | Oncogenic Ras and NF-κB signal transduction routes [272]. Several cellular signaling routes, such as TGF-β, Wnt/β-catenin, and the Hedgehog and Notch signaling routes, can trigger EMT, which often depends on the surrounding environment [273,274,275,276,277,278]. | RAB5A triggers unjamming by promoting the internalization of the epidermal growth factor receptor (EGFR), leading to the hyperactivation of the extracellular signal–regulated kinase 1/2 (ERK1/2) and phosphorylation of the actin nucleator WAVE2 [17,271]. |
Reorganization of the cytoskeleton | Actin polymerization and intermediate filaments [279,280]. | Actin remodeling promotes jamming-to-unjamming transition [271]. |
Perturbation of chromatin remodeling complexes | SWI/SNF, ISWI, CHD, and INO80 [281]. | --- |
DNA methylome is subject to selective alterations in CpG methylation in specific genomic locations | Alterations in CpG methylation, such as E-cadherin promotor methylation and DNA methylation-linked silencing of miR-200 family members [282,283,284]. | --- |
Increased coordination number | --- | In the jamming phase, a hexagonal structure is preferable because it maximizes packing density and results in increased structural stiffness [18]. |
Non-affine deformations | It can be assumed that there is non-affine deformation [285]. | It seems to be applicable to cells [286]. |
Physical features: | ||
Alterations in cell shape and polarity | Elongated cells with front–rear polarity [287,288]. | Cell shape adaptions [41]. |
Attenuation of cell–cell adhesion/ disaggregation | Reduced cell–cell adhesion and individual cells [289]. | No breakdown of cell–cell adhesions, barrier function, and polarity, and no expression of mesenchymal markers [62]. |
Resistance of anoikis | Reduces anoikis [290,291]. | |
Enhanced migration and invasion | Elevated migration as individual cells or as a collection of cells [289]. | During the transition from jamming to unjamming, the cell layer migrates but keeps its complete epithelial nature [13,62]. |
Disordered state | Yes [292]. | Yes [40]. |
Stiff-to flow transition of cancer cells | Yes [293]. | In the jammed phase, each cell remains almost stationary, trapped by its immediate cell neighbors [294]. |
Discontinuity in coordination number | --- | In analogy to soft matter, it is hypothesized to be increased in the unjamming phase [295]. |
Susceptibilities (first-order transition) | No. | Yes [41]. |
Critical density | No. | Yes [41]. |
Stiffness of the environment | Induces EMT [296]. | Low ECM stiffness promotes the jamming-to-unjamming transition [36]. |
Compression | Facilitates of EMT [297]. | Induces jamming-to-unjamming transition [32]. |
Contractility | Triggers EMT [298]. | Promotes jamming-to-unjamming transition [294,299]. |
Viscoelasticity | ECM viscoelasticity controls TGFβ1-driven EMT [300]. | Drives jamming-to-unjamming transition [301]. |
4.2. Are EMT and Jamming-to-Unjamming Transitions the Same, Separate, or Interlinked Phenomena?
4.3. Is There a Linkage Between EMT and Unjamming Transition?
4.4. Can Metastatic Spread Occur Without EMT but with the Jamming-to-Unjamming Transition?
5. Discussion on the Importance of Jamming and Unjamming
6. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic force microscope |
ALI | Air–liquid interface |
AR | Aspect ratio |
CAFs | Cancer-associated fibroblasts |
DCM | Deformable cell model |
ECM | Extracellular matrix |
EMT | Epithelial to mesenchymal transition |
HBECs | Human bronchial epithelial cells |
MCT | Mode coupling theory |
MDCK | Madin–Darby canine kidney |
PCP | Planar cell polarity |
pEMT | Partial epithelial to mesenchymal transition |
pMLC | Phosphorylated myosin light chain |
SPP | Self-propelled particle |
SPV | Self-propelled Voronoi |
TME | Tumor microenvironment |
References
- Tabassum, D.P.; Polyak, K. Tumorigenesis: It Takes a Village. Nat. Rev. Cancer 2015, 15, 473–483. [Google Scholar] [CrossRef]
- Mierke, C.T. The Matrix Environmental and Cell Mechanical Properties Regulate Cell Migration and Contribute to the Invasive Phenotype of Cancer Cells. Rep. Prog. Phys. 2019, 82, 064602. [Google Scholar] [CrossRef]
- Mierke, C.T. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024, 13, 96. [Google Scholar] [CrossRef]
- Schulz, M.; Salamero-Boix, A.; Niesel, K.; Alekseeva, T.; Sevenich, L. Microenvironmental Regulation of Tumor Progression and Therapeutic Response in Brain Metastasis. Front. Immunol. 2019, 10, 1713. [Google Scholar] [CrossRef] [PubMed]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor Microenvironment Complexity and Therapeutic Implications at a Glance. Cell Commun. Signal. 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173, 321–337.e10. [Google Scholar] [CrossRef] [PubMed]
- Egeblad, M.; Nakasone, E.S.; Werb, Z. Tumors as Organs: Complex Tissues That Interface with the Entire Organism. Dev. Cell 2010, 18, 884–901. [Google Scholar] [CrossRef]
- Yamada, K.M.; Sixt, M. Mechanisms of 3D Cell Migration. Nat. Rev. Mol. Cell Biol. 2019, 20, 738–752. [Google Scholar] [CrossRef]
- Cox, T.R. The Matrix in Cancer. Nat. Rev. Cancer 2021, 21, 217–238. [Google Scholar] [CrossRef]
- Merino-Casallo, F.; Gomez-Benito, M.J.; Martinez-Cantin, R.; Garcia-Aznar, J.M. A Mechanistic Protrusive-Based Model for 3D Cell Migration. Eur. J. Cell Biol. 2022, 101, 151255. [Google Scholar] [CrossRef]
- Merino-Casallo, F.; Gomez-Benito, M.J.; Hervas-Raluy, S.; Garcia-Aznar, J.M. Unravelling Cell Migration: Defining Movement from the Cell Surface. Cell Adhes. Migr. 2022, 16, 25–64. [Google Scholar] [CrossRef]
- Plou, J.; Juste-Lanas, Y.; Olivares, V.; Del Amo, C.; Borau, C.; García-Aznar, J.M. From Individual to Collective 3D Cancer Dissemination: Roles of Collagen Concentration and TGF-β. Sci. Rep. 2018, 8, 12723. [Google Scholar] [CrossRef]
- Park, J.-A.; Kim, J.H.; Bi, D.; Mitchel, J.A.; Qazvini, N.T.; Tantisira, K.; Park, C.Y.; McGill, M.; Kim, S.-H.; Gweon, B.; et al. Unjamming and Cell Shape in the Asthmatic Airway Epithelium. Nat. Mater. 2015, 14, 1040–1048. [Google Scholar] [CrossRef]
- Garcia, S.; Hannezo, E.; Elgeti, J.; Joanny, J.-F.; Silberzan, P.; Gov, N.S. Physics of Active Jamming during Collective Cellular Motion in a Monolayer. Proc. Natl. Acad. Sci. USA 2015, 112, 15314–15319. [Google Scholar] [CrossRef] [PubMed]
- Malinverno, C.; Corallino, S.; Giavazzi, F.; Bergert, M.; Li, Q.; Leoni, M.; Disanza, A.; Frittoli, E.; Oldani, A.; Martini, E.; et al. Endocytic Reawakening of Motility in Jammed Epithelia. Nat. Mater. 2017, 16, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Mongera, A.; Rowghanian, P.; Gustafson, H.J.; Shelton, E.; Kealhofer, D.A.; Carn, E.K.; Serwane, F.; Lucio, A.A.; Giammona, J.; Campàs, O. A Fluid-to-Solid Jamming Transition Underlies Vertebrate Body Axis Elongation. Nature 2018, 561, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Palamidessi, A.; Malinverno, C.; Frittoli, E.; Corallino, S.; Barbieri, E.; Sigismund, S.; Beznoussenko, G.V.; Martini, E.; Garre, M.; Ferrara, I.; et al. Unjamming Overcomes Kinetic and Proliferation Arrest in Terminally Differentiated Cells and Promotes Collective Motility of Carcinoma. Nat. Mater. 2019, 18, 1252–1263. [Google Scholar] [CrossRef]
- Park, J.-A.; Atia, L.; Mitchel, J.A.; Fredberg, J.J.; Butler, J.P. Collective Migration and Cell Jamming in Asthma, Cancer and Development. J. Cell Sci. 2016, 129, 3375–3383. [Google Scholar] [CrossRef]
- Munjal, A.; Philippe, J.-M.; Munro, E.; Lecuit, T. A Self-Organized Biomechanical Network Drives Shape Changes during Tissue Morphogenesis. Nature 2015, 524, 351–355. [Google Scholar] [CrossRef]
- Pattabiraman, D.R.; Bierie, B.; Kober, K.I.; Thiru, P.; Krall, J.A.; Zill, C.; Reinhardt, F.; Tam, W.L.; Weinberg, R.A. Activation of PKA Leads to Mesenchymal-to-Epithelial Transition and Loss of Tumor-Initiating Ability. Science 2016, 351, aad3680. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, X.; Yi, Y.; Wang, X.; Zhu, L.; Shen, Y.; Lin, D.; Wu, C. Tumor Initiation and Early Tumorigenesis: Molecular Mechanisms and Interventional Targets. Signal Transduct. Target. Ther. 2024, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Angelini, T.E.; Hannezo, E.; Trepat, X.; Marquez, M.; Fredberg, J.J.; Weitz, D.A. Glass-like Dynamics of Collective Cell Migration. Proc. Natl. Acad. Sci. USA 2011, 108, 4714–4719. [Google Scholar] [CrossRef] [PubMed]
- Garrahan, J.P. Dynamic Heterogeneity Comes to Life. Proc. Natl. Acad. Sci. USA 2011, 108, 4701–4702. [Google Scholar] [CrossRef]
- Atia, L.; Bi, D.; Sharma, Y.; Mitchel, J.A.; Gweon, B.; Koehler, S.A.; DeCamp, S.J.; Lan, B.; Kim, J.H.; Hirsch, R.; et al. Geometric Constraints during Epithelial Jamming. Nat. Phys. 2018, 14, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, K.; Nelson, C.M. Branching Morphogenesis. Development 2020, 147, dev184499. [Google Scholar] [CrossRef]
- Spurlin, J.W.; Siedlik, M.J.; Nerger, B.A.; Pang, M.-F.; Jayaraman, S.; Zhang, R.; Nelson, C.M. Mesenchymal Proteases and Tissue Fluidity Remodel the Extracellular Matrix during Airway Epithelial Branching in the Embryonic Avian Lung. Development 2019, 146, dev175257. [Google Scholar] [CrossRef]
- Ilina, O.; Gritsenko, P.G.; Syga, S.; Lippoldt, J.; La Porta, C.A.M.; Chepizhko, O.; Grosser, S.; Vullings, M.; Bakker, G.-J.; Starruß, J.; et al. Cell–Cell Adhesion and 3D Matrix Confinement Determine Jamming Transitions in Breast Cancer Invasion. Nat. Cell Biol. 2020, 22, 1103–1115. [Google Scholar] [CrossRef]
- Kim, J.H.; Pegoraro, A.F.; Das, A.; Koehler, S.A.; Ujwary, S.A.; Lan, B.; Mitchel, J.A.; Atia, L.; He, S.; Wang, K.; et al. Unjamming and Collective Migration in MCF10A Breast Cancer Cell Lines. Biochem. Biophys. Res. Commun. 2020, 521, 706–715. [Google Scholar] [CrossRef]
- Trepat, X.; Wasserman, M.R.; Angelini, T.E.; Millet, E.; Weitz, D.A.; Butler, J.P.; Fredberg, J.J. Physical Forces during Collective Cell Migration. Nat. Phys. 2009, 5, 426–430. [Google Scholar] [CrossRef]
- Coppersmith, S.N.; Liu, C.-H.; Majumdar, S.; Narayan, O.; Witten, T.A. Model for Force Fluctuations in Bead Packs. Phys. Rev. E 1996, 53, 4673–4685. [Google Scholar] [CrossRef]
- Nnetu, K.D.; Knorr, M.; Käs, J.; Zink, M. The Impact of Jamming on Boundaries of Collectively Moving Weak-Interacting Cells. New J. Phys. 2012, 14, 115012. [Google Scholar] [CrossRef]
- Cai, G.; Nguyen, A.; Bashirzadeh, Y.; Lin, S.-S.; Bi, D.; Liu, A.P. Compressive Stress Drives Adhesion-Dependent Unjamming Transitions in Breast Cancer Cell Migration. Front. Cell Dev. Biol. 2022, 10, 933042. [Google Scholar] [CrossRef]
- Kang, W.; Ferruzzi, J.; Spatarelu, C.-P.; Han, Y.L.; Sharma, Y.; Koehler, S.A.; Mitchel, J.A.; Khan, A.; Butler, J.P.; Roblyer, D.; et al. A Novel Jamming Phase Diagram Links Tumor Invasion to Non-Equilibrium Phase Separation. iScience 2021, 24, 103252. [Google Scholar] [CrossRef] [PubMed]
- Gottheil, P.; Lippoldt, J.; Grosser, S.; Renner, F.; Saibah, M.; Tschodu, D.; Poßögel, A.-K.; Wegscheider, A.-S.; Ulm, B.; Friedrichs, K.; et al. State of Cell Unjamming Correlates with Distant Metastasis in Cancer Patients. Phys. Rev. X 2023, 13, 031003. [Google Scholar] [CrossRef]
- Van Der Net, A.; Rahman, Z.; Bordoloi, A.D.; Muntz, I.; Ten Dijke, P.; Boukany, P.E.; Koenderink, G.H. EMT-Dependent Cell-Matrix Interactions Are Linked to Unjamming Transitions in Cancer Spheroid Invasion. bioRxiv 2024. [Google Scholar] [CrossRef]
- Beunk, L.; Wen, N.; Van Helvert, S.; Bekker, B.; Ran, L.; Kang, R.; Paulat, T.; Syga, S.; Deutsch, A.; Friedl, P.; et al. Cell Jamming in a Collagen-Based Interface Assay Is Tuned by Collagen Density and Proteolysis. J. Cell Sci. 2023, 136, jcs260207. [Google Scholar] [CrossRef]
- Wang, W.; Law, R.A.; Perez Ipiña, E.; Konstantopoulos, K.; Camley, B.A. Confinement, Jamming, and Adhesion in Cancer Cells Dissociating from a Collectively Invading Strand. PRX Life 2025, 3, 013012. [Google Scholar] [CrossRef]
- Sadati, M.; Taheri Qazvini, N.; Krishnan, R.; Park, C.Y.; Fredberg, J.J. Collective Migration and Cell Jamming. Differentiation 2013, 86, 121–125. [Google Scholar] [CrossRef]
- Nnetu, K.D.; Knorr, M.; Pawlizak, S.; Fuhs, T.; Käs, J.A. Slow and Anomalous Dynamics of an MCF-10A Epithelial Cell Monolayer. Soft Matter 2013, 9, 9335. [Google Scholar] [CrossRef]
- Bi, D.; Lopez, J.H.; Schwarz, J.M.; Manning, M.L. A Density-Independent Rigidity Transition in Biological Tissues. Nat. Phys. 2015, 11, 1074–1079. [Google Scholar] [CrossRef]
- Bi, D.; Yang, X.; Marchetti, M.C.; Manning, M.L. Motility-Driven Glass and Jamming Transitions in Biological Tissues. Phys. Rev. X 2016, 6, 021011. [Google Scholar] [CrossRef] [PubMed]
- Serra-Picamal, X.; Conte, V.; Vincent, R.; Anon, E.; Tambe, D.T.; Bazellieres, E.; Butler, J.P.; Fredberg, J.J.; Trepat, X. Mechanical Waves during Tissue Expansion. Nat. Phys. 2012, 8, 628–634. [Google Scholar] [CrossRef]
- Haeger, A.; Krause, M.; Wolf, K.; Friedl, P. Cell Jamming: Collective Invasion of Mesenchymal Tumor Cells Imposed by Tissue Confinement. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2386–2395. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.R.; Durrans, A.; Lee, S.; Sheng, J.; Li, F.; Wong, S.T.C.; Choi, H.; El Rayes, T.; Ryu, S.; Troeger, J.; et al. Epithelial-to-Mesenchymal Transition Is Not Required for Lung Metastasis but Contributes to Chemoresistance. Nature 2015, 527, 472–476. [Google Scholar] [CrossRef]
- Bazellières, E.; Aksenova, V.; Barthélémy-Requin, M.; Massey-Harroche, D.; Le Bivic, A. Role of the Crumbs Proteins in Ciliogenesis, Cell Migration and Actin Organization. Semin. Cell Dev. Biol. 2018, 81, 13–20. [Google Scholar] [CrossRef]
- Das, D.; Chatti, V.; Emonet, T.; Holley, S.A. Patterned Disordered Cell Motion Ensures Vertebral Column Symmetry. Dev. Cell 2017, 42, 170–180.e5. [Google Scholar] [CrossRef]
- Madhikar, P.; Åström, J.; Baumeier, B.; Karttunen, M. Jamming and Force Distribution in Growing Epithelial Tissue. Phys. Rev. Res. 2021, 3, 023129. [Google Scholar] [CrossRef]
- Guo, M.; Pegoraro, A.F.; Mao, A.; Zhou, E.H.; Arany, P.R.; Han, Y.; Burnette, D.T.; Jensen, M.H.; Kasza, K.E.; Moore, J.R.; et al. Cell Volume Change through Water Efflux Impacts Cell Stiffness and Stem Cell Fate. Proc. Natl. Acad. Sci. USA 2017, 114, E8618–E8627. [Google Scholar] [CrossRef]
- Li, Y.; Tang, W.; Guo, M. The Cell as Matter: Connecting Molecular Biology to Cellular Functions. Matter 2021, 4, 1863–1891. [Google Scholar] [CrossRef]
- Staddon, M.F.; Modes, C.D. Curved-Edge Vertex Models and Increased Tissue Fluidity. Phys. Rev. Res. 2025, 7, 013218. [Google Scholar] [CrossRef]
- Haxton, T.K.; Schmiedeberg, M.; Liu, A.J. Universal Jamming Phase Diagram in the Hard-Sphere Limit. Phys. Rev. E 2011, 83, 031503. [Google Scholar] [CrossRef] [PubMed]
- Abate, A.R.; Durian, D.J. Topological Persistence and Dynamical Heterogeneities near Jamming. Phys. Rev. E 2007, 76, 021306. [Google Scholar] [CrossRef]
- Farhadifar, R.; Röper, J.-C.; Aigouy, B.; Eaton, S.; Jülicher, F. The Influence of Cell Mechanics, Cell-Cell Interactions, and Proliferation on Epithelial Packing. Curr. Biol. 2007, 17, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Prvan, M.; Burazin Mišura, A.; Gecse, Z.; Ožegović, J. A Vertex-Aligned Model for Packing 4-Hexagonal Clusters in a Regular Hexagonal Container. Symmetry 2020, 12, 700. [Google Scholar] [CrossRef]
- Gibson, M.C.; Patel, A.B.; Nagpal, R.; Perrimon, N. The Emergence of Geometric Order in Proliferating Metazoan Epithelia. Nature 2006, 442, 1038–1041. [Google Scholar] [CrossRef]
- Hertwig, O. Ueber den Werth der ersten Furchungszellen für die Organbildung des Embryo Experimentelle Studien am Frosch-und Tritonei: Hierzu Tafel XXXIX-XLIV. Arch. Mikrosk. Anat. 1893, 42, 662–807. [Google Scholar] [CrossRef]
- Wyatt, T.P.J.; Harris, A.R.; Lam, M.; Cheng, Q.; Bellis, J.; Dimitracopoulos, A.; Kabla, A.J.; Charras, G.T.; Baum, B. Emergence of Homeostatic Epithelial Packing and Stress Dissipation through Divisions Oriented along the Long Cell Axis. Proc. Natl. Acad. Sci. USA 2015, 112, 5726–5731. [Google Scholar] [CrossRef]
- Eisenhoffer, G.T.; Loftus, P.D.; Yoshigi, M.; Otsuna, H.; Chien, C.-B.; Morcos, P.A.; Rosenblatt, J. Crowding Induces Live Cell Extrusion to Maintain Homeostatic Cell Numbers in Epithelia. Nature 2012, 484, 546–549. [Google Scholar] [CrossRef]
- Yang, X.; Manning, M.L.; Marchetti, M.C. Aggregation and Segregation of Confined Active Particles. Soft Matter 2014, 10, 6477–6484. [Google Scholar] [CrossRef]
- Thompson, D.W. On Growth and Form; Cambridge University Press: Cambridge, UK, 1917. [Google Scholar]
- Hales, T.C. The Honeycomb Conjecture. Discrete Comput. Geom. 2001, 25, 1–22. [Google Scholar] [CrossRef]
- Mitchel, J.A.; Das, A.; O’Sullivan, M.J.; Stancil, I.T.; DeCamp, S.J.; Koehler, S.; Ocaña, O.H.; Butler, J.P.; Fredberg, J.J.; Nieto, M.A.; et al. In Primary Airway Epithelial Cells, the Unjamming Transition Is Distinct from the Epithelial-to-Mesenchymal Transition. Nat. Commun. 2020, 11, 5053. [Google Scholar] [CrossRef] [PubMed]
- Grosser, S.; Lippoldt, J.; Oswald, L.; Merkel, M.; Sussman, D.M.; Renner, F.; Gottheil, P.; Morawetz, E.W.; Fuhs, T.; Xie, X.; et al. Cell and Nucleus Shape as an Indicator of Tissue Fluidity in Carcinoma. Phys. Rev. X 2021, 11, 011033. [Google Scholar] [CrossRef]
- Denais, C.; Lammerding, J. Nuclear Mechanics in Cancer. In Cancer Biology and the Nuclear Envelope; Schirmer, E.C., de las Heras, J.I., Eds.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2014; Volume 773, pp. 435–470. ISBN 978-1-4899-8031-1. [Google Scholar]
- Fischer, T.; Hayn, A.; Mierke, C.T. Effect of Nuclear Stiffness on Cell Mechanics and Migration of Human Breast Cancer Cells. Front. Cell Dev. Biol. 2020, 8, 393. [Google Scholar] [CrossRef] [PubMed]
- Rianna, C.; Radmacher, M.; Kumar, S. Direct Evidence That Tumor Cells Soften When Navigating Confined Spaces. Mol. Biol. Cell 2020, 31, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Gensbittel, V.; Kräter, M.; Harlepp, S.; Busnelli, I.; Guck, J.; Goetz, J.G. Mechanical Adaptability of Tumor Cells in Metastasis. Dev. Cell 2021, 56, 164–179. [Google Scholar] [CrossRef]
- Roberts, A.B.; Zhang, J.; Raj Singh, V.; Nikolić, M.; Moeendarbary, E.; Kamm, R.D.; So, P.T.C.; Scarcelli, G. Tumor Cell Nuclei Soften during Transendothelial Migration. J. Biomech. 2021, 121, 110400. [Google Scholar] [CrossRef]
- Friedl, P.; Wolf, K.; Lammerding, J. Nuclear Mechanics during Cell Migration. Curr. Opin. Cell Biol. 2011, 23, 55–64. [Google Scholar] [CrossRef]
- Kim, K.; Schwarz, J.M.; Ben Amar, M. A Two-Dimensional Vertex Model for Curvy Cell–Cell Interfaces at the Subcellular Scale. J. R. Soc. Interface 2024, 21, 20240193. [Google Scholar] [CrossRef]
- Kim, S.; Amini, R.; Yen, S.-T.; Pospíšil, P.; Boutillon, A.; Deniz, I.A.; Campàs, O. A Nuclear Jamming Transition in Vertebrate Organogenesis. Nat. Mater. 2024, 23, 1592–1599. [Google Scholar] [CrossRef]
- Oswald, L.; Grosser, S.; Smith, D.M.; Käs, J.A. Jamming Transitions in Cancer. J. Phys. D Appl. Phys. 2017, 50, 483001. [Google Scholar] [CrossRef]
- Blauth, E.; Kubitschke, H.; Gottheil, P.; Grosser, S.; Käs, J.A. Jamming in Embryogenesis and Cancer Progression. Front. Phys. 2021, 9, 666709. [Google Scholar] [CrossRef]
- Berthier, L.; Flenner, E.; Szamel, G. How Active Forces Influence Nonequilibrium Glass Transitions. New J. Phys. 2017, 19, 125006. [Google Scholar] [CrossRef]
- Nandi, S.K.; Mandal, R.; Bhuyan, P.J.; Dasgupta, C.; Rao, M.; Gov, N.S. A Random First-Order Transition Theory for an Active Glass. Proc. Natl. Acad. Sci. USA 2018, 115, 7688–7693. [Google Scholar] [CrossRef]
- Saw, T.B.; Doostmohammadi, A.; Nier, V.; Kocgozlu, L.; Thampi, S.; Toyama, Y.; Marcq, P.; Lim, C.T.; Yeomans, J.M.; Ladoux, B. Topological Defects in Epithelia Govern Cell Death and Extrusion. Nature 2017, 544, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Lecuit, T. “Developmental Mechanics”: Cellular Patterns Controlled by Adhesion, Cortical Tension and Cell Division. HFSP J. 2008, 2, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Guillot, C.; Lecuit, T. Mechanics of Epithelial Tissue Homeostasis and Morphogenesis. Science 2013, 340, 1185–1189. [Google Scholar] [CrossRef]
- Weaire, D.; Hutzler, S. The Physics of Foams; Oxford University Press: Oxford, UK, 2000; ISBN 978-0-19-850551-8. [Google Scholar]
- Giavazzi, F.; Paoluzzi, M.; Macchi, M.; Bi, D.; Scita, G.; Manning, M.L.; Cerbino, R.; Marchetti, M.C. Flocking Transitions in Confluent Tissues. Soft Matter 2018, 14, 3471–3477. [Google Scholar] [CrossRef]
- Kim, S.; Pochitaloff, M.; Stooke-Vaughan, G.A.; Campàs, O. Embryonic Tissues as Active Foams. Nat. Phys. 2021, 17, 859–866. [Google Scholar] [CrossRef]
- Smeets, B.; Cuvelier, M.; Pešek, J.; Ramon, H. The Effect of Cortical Elasticity and Active Tension on Cell Adhesion Mechanics. Biophys. J. 2019, 116, 930–937. [Google Scholar] [CrossRef]
- Odenthal, T.; Smeets, B.; Van Liedekerke, P.; Tijskens, E.; Van Oosterwyck, H.; Ramon, H. Analysis of Initial Cell Spreading Using Mechanistic Contact Formulations for a Deformable Cell Model. PLoS Comput. Biol. 2013, 9, e1003267. [Google Scholar] [CrossRef]
- Guyot, Y.; Smeets, B.; Odenthal, T.; Subramani, R.; Luyten, F.P.; Ramon, H.; Papantoniou, I.; Geris, L. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors. PLoS Comput. Biol. 2016, 12, e1005108. [Google Scholar] [CrossRef]
- Sigismund, S.; Lanzetti, L.; Scita, G.; Di Fiore, P.P. Endocytosis in the Context-Dependent Regulation of Individual and Collective Cell Properties. Nat. Rev. Mol. Cell Biol. 2021, 22, 625–643. [Google Scholar] [CrossRef]
- Corallino, S.; Malabarba, M.G.; Zobel, M.; Di Fiore, P.P.; Scita, G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front. Oncol. 2015, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Frittoli, E.; Palamidessi, A.; Marighetti, P.; Confalonieri, S.; Bianchi, F.; Malinverno, C.; Mazzarol, G.; Viale, G.; Martin-Padura, I.; Garré, M.; et al. A RAB5/RAB4 Recycling Circuitry Induces a Proteolytic Invasive Program and Promotes Tumor Dissemination. J. Cell Biol. 2014, 206, 307–328. [Google Scholar] [CrossRef]
- Mendoza, P.; Díaz, J.; Silva, P.; Torres, V.A. Rab5 Activation as a Tumor Cell Migration Switch. Small GTPases 2014, 5, e28195. [Google Scholar] [CrossRef] [PubMed]
- Trepat, X.; Sahai, E. Mesoscale Physical Principles of Collective Cell Organization. Nat. Phys. 2018, 14, 671–682. [Google Scholar] [CrossRef]
- Charras, G.; Yap, A.S. Tensile Forces and Mechanotransduction at Cell–Cell Junctions. Curr. Biol. 2018, 28, R445–R457. [Google Scholar] [CrossRef]
- Kanchanawong, P.; Shtengel, G.; Pasapera, A.M.; Ramko, E.B.; Davidson, M.W.; Hess, H.F.; Waterman, C.M. Nanoscale Architecture of Integrin-Based Cell Adhesions. Nature 2010, 468, 580–584. [Google Scholar] [CrossRef]
- Lawson-Keister, E.; Manning, M.L. Jamming and Arrest of Cell Motion in Biological Tissues. Curr. Opin. Cell Biol. 2021, 72, 146–155. [Google Scholar] [CrossRef]
- Tse, J.M.; Cheng, G.; Tyrrell, J.A.; Wilcox-Adelman, S.A.; Boucher, Y.; Jain, R.K.; Munn, L.L. Mechanical Compression Drives Cancer Cells toward Invasive Phenotype. Proc. Natl. Acad. Sci. USA 2012, 109, 911–916. [Google Scholar] [CrossRef]
- Saraswathibhatla, A.; Notbohm, J. Tractions and Stress Fibers Control Cell Shape and Rearrangements in Collective Cell Migration. Phys. Rev. X 2020, 10, 011016. [Google Scholar] [CrossRef]
- Rens, E.G.; Merks, R.M.H. Cell Contractility Facilitates Alignment of Cells and Tissues to Static Uniaxial Stretch. Biophys. J. 2017, 112, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Vincent, R.; Bazellières, E.; Pérez-González, C.; Uroz, M.; Serra-Picamal, X.; Trepat, X. Active Tensile Modulus of an Epithelial Monolayer. Phys. Rev. Lett. 2015, 115, 248103. [Google Scholar] [CrossRef]
- Zimmermann, J.; Camley, B.A.; Rappel, W.-J.; Levine, H. Contact Inhibition of Locomotion Determines Cell–Cell and Cell–Substrate Forces in Tissues. Proc. Natl. Acad. Sci. USA 2016, 113, 2660–2665. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Hilgenfeldt, S. Cell Shapes and Patterns as Quantitative Indicators of Tissue Stress in the Plant Epidermis. Soft Matter 2015, 11, 7270–7275. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Sadhukhan, S.; Nandi, S.K.; Bi, D.; Sood, A.K.; Ganapathy, R. A Shape-Driven Reentrant Jamming Transition in Confluent Monolayers of Synthetic Cell-Mimics. Nat. Commun. 2024, 15, 5645. [Google Scholar] [CrossRef] [PubMed]
- Tambe, D.T.; Corey Hardin, C.; Angelini, T.E.; Rajendran, K.; Park, C.Y.; Serra-Picamal, X.; Zhou, E.H.; Zaman, M.H.; Butler, J.P.; Weitz, D.A.; et al. Collective Cell Guidance by Cooperative Intercellular Forces. Nat. Mater. 2011, 10, 469–475. [Google Scholar] [CrossRef]
- Notbohm, J.; Banerjee, S.; Utuje, K.J.C.; Gweon, B.; Jang, H.; Park, Y.; Shin, J.; Butler, J.P.; Fredberg, J.J.; Marchetti, M.C. Cellular Contraction and Polarization Drive Collective Cellular Motion. Biophys. J. 2016, 110, 2729–2738. [Google Scholar] [CrossRef]
- Wilk, G.; Iwasa, M.; Fuller, P.E.; Kandere-Grzybowska, K.; Grzybowski, B.A. Universal Area Distributions in the Monolayers of Confluent Mammalian Cells. Phys. Rev. Lett. 2014, 112, 138104. [Google Scholar] [CrossRef]
- Pawlizak, S.; Fritsch, A.W.; Grosser, S.; Ahrens, D.; Thalheim, T.; Riedel, S.; Kießling, T.R.; Oswald, L.; Zink, M.; Manning, M.L.; et al. Testing the Differential Adhesion Hypothesis across the Epithelial−mesenchymal Transition. New J. Phys. 2015, 17, 083049. [Google Scholar] [CrossRef]
- Henkes, S.; Fily, Y.; Marchetti, M.C. Active Jamming: Self-Propelled Soft Particles at High Density. Phys. Rev. E 2011, 84, 040301. [Google Scholar] [CrossRef]
- Pan, Z.-Q.; Shao, G.-C.; Liu, X.-M.; Chen, Q.; Dong, M.-Q.; Du, L.-L. Atg1 Kinase in Fission Yeast Is Activated by Atg11-Mediated Dimerization and Cis-Autophosphorylation. eLife 2020, 9, e58073. [Google Scholar] [CrossRef] [PubMed]
- Townes, P.L.; Holtfreter, J. Directed Movements and Selective Adhesion of Embryonic Amphibian Cells. J. Exp. Zool. 1955, 128, 53–120. [Google Scholar] [CrossRef]
- Steinberg, M.S. Does Differential Adhesion Govern Self-assembly Processes in Histogenesis? Equilibrium Configurations and the Emergence of a Hierarchy among Populations of Embryonic Cells. J. Exp. Zool. 1970, 173, 395–433. [Google Scholar] [CrossRef]
- Steinberg, M.S. Differential Adhesion in Morphogenesis: A Modern View. Curr. Opin. Genet. Dev. 2007, 17, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Sulsky, D.; Childress, S.; Percus, J.K. A Model of Cell Sorting. J. Theor. Biol. 1984, 106, 275–301. [Google Scholar] [CrossRef]
- Alt, S.; Ganguly, P.; Salbreux, G. Vertex Models: From Cell Mechanics to Tissue Morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20150520. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.G.; Osterfield, M.; Baker, R.E.; Shvartsman, S.Y. Vertex Models of Epithelial Morphogenesis. Biophys. J. 2014, 106, 2291–2304. [Google Scholar] [CrossRef]
- Briñas-Pascual, N.; Cornwall-Scoones, J.; O’Hanlon, D.P.; Guerrero, P.; Perez-Carrasco, R. No Country for Old Frameworks? Vertex Models and Their Ongoing Reinvention to Study Tissue Dynamics. Biophysica 2024, 4, 586–603. [Google Scholar] [CrossRef]
- Merkel, M.; Manning, M.L. A Geometrically Controlled Rigidity Transition in a Model for Confluent 3D Tissues. New J. Phys. 2018, 20, 022002. [Google Scholar] [CrossRef]
- Honda, H.; Ogita, Y.; Higuchi, S.; Kani, K. Cell Movements in a Living Mammalian Tissue: Long-term Observation of Individual Cells in Wounded Corneal Endothelia of Cats. J. Morphol. 1982, 174, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.D.; Wieschaus, E. Cell Intercalation during Drosophila Germband Extension and Its Regulation by Pair-Rule Segmentation Genes. Development 1994, 120, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.; Davidson, L.; Edlund, A.; Elul, T.; Ezin, M.; Shook, D.; Skoglund, P. Mechanisms of Convergence and Extension by Cell Intercalation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2000, 355, 897–922. [Google Scholar] [CrossRef]
- Walck-Shannon, E.; Hardin, J. Cell Intercalation from Top to Bottom. Nat. Rev. Mol. Cell Biol. 2014, 15, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Bertet, C.; Sulak, L.; Lecuit, T. Myosin-Dependent Junction Remodelling Controls Planar Cell Intercalation and Axis Elongation. Nature 2004, 429, 667–671. [Google Scholar] [CrossRef]
- Takeichi, M. Dynamic Contacts: Rearranging Adherens Junctions to Drive Epithelial Remodelling. Nat. Rev. Mol. Cell Biol. 2014, 15, 397–410. [Google Scholar] [CrossRef]
- Rauzi, M. Cell Intercalation in a Simple Epithelium. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190552. [Google Scholar] [CrossRef]
- Brodland, G.W. The Differential Interfacial Tension Hypothesis (DITH): A Comprehensive Theory for the Self-Rearrangement of Embryonic Cells and Tissues. J. Biomech. Eng. 2002, 124, 188–197. [Google Scholar] [CrossRef]
- Maître, J.-L.; Berthoumieux, H.; Krens, S.F.G.; Salbreux, G.; Jülicher, F.; Paluch, E.; Heisenberg, C.-P. Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells. Science 2012, 338, 253–256. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Dasgupta, C.; Nandi, S.K. Nature of the Activity-Mediated Unjamming Transition in Confluent Cell Monolayers. arXiv 2024. [Google Scholar] [CrossRef]
- Schötz, E.-M.; Lanio, M.; Talbot, J.A.; Manning, M.L. Glassy Dynamics in Three-Dimensional Embryonic Tissues. J. R. Soc. Interface 2013, 10, 20130726. [Google Scholar] [CrossRef] [PubMed]
- Bazellières, E.; Conte, V.; Elosegui-Artola, A.; Serra-Picamal, X.; Bintanel-Morcillo, M.; Roca-Cusachs, P.; Muñoz, J.J.; Sales-Pardo, M.; Guimerà, R.; Trepat, X. Control of Cell–Cell Forces and Collective Cell Dynamics by the Intercellular Adhesome. Nat. Cell Biol. 2015, 17, 409–420. [Google Scholar] [CrossRef]
- Trepat, X.; Fredberg, J.J. Plithotaxis and Emergent Dynamics in Collective Cellular Migration. Trends Cell Biol. 2011, 21, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Serra-Picamal, X.; Tambe, D.T.; Zhou, E.H.; Park, C.Y.; Sadati, M.; Park, J.-A.; Krishnan, R.; Gweon, B.; Millet, E.; et al. Propulsion and Navigation within the Advancing Monolayer Sheet. Nat. Mater. 2013, 12, 856–863. [Google Scholar] [CrossRef]
- Petridou, N.I.; Corominas-Murtra, B.; Heisenberg, C.-P.; Hannezo, E. Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions. Cell 2021, 184, 1914–1928.e19. [Google Scholar] [CrossRef] [PubMed]
- Cates, M.E.; Wittmer, J.P.; Bouchaud, J.-P.; Claudin, P. Jamming, Force Chains, and Fragile Matter. Phys. Rev. Lett. 1998, 81, 1841–1844. [Google Scholar] [CrossRef]
- Keys, A.S.; Abate, A.R.; Glotzer, S.C.; Durian, D.J. Measurement of Growing Dynamical Length Scales and Prediction of the Jamming Transition in a Granular Material. Nat. Phys. 2007, 3, 260–264. [Google Scholar] [CrossRef]
- O’Hern, C.S.; Langer, S.A.; Liu, A.J.; Nagel, S.R. Force Distributions near Jamming and Glass Transitions. Phys. Rev. Lett. 2001, 86, 111–114. [Google Scholar] [CrossRef]
- Li, X.; Das, A.; Bi, D. Mechanical Heterogeneity in Tissues Promotes Rigidity and Controls Cellular Invasion. Phys. Rev. Lett. 2019, 123, 058101. [Google Scholar] [CrossRef]
- Trappe, V.; Prasad, V.; Cipelletti, L.; Segre, P.N.; Weitz, D.A. Jamming Phase Diagram for Attractive Particles. Nature 2001, 411, 772–775. [Google Scholar] [CrossRef]
- Ghosh, A.; Teomy, E.; Shokef, Y. Jamming Percolation in Three Dimensions. EPL 2014, 106, 16003. [Google Scholar] [CrossRef]
- Foty, R.A.; Steinberg, M.S. The Differential Adhesion Hypothesis: A Direct Evaluation. Dev. Biol. 2005, 278, 255–263. [Google Scholar] [CrossRef]
- Amack, J.D.; Manning, M.L. Knowing the Boundaries: Extending the Differential Adhesion Hypothesis in Embryonic Cell Sorting. Science 2012, 338, 212–215. [Google Scholar] [CrossRef]
- Heine, P.; Lippoldt, J.; Reddy, G.A.; Katira, P.; Käs, J.A. Anomalous Cell Sorting Behavior in Mixed Monolayers Discloses Hidden System Complexities. New J. Phys. 2021, 23, 043034. [Google Scholar] [CrossRef]
- Pajic-Lijakovic, I.; Milivojevic, M. Viscoelasticity and Cell Jamming State Transition. Eur. Phys. J. Plus 2021, 136, 750. [Google Scholar] [CrossRef]
- Pajic-Lijakovic, I.; Milivojevic, M. Mechanical Oscillations in 2D Collective Cell Migration: The Elastic Turbulence. Front. Phys. 2020, 8, 585681. [Google Scholar] [CrossRef]
- Viscoelasticity and Collective Cell Migration: An Interdisciplinary Perspective Across Levels of Organization; Pajic-Lijakovic, I., Barriga, E.H., EBSCOhost, Eds.; Academic Press: London, UK; San Diego, CA, USA, 2021; ISBN 978-0-12-820311-8. [Google Scholar]
- Mierke, C.T. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front. Cell Dev. Biol. 2022, 10, 789841. [Google Scholar] [CrossRef]
- Marmottant, P.; Mgharbel, A.; Kafer, J.; Audren, B.; Rieu, J.-P.; Vial, J.-C.; van der Sanden, B.; Maree, A.F.M.; Graner, F.; Delanoe-Ayari, H. The Role of Fluctuations and Stress on the Effective Viscosity of Cell Aggregates. Proc. Natl. Acad. Sci. USA 2009, 106, 17271–17275. [Google Scholar] [CrossRef] [PubMed]
- Mombach, J.C.M.; Robert, D.; Graner, F.; Gillet, G.; Thomas, G.L.; Idiart, M.; Rieu, J.-P. Rounding of Aggregates of Biological Cells: Experiments and Simulations. arXiv 2004. [Google Scholar] [CrossRef]
- Guevorkian, K.; Brochard-Wyart, F.; Gonzalez-Rodriguez, D. Flow Dynamics of 3D Multicellular Systems into Capillaries. In Viscoelasticity and Collective Cell Migration; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–223. ISBN 978-0-12-820310-1. [Google Scholar]
- Khalilgharibi, N.; Fouchard, J.; Asadipour, N.; Barrientos, R.; Duda, M.; Bonfanti, A.; Yonis, A.; Harris, A.; Mosaffa, P.; Fujita, Y.; et al. Stress Relaxation in Epithelial Monolayers Is Controlled by the Actomyosin Cortex. Nat. Phys. 2019, 15, 839–847. [Google Scholar] [CrossRef]
- Barriga, E.H.; Mayor, R. Adjustable Viscoelasticity Allows for Efficient Collective Cell Migration. Semin. Cell Dev. Biol. 2019, 93, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Tlili, S.; Gauquelin, E.; Li, B.; Cardoso, O.; Ladoux, B.; Delanoë-Ayari, H.; Graner, F. Collective Cell Migration without Proliferation: Density Determines Cell Velocity and Wave Velocity. R. Soc. Open Sci. 2018, 5, 172421. [Google Scholar] [CrossRef]
- Chen, T.; Saw, T.B.; Mège, R.-M.; Ladoux, B. Mechanical Forces in Cell Monolayers. J. Cell Sci. 2018, 131, jcs218156. [Google Scholar] [CrossRef]
- Clark, A.G.; Vignjevic, D.M. Modes of Cancer Cell Invasion and the Role of the Microenvironment. Curr. Opin. Cell Biol. 2015, 36, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Pajic-Lijakovic, I.; Milivojevic, M.; McClintock, P.V.E. Role of Viscoelasticity in the Appearance of Low-Reynolds Turbulence: Considerations for Modelling. J. Biol. Eng. 2024, 18, 24. [Google Scholar] [CrossRef]
- Pajic-Lijakovic, I.; Milivojevic, M.; Clark, A.G. Collective Cell Migration on Collagen-I Networks: The Impact of Matrix Viscoelasticity. Front. Cell Dev. Biol. 2022, 10, 901026. [Google Scholar] [CrossRef]
- Polacheck, W.J.; Kutys, M.L.; Yang, J.; Eyckmans, J.; Wu, Y.; Vasavada, H.; Hirschi, K.K.; Chen, C.S. A Non-Canonical Notch Complex Regulates Adherens Junctions and Vascular Barrier Function. Nature 2017, 552, 258–262. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, M.; Zhang, Y.; Su, Q.; Xie, Z.; Chen, X.; Yan, R.; Li, P.; Li, T.; Qin, X.; et al. Functions and Clinical Significance of Mechanical Tumor Microenvironment: Cancer Cell Sensing, Mechanobiology and Metastasis. Cancer Commun. 2022, 42, 374–400. [Google Scholar] [CrossRef] [PubMed]
- Cambria, E.; Coughlin, M.F.; Floryan, M.A.; Offeddu, G.S.; Shelton, S.E.; Kamm, R.D. Linking Cell Mechanical Memory and Cancer Metastasis. Nat. Rev. Cancer 2024, 24, 216–228. [Google Scholar] [CrossRef]
- Mierke, C.T. Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics. Front. Cell Dev. Biol. 2021, 9, 785138. [Google Scholar] [CrossRef]
- Salvatore, V.; Teti, G.; Focaroli, S.; Mazzotti, M.C.; Mazzotti, A.; Falconi, M. The Tumor Microenvironment Promotes Cancer Progression and Cell Migration. Oncotarget 2017, 8, 9608–9616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Goliwas, K.F.; Severino, P.E.; Hough, K.P.; Van Vessem, D.; Wang, H.; Tousif, S.; Koomullil, R.P.; Frost, A.R.; Ponnazhagan, S.; et al. Mechanical Strain Induces Phenotypic Changes in Breast Cancer Cells and Promotes Immunosuppression in the Tumor Microenvironment. Lab. Investig. 2020, 100, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Henke, E.; Nandigama, R.; Ergün, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front. Mol. Biosci. 2020, 6, 160. [Google Scholar] [CrossRef]
- Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The Extracellular Matrix Modulates the Hallmarks of Cancer. EMBO Rep. 2014, 15, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Saraswathibhatla, A.; Indana, D.; Chaudhuri, O. Cell–Extracellular Matrix Mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 2023, 24, 495–516. [Google Scholar] [CrossRef]
- Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The Role of Mechanical Forces in Tumor Growth and Therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, Q.; Ju, Y.; Song, G. Role of the Mechanical Microenvironment in Cancer Development and Progression. Cancer Biol. Med. 2020, 17, 282–292. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Cooper-White, J.; Janmey, P.A.; Mooney, D.J.; Shenoy, V.B. Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature 2020, 584, 535–546. [Google Scholar] [CrossRef]
- Chen, Y.; Ju, L.; Rushdi, M.; Ge, C.; Zhu, C. Receptor-Mediated Cell Mechanosensing. Mol. Biol. Cell 2017, 28, 3134–3155. [Google Scholar] [CrossRef]
- Guan, J.-L. Role of Focal Adhesion Kinase in Integrin Signaling. Int. J. Biochem. Cell Biol. 1997, 29, 1085–1096. [Google Scholar] [CrossRef]
- Mierke, C.T.; Fischer, T.; Puder, S.; Kunschmann, T.; Soetje, B.; Ziegler, W.H. Focal Adhesion Kinase Activity Is Required for Actomyosin Contractility-Based Invasion of Cells into Dense 3D Matrices. Sci. Rep. 2017, 7, 42780. [Google Scholar] [CrossRef]
- Paszek, M.J.; Zahir, N.; Johnson, K.R.; Lakins, J.N.; Rozenberg, G.I.; Gefen, A.; Reinhart-King, C.A.; Margulies, S.S.; Dembo, M.; Boettiger, D.; et al. Tensional Homeostasis and the Malignant Phenotype. Cancer Cell 2005, 8, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Yin, P.; Wei, J.; Ding, Q. The Role of Matrix Stiffness in Breast Cancer Progression: A Review. Front. Oncol. 2023, 13, 1284926. [Google Scholar] [CrossRef]
- Janmey, P.A.; Fletcher, D.A.; Reinhart-King, C.A. Stiffness Sensing by Cells. Physiol. Rev. 2020, 100, 695–724. [Google Scholar] [CrossRef]
- Afthinos, A.; Bera, K.; Chen, J.; Ozcelikkale, A.; Amitrano, A.; Choudhury, M.I.; Huang, R.; Pachidis, P.; Mistriotis, P.; Chen, Y.; et al. Migration and 3D Traction Force Measurements inside Compliant Microchannels. Nano Lett. 2022, 22, 7318–7327. [Google Scholar] [CrossRef]
- Cai, G.; Rodgers, N.C.; Liu, A.P. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton 2024, 82, 388–403. [Google Scholar] [CrossRef]
- Yang, B.; Wei, K.; Loebel, C.; Zhang, K.; Feng, Q.; Li, R.; Wong, S.H.D.; Xu, X.; Lau, C.; Chen, X.; et al. Enhanced Mechanosensing of Cells in Synthetic 3D Matrix with Controlled Biophysical Dynamics. Nat. Commun. 2021, 12, 3514. [Google Scholar] [CrossRef] [PubMed]
- Raghuraman, S.; Schubert, A.; Bröker, S.; Jurado, A.; Müller, A.; Brandt, M.; Vos, B.E.; Hofemeier, A.D.; Abbasi, F.; Stehling, M.; et al. Pressure Drives Rapid Burst-Like Coordinated Cellular Motion from 3D Cancer Aggregates. Adv. Sci. 2022, 9, 2104808. [Google Scholar] [CrossRef]
- Han, S.J.; Kwon, S.; Kim, K.S. Challenges of Applying Multicellular Tumor Spheroids in Preclinical Phase. Cancer Cell Int. 2021, 21, 152. [Google Scholar] [CrossRef]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef]
- Lu, X.-L.; Zhan, R.; Zhao, G.-M.; Qian, Z.-H.; Gong, C.-C.; Li, Y.-Q. Expression of CDK13 Was Associated with Prognosis and Expression of HIF-1α and Beclin1 in Breast Cancer Patients. J. Investig. Surg. 2022, 35, 442–447. [Google Scholar] [CrossRef]
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B. Extracellular Matrix Stiffness: Mechanisms in Tumor Progression and Therapeutic Potential in Cancer. Exp. Hematol. Oncol. 2025, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Mierke, C.T.; Frey, B.; Fellner, M.; Herrmann, M.; Fabry, B. Integrin A5β1 Facilitates Cancer Cell Invasion through Enhanced Contractile Forces. J. Cell Sci. 2011, 124, 369–383. [Google Scholar] [CrossRef]
- Dzobo, K.; Senthebane, D.A.; Dandara, C. The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers 2023, 15, 376. [Google Scholar] [CrossRef] [PubMed]
- Egeblad, M.; Rasch, M.G.; Weaver, V.M. Dynamic Interplay between the Collagen Scaffold and Tumor Evolution. Curr. Opin. Cell Biol. 2010, 22, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Deegan, D.B.; Zimmerman, C.; Skardal, A.; Atala, A.; Shupe, T.D. Stiffness of Hyaluronic Acid Gels Containing Liver Extracellular Matrix Supports Human Hepatocyte Function and Alters Cell Morphology. J. Mech. Behav. Biomed. Mater. 2016, 55, 87–103. [Google Scholar] [CrossRef]
- Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a005058. [Google Scholar] [CrossRef]
- Krause, M.; Wolf, K. Cancer Cell Migration in 3D Tissue: Negotiating Space by Proteolysis and Nuclear Deformability. Cell Adhes. Migr. 2015, 9, 357–366. [Google Scholar] [CrossRef]
- Paňková, K.; Rösel, D.; Novotný, M.; Brábek, J. The Molecular Mechanisms of Transition between Mesenchymal and Amoeboid Invasiveness in Tumor Cells. Cell. Mol. Life Sci. 2010, 67, 63–71. [Google Scholar] [CrossRef]
- Khoo, A.S.; Valentin, T.M.; Leggett, S.E.; Bhaskar, D.; Bye, E.M.; Benmelech, S.; Ip, B.C.; Wong, I.Y. Breast Cancer Cells Transition from Mesenchymal to Amoeboid Migration in Tunable Three-Dimensional Silk–Collagen Hydrogels. ACS Biomater. Sci. Eng. 2019, 5, 4341–4354. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Kiepas, A.; Godet, I.; Li, Y.; Mehta, P.; Ifemembi, B.; Paul, C.D.; Sen, A.; Serra, S.A.; Stoletov, K.; et al. Extracellular Fluid Viscosity Enhances Cell Migration and Cancer Dissemination. Nature 2022, 611, 365–373. [Google Scholar] [CrossRef]
- Schultz, K.M.; Kyburz, K.A.; Anseth, K.S. Measuring Dynamic Cell–Material Interactions and Remodeling during 3D Human Mesenchymal Stem Cell Migration in Hydrogels. Proc. Natl. Acad. Sci. USA 2015, 112, E3757–E3764. [Google Scholar] [CrossRef] [PubMed]
- Ban, E.; Franklin, J.M.; Nam, S.; Smith, L.R.; Wang, H.; Wells, R.G.; Chaudhuri, O.; Liphardt, J.T.; Shenoy, V.B. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophys. J. 2018, 114, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Malandrino, A.; Trepat, X.; Kamm, R.D.; Mak, M. Dynamic Filopodial Forces Induce Accumulation, Damage, and Plastic Remodeling of 3D Extracellular Matrices. PLoS Comput. Biol. 2019, 15, e1006684. [Google Scholar] [CrossRef]
- Mierke, C.T. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front. Cell Dev. Biol. 2020, 8, 583226. [Google Scholar] [CrossRef]
- Mierke, C.T. Bidirectional Mechanical Response Between Cells and Their Microenvironment. Front. Phys. 2021, 9, 749830. [Google Scholar] [CrossRef]
- Mierke, C.T. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024, 14, 184. [Google Scholar] [CrossRef]
- Sutherland, T.E.; Dyer, D.P.; Allen, J.E. The Extracellular Matrix and the Immune System: A Mutually Dependent Relationship. Science 2023, 379, eabp8964. [Google Scholar] [CrossRef]
- Lee, H.; Alisafaei, F.; Adebawale, K.; Chang, J.; Shenoy, V.B.; Chaudhuri, O. The Nuclear Piston Activates Mechanosensitive Ion Channels to Generate Cell Migration Paths in Confining Microenvironments. Sci. Adv. 2021, 7, eabd4058. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, M.; Cheng, M.; Gao, Z.; Wang, G. The Viscoelastic Behaviors of Several Kinds of Cancer Cells and Normal Cells. J. Mech. Behav. Biomed. Mater. 2019, 91, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Nematbakhsh, Y.; Pang, K.T.; Lim, C.T. Correlating the Viscoelasticity of Breast Cancer Cells with Their Malignancy. Converg. Sci. Phys. Oncol. 2017, 3, 034003. [Google Scholar] [CrossRef]
- Boot, R.C.; Koenderink, G.H.; Boukany, P.E. Spheroid Mechanics and Implications for Cell Invasion. Adv. Phys. X 2021, 6, 1978316. [Google Scholar] [CrossRef]
- Curvello, R.; Kast, V.; Ordóñez-Morán, P.; Mata, A.; Loessner, D. Biomaterial-Based Platforms for Tumour Tissue Engineering. Nat. Rev. Mater. 2023, 8, 314–330. [Google Scholar] [CrossRef]
- Guimarães, C.F.; Gasperini, L.; Marques, A.P.; Reis, R.L. The Stiffness of Living Tissues and Its Implications for Tissue Engineering. Nat. Rev. Mater. 2020, 5, 351–370. [Google Scholar] [CrossRef]
- Ligorio, C.; Mata, A. Synthetic Extracellular Matrices with Function-Encoding Peptides. Nat. Rev. Bioeng. 2023, 1, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Mendonsa, A.M.; Na, T.-Y.; Gumbiner, B.M. E-Cadherin in Contact Inhibition and Cancer. Oncogene 2018, 37, 4769–4780. [Google Scholar] [CrossRef]
- Dykxhoorn, D.M.; Wu, Y.; Xie, H.; Yu, F.; Lal, A.; Petrocca, F.; Martinvalet, D.; Song, E.; Lim, B.; Lieberman, J. miR-200 Enhances Mouse Breast Cancer Cell Colonization to Form Distant Metastases. PLoS ONE 2009, 4, e7181. [Google Scholar] [CrossRef]
- Kalluri, R. The Biology and Function of Fibroblasts in Cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef]
- Yang, D.; Liu, J.; Qian, H.; Zhuang, Q. Cancer-Associated Fibroblasts: From Basic Science to Anticancer Therapy. Exp. Mol. Med. 2023, 55, 1322–1332. [Google Scholar] [CrossRef]
- Yoshida, G.J. Regulation of Heterogeneous Cancer-Associated Fibroblasts: The Molecular Pathology of Activated Signaling Pathways. J. Exp. Clin. Cancer Res. 2020, 39, 112. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; McAndrews, K.M.; Kalluri, R. Clinical and Therapeutic Relevance of Cancer-Associated Fibroblasts. Nat. Rev. Clin. Oncol. 2021, 18, 792–804. [Google Scholar] [CrossRef] [PubMed]
- Takai, K.; Le, A.; Weaver, V.M.; Werb, Z. Targeting the Cancer-Associated Fibroblasts as a Treatment in Triple-Negative Breast Cancer. Oncotarget 2016, 7, 82889–82901. [Google Scholar] [CrossRef]
- Acerbi, I.; Cassereau, L.; Dean, I.; Shi, Q.; Au, A.; Park, C.; Chen, Y.Y.; Liphardt, J.; Hwang, E.S.; Weaver, V.M. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration. Integr. Biol. 2015, 7, 1120–1134. [Google Scholar] [CrossRef] [PubMed]
- Barbazan, J.; Pérez-González, C.; Gómez-González, M.; Dedenon, M.; Richon, S.; Latorre, E.; Serra, M.; Mariani, P.; Descroix, S.; Sens, P.; et al. Cancer-Associated Fibroblasts Actively Compress Cancer Cells and Modulate Mechanotransduction. Nat. Commun. 2023, 14, 6966. [Google Scholar] [CrossRef]
- Lau, R.; Yu, L.; Roumeliotis, T.I.; Stewart, A.; Pickard, L.; Choudhary, J.S.; Banerji, U. Secretome of Cancer-Associated Fibroblasts (CAFs) Influences Drug Sensitivity in Cancer Cells. J. Proteome Res. 2024, 23, 2160–2168. [Google Scholar] [CrossRef]
- Mierke, C.T. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024, 13, 1638. [Google Scholar] [CrossRef]
- Maharjan, S.; Ma, C.; Singh, B.; Kang, H.; Orive, G.; Yao, J.; Shrike Zhang, Y. Advanced 3D Imaging and Organoid Bioprinting for Biomedical Research and Therapeutic Applications. Adv. Drug Deliv. Rev. 2024, 208, 115237. [Google Scholar] [CrossRef]
- Liu, A.J.; Nagel, S.R. Jamming Is Not Just Cool Any More. Nature 1998, 396, 21–22. [Google Scholar] [CrossRef]
- Fabry, B.; Maksym, G.N.; Butler, J.P.; Glogauer, M.; Navajas, D.; Fredberg, J.J. Scaling the Microrheology of Living Cells. Phys. Rev. Lett. 2001, 87, 148102. [Google Scholar] [CrossRef]
- Hakim, V.; Silberzan, P. Collective Cell Migration: A Physics Perspective. Rep. Prog. Phys. 2017, 80, 076601. [Google Scholar] [CrossRef]
- Angell, C.A. Formation of Glasses from Liquids and Biopolymers. Science 1995, 267, 1924–1935. [Google Scholar] [CrossRef]
- Berthier, L.; Flenner, E.; Szamel, G. Glassy Dynamics in Dense Systems of Active Particles. J. Chem. Phys. 2019, 150, 200901. [Google Scholar] [CrossRef]
- Guo, M.; Ehrlicher, A.J.; Jensen, M.H.; Renz, M.; Moore, J.R.; Goldman, R.D.; Lippincott-Schwartz, J.; Mackintosh, F.C.; Weitz, D.A. Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy. Cell 2014, 158, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, S.; Stillinger, F.H.; Torquato, S. Existence of Isostatic, Maximally Random Jammed Monodisperse Hard-Disk Packings. Proc. Natl. Acad. Sci. USA 2014, 111, 18436–18441. [Google Scholar] [CrossRef] [PubMed]
- Parisi, G.; Zamponi, F. Mean-Field Theory of Hard Sphere Glasses and Jamming. Rev. Mod. Phys. 2010, 82, 789–845. [Google Scholar] [CrossRef]
- Gjorevski, N.; Piotrowski, A.S.; Varner, V.D.; Nelson, C.M. Dynamic Tensile Forces Drive Collective Cell Migration through Three-Dimensional Extracellular Matrices. Sci. Rep. 2015, 5, 11458. [Google Scholar] [CrossRef]
- Heureaux-Torres, J.; Luker, K.E.; Haley, H.; Pirone, M.; Lee, L.M.; Herrera, Y.; Luker, G.D.; Liu, A.P. The Effect of Mechanosensitive Channel MscL Expression in Cancer Cells on 3D Confined Migration. APL Bioeng. 2018, 2, 032001. [Google Scholar] [CrossRef]
- Varadarajan, S.; Chumki, S.A.; Stephenson, R.E.; Misterovich, E.R.; Wu, J.L.; Dudley, C.E.; Erofeev, I.S.; Goryachev, A.B.; Miller, A.L. Mechanosensitive Calcium Flashes Promote Sustained RhoA Activation during Tight Junction Remodeling. J. Cell Biol. 2022, 221, e202105107. [Google Scholar] [CrossRef]
- Gudipaty, S.A.; Lindblom, J.; Loftus, P.D.; Redd, M.J.; Edes, K.; Davey, C.F.; Krishnegowda, V.; Rosenblatt, J. Mechanical Stretch Triggers Rapid Epithelial Cell Division through Piezo1. Nature 2017, 543, 118–121. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, X.; Liu, S.; Zhao, H.; Li, B.; Zhao, H.; Feng, X. Piezo1 Regulates Migration and Invasion of Breast Cancer Cells via Modulating Cell Mechanobiological Properties. Acta Biochim. Biophys. Sin. 2020, 53, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Rezania, S.; Kammerer, S.; Sokolowski, A.; Devaney, T.; Gorischek, A.; Jahn, S.; Hackl, H.; Groschner, K.; Windpassinger, C.; et al. Piezo1 Forms Mechanosensitive Ion Channels in the Human MCF-7 Breast Cancer Cell Line. Sci. Rep. 2015, 5, 8364. [Google Scholar] [CrossRef]
- Holt, J.R.; Zeng, W.-Z.; Evans, E.L.; Woo, S.-H.; Ma, S.; Abuwarda, H.; Loud, M.; Patapoutian, A.; Pathak, M.M. Spatiotemporal Dynamics of PIEZO1 Localization Controls Keratinocyte Migration during Wound Healing. eLife 2021, 10, e65415. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.E.; Dubin, A.E.; Patapoutian, A. Piezos Thrive under Pressure: Mechanically Activated Ion Channels in Health and Disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 771–783. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Wang, M.; Wang, Y.; Qian, J.; Xing, X.; Wang, Z.; You, Y.; Guo, K.; Chen, J.; et al. Activation of Piezo1 Contributes to Matrix Stiffness-induced Angiogenesis in Hepatocellular Carcinoma. Cancer Commun. 2022, 42, 1162–1184. [Google Scholar] [CrossRef] [PubMed]
- Dombroski, J.A.; Hope, J.M.; Sarna, N.S.; King, M.R. Channeling the Force: Piezo1 Mechanotransduction in Cancer Metastasis. Cells 2021, 10, 2815. [Google Scholar] [CrossRef]
- Srivastava, N.; Traynor, D.; Piel, M.; Kabla, A.J.; Kay, R.R. Pressure Sensing through Piezo Channels Controls Whether Cells Migrate with Blebs or Pseudopods. Proc. Natl. Acad. Sci. USA 2020, 117, 2506–2512. [Google Scholar] [CrossRef]
- Luo, M.; Cai, G.; Ho, K.K.Y.; Wen, K.; Tong, Z.; Deng, L.; Liu, A.P. Compression Enhances Invasive Phenotype and Matrix Degradation of Breast Cancer Cells via Piezo1 Activation. BMC Mol. Cell Biol. 2022, 23, 1. [Google Scholar] [CrossRef]
- Grannemann, C.; Pabst, A.; Honert, A.; Schieren, J.; Martin, C.; Hank, S.; Böll, S.; Bläsius, K.; Düsterhöft, S.; Jahr, H.; et al. Mechanical Activation of Lung Epithelial Cells through the Ion Channel Piezo1 Activates the Metalloproteinases ADAM10 and ADAM17 and Promotes Growth Factor and Adhesion Molecule Release. Biomater. Adv. 2023, 152, 213516. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Yang, X.; Zhou, G.; Wang, L.; Xiao, B. Tethering Piezo Channels to the Actin Cytoskeleton for Mechanogating via the Cadherin-β-Catenin Mechanotransduction Complex. Cell Rep. 2022, 38, 110342. [Google Scholar] [CrossRef]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP and TAZ: A Signalling Hub of the Tumour Microenvironment. Nat. Rev. Cancer 2019, 19, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Pan, D. The Hippo Signaling Pathway in Development and Disease. Dev. Cell 2019, 50, 264–282. [Google Scholar] [CrossRef] [PubMed]
- Boopathy, G.T.K.; Hong, W. Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis. Front. Cell Dev. Biol. 2019, 7, 49. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, J.; Lim, Y.B.; Finch-Edmondson, M.L.; Seshachalam, V.P.; Qin, L.; Jiang, T.; Low, B.C.; Singh, H.; Lim, C.T.; et al. YAP Regulates Actin Dynamics through ARHGAP29 and Promotes Metastasis. Cell Rep. 2017, 19, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Mason, D.E.; Collins, J.M.; Dawahare, J.H.; Nguyen, T.D.; Lin, Y.; Voytik-Harbin, S.L.; Zorlutuna, P.; Yoder, M.C.; Boerckel, J.D. YAP and TAZ Limit Cytoskeletal and Focal Adhesion Maturation to Enable Persistent Cell Motility. J. Cell Biol. 2019, 218, 1369–1389. [Google Scholar] [CrossRef]
- Panciera, T.; Azzolin, L.; Cordenonsi, M.; Piccolo, S. Mechanobiology of YAP and TAZ in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 758–770. [Google Scholar] [CrossRef]
- Nasrollahi, S.; Walter, C.; Loza, A.J.; Schimizzi, G.V.; Longmore, G.D.; Pathak, A. Past Matrix Stiffness Primes Epithelial Cells and Regulates Their Future Collective Migration through a Mechanical Memory. Biomaterials 2017, 146, 146–155. [Google Scholar] [CrossRef]
- Elosegui-Artola, A.; Andreu, I.; Beedle, A.E.M.; Lezamiz, A.; Uroz, M.; Kosmalska, A.J.; Oria, R.; Kechagia, J.Z.; Rico-Lastres, P.; Le Roux, A.-L.; et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 2017, 171, 1397–1410.e14. [Google Scholar] [CrossRef]
- Koushki, N.; Ghagre, A.; Srivastava, L.K.; Molter, C.; Ehrlicher, A.J. Nuclear Compression Regulates YAP Spatiotemporal Fluctuations in Living Cells. Proc. Natl. Acad. Sci. USA 2023, 120, e2301285120. [Google Scholar] [CrossRef]
- Rørth, P. Collective Cell Migration. Annu. Rev. Cell Dev. Biol. 2009, 25, 407–429. [Google Scholar] [CrossRef]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Sturm, A.; Dignass, A.U. Epithelial Restitution and Wound Healing in Inflammatory Bowel Disease. World J. Gastroenterol. 2008, 14, 348. [Google Scholar] [CrossRef] [PubMed]
- Friedl, P.; Gilmour, D. Collective Cell Migration in Morphogenesis, Regeneration and Cancer. Nat. Rev. Mol. Cell Biol. 2009, 10, 445–457. [Google Scholar] [CrossRef]
- Nieto, M.A.; Huang, R.Y.-J.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Hay, E.D. An Overview of Epithelio-Mesenchymal Transformation. Acta Anat. 1995, 154, 8–20. [Google Scholar] [CrossRef]
- Boyer, B.; Tucker, G.C.; Vallés, A.M.; Franke, W.W.; Thiery, J.P. Rearrangements of Desmosomal and Cytoskeletal Proteins during the Transition from Epithelial to Fibroblastoid Organization in Cultured Rat Bladder Carcinoma Cells. J. Cell Biol. 1989, 109, 1495–1509. [Google Scholar] [CrossRef]
- Campbell, K.; Casanova, J. A Common Framework for EMT and Collective Cell Migration. Development 2016, 143, 4291–4300. [Google Scholar] [CrossRef]
- Hay, E.D. Interaction of Embryonic Cell Surface and Cytoskeleton with Extracellular Matrix. Am. J. Anat. 1982, 165, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hay, E.D. Theory for Epithelial-mesenchymal Transformation Based on the “Fixed Cortex” Cell Motility Model. Cell Motil. 1989, 14, 455–457. [Google Scholar] [CrossRef]
- Savagner, P. Epithelial–Mesenchymal Transitions. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 112, pp. 273–300. ISBN 978-0-12-407758-4. [Google Scholar]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and Definitions for Research on Epithelial–Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef]
- Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; Brown, D.; Moers, V.; Lemaire, S.; et al. Identification of the Tumour Transition States Occurring during EMT. Nature 2018, 556, 463–468. [Google Scholar] [CrossRef]
- Piacentino, M.L.; Li, Y.; Bronner, M.E. Epithelial-to-Mesenchymal Transition and Different Migration Strategies as Viewed from the Neural Crest. Curr. Opin. Cell Biol. 2020, 66, 43–50. [Google Scholar] [CrossRef]
- Vandewalle, C. SIP1/ZEB2 Induces EMT by Repressing Genes of Different Epithelial Cell-Cell Junctions. Nucleic Acids Res. 2005, 33, 6566–6578. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Bueno, G.; Cubillo, E.; Sarrió, D.; Peinado, H.; Rodríguez-Pinilla, S.M.; Villa, S.; Bolós, V.; Jordá, M.; Fabra, A.; Portillo, F.; et al. Genetic Profiling of Epithelial Cells Expressing E-Cadherin Repressors Reveals a Distinct Role for Snail, Slug, and E47 Factors in Epithelial-Mesenchymal Transition. Cancer Res. 2006, 66, 9543–9556. [Google Scholar] [CrossRef] [PubMed]
- De Craene, B.; Gilbert, B.; Stove, C.; Bruyneel, E.; Van Roy, F.; Berx, G. The Transcription Factor Snail Induces Tumor Cell Invasion through Modulation of the Epithelial Cell Differentiation Program. Cancer Res. 2005, 65, 6237–6244. [Google Scholar] [CrossRef] [PubMed]
- Peinado, H.; Olmeda, D.; Cano, A. Snail, Zeb and bHLH Factors in Tumour Progression: An Alliance against the Epithelial Phenotype? Nat. Rev. Cancer 2007, 7, 415–428. [Google Scholar] [CrossRef]
- Batlle, E.; Sancho, E.; Francí, C.; Domínguez, D.; Monfar, M.; Baulida, J.; García de Herreros, A. The Transcription Factor Snail Is a Repressor of E-Cadherin Gene Expression in Epithelial Tumour Cells. Nat. Cell Biol. 2000, 2, 84–89. [Google Scholar] [CrossRef]
- Cano, A.; Pérez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; Del Barrio, M.G.; Portillo, F.; Nieto, M.A. The Transcription Factor Snail Controls Epithelial–Mesenchymal Transitions by Repressing E-Cadherin Expression. Nat. Cell Biol. 2000, 2, 76–83. [Google Scholar] [CrossRef]
- Hajra, K.M.; Chen, D.Y.-S.; Fearon, E.R. The SLUG Zinc-Finger Protein Represses E-Cadherin in Breast Cancer. Cancer Res. 2002, 62, 1613–1618. [Google Scholar]
- Comijn, J.; Berx, G.; Vermassen, P.; Verschueren, K.; van Grunsven, L.; Bruyneel, E.; Mareel, M.; Huylebroeck, D.; van Roy, F. The Two-Handed E Box Binding Zinc Finger Protein SIP1 Downregulates E-Cadherin and Induces Invasion. Mol. Cell 2001, 7, 1267–1278. [Google Scholar] [CrossRef]
- Eger, A.; Aigner, K.; Sonderegger, S.; Dampier, B.; Oehler, S.; Schreiber, M.; Berx, G.; Cano, A.; Beug, H.; Foisner, R. DeltaEF1 Is a Transcriptional Repressor of E-Cadherin and Regulates Epithelial Plasticity in Breast Cancer Cells. Oncogene 2005, 24, 2375–2385. [Google Scholar] [CrossRef]
- Pérez-Moreno, M.A.; Locascio, A.; Rodrigo, I.; Dhondt, G.; Portillo, F.; Nieto, M.A.; Cano, A. A New Role for E12/E47 in the Repression of E-Cadherin Expression and Epithelial-Mesenchymal Transitions. J. Biol. Chem. 2001, 276, 27424–27431. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, M.; Liu, G.; Xia, W.; McKeown-Longo, P.J.; Hung, M.-C.; Zhao, J. Krüppel-Like Factor 8 Induces Epithelial to Mesenchymal Transition and Epithelial Cell Invasion. Cancer Res. 2007, 67, 7184–7193. [Google Scholar] [CrossRef] [PubMed]
- Fernando, R.I.; Litzinger, M.; Trono, P.; Hamilton, D.H.; Schlom, J.; Palena, C. The T-Box Transcription Factor Brachyury Promotes Epithelial-Mesenchymal Transition in Human Tumor Cells. J. Clin. Investig. 2010, 120, 533–544. [Google Scholar] [CrossRef] [PubMed]
- De Marzio, M.; Kılıç, A.; Maiorino, E.; Mitchel, J.A.; Mwase, C.; O’Sullivan, M.J.; McGill, M.; Chase, R.; Fredberg, J.J.; Park, J.-A.; et al. Genomic Signatures of the Unjamming Transition in Compressed Human Bronchial Epithelial Cells. Sci. Adv. 2021, 7, eabf1088. [Google Scholar] [CrossRef]
- Zheng, H.; Kang, Y. Multilayer Control of the EMT Master Regulators. Oncogene 2014, 33, 1755–1763. [Google Scholar] [CrossRef]
- Kumar, V.; Vashishta, M.; Kong, L.; Wu, X.; Lu, J.J.; Guha, C.; Dwarakanath, B.S. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front. Cell Dev. Biol. 2021, 9, 650772. [Google Scholar] [CrossRef]
- Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting Notch, Hedgehog, and Wnt Pathways in Cancer Stem Cells: Clinical Update. Nat. Rev. Clin. Oncol. 2015, 12, 445–464. [Google Scholar] [CrossRef]
- Clara, J.A.; Monge, C.; Yang, Y.; Takebe, N. Targeting Signalling Pathways and the Immune Microenvironment of Cancer Stem Cells—A Clinical Update. Nat. Rev. Clin. Oncol. 2020, 17, 204–232. [Google Scholar] [CrossRef]
- Hori, K.; Sen, A.; Artavanis-Tsakonas, S. Notch Signaling at a Glance. J. Cell Sci. 2013, 126, 2135–2140. [Google Scholar] [CrossRef]
- Niehrs, C. The Complex World of WNT Receptor Signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 767–779. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef]
- Lowery, J.; Kuczmarski, E.R.; Herrmann, H.; Goldman, R.D. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function. J. Biol. Chem. 2015, 290, 17145–17153. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Christofori, G. EMT, the Cytoskeleton, and Cancer Cell Invasion. Cancer Metastasis Rev. 2009, 28, 15–33. [Google Scholar] [CrossRef]
- Wang, G.G.; Allis, C.D.; Chi, P. Chromatin Remodeling and Cancer, Part II: ATP-Dependent Chromatin Remodeling. Trends Mol. Med. 2007, 13, 373–380. [Google Scholar] [CrossRef]
- Carmona, F.J.; Davalos, V.; Vidal, E.; Gomez, A.; Heyn, H.; Hashimoto, Y.; Vizoso, M.; Martinez-Cardus, A.; Sayols, S.; Ferreira, H.J.; et al. A Comprehensive DNA Methylation Profile of Epithelial-to-Mesenchymal Transition. Cancer Res. 2014, 74, 5608–5619. [Google Scholar] [CrossRef] [PubMed]
- Lombaerts, M.; Van Wezel, T.; Philippo, K.; Dierssen, J.W.F.; Zimmerman, R.M.E.; Oosting, J.; Van Eijk, R.; Eilers, P.H.; Van De Water, B.; Cornelisse, C.J.; et al. E-Cadherin Transcriptional Downregulation by Promoter Methylation but Not Mutation Is Related to Epithelial-to-Mesenchymal Transition in Breast Cancer Cell Lines. Br. J. Cancer 2006, 94, 661–671. [Google Scholar] [CrossRef]
- Davalos, V.; Moutinho, C.; Villanueva, A.; Boque, R.; Silva, P.; Carneiro, F.; Esteller, M. Dynamic Epigenetic Regulation of the microRNA-200 Family Mediates Epithelial and Mesenchymal Transitions in Human Tumorigenesis. Oncogene 2012, 31, 2062–2074. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, R.; Yu, Y.; Xue, H.; Shen, R.; Zhang, Y.; Ding, J. Effects of Cell Shape and Nucleus Shape on Epithelial-Mesenchymal Transition Revealed Using Chimeric Micropatterns. Biomaterials 2025, 317, 123013. [Google Scholar] [CrossRef]
- Staddon, M.F.; Hernandez, A.; Bowick, M.J.; Moshe, M.; Marchetti, M.C. The Role of Non-Affine Deformations in the Elastic Behavior of the Cellular Vertex Model. Soft Matter 2023, 19, 3080–3091. [Google Scholar] [CrossRef]
- Leggett, S.E.; Hruska, A.M.; Guo, M.; Wong, I.Y. The Epithelial-Mesenchymal Transition and the Cytoskeleton in Bioengineered Systems. Cell Commun. Signal. 2021, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.J. Remodeling Epithelial Cell Organization: Transitions Between Front-Rear and Apical-Basal Polarity. Cold Spring Harb. Perspect. Biol. 2009, 1, a000513. [Google Scholar] [CrossRef] [PubMed]
- Youssef, K.K.; Narwade, N.; Arcas, A.; Marquez-Galera, A.; Jiménez-Castaño, R.; Lopez-Blau, C.; Fazilaty, H.; García-Gutierrez, D.; Cano, A.; Galcerán, J.; et al. Two Distinct Epithelial-to-Mesenchymal Transition Programs Control Invasion and Inflammation in Segregated Tumor Cell Populations. Nat. Cancer 2024, 5, 1660–1680. [Google Scholar] [CrossRef]
- Cao, Z.; Livas, T.; Kyprianou, N. Anoikis and EMT: Lethal “Liaisons” during Cancer Progression. Crit. Rev. Oncog. 2016, 21, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.-J.; Wong, M.K.; Tan, T.Z.; Kuay, K.T.; Ng, A.H.C.; Chung, V.Y.; Chu, Y.-S.; Matsumura, N.; Lai, H.-C.; Lee, Y.F.; et al. An EMT Spectrum Defines an Anoikis-Resistant and Spheroidogenic Intermediate Mesenchymal State That Is Sensitive to e-Cadherin Restoration by a Src-Kinase Inhibitor, Saracatinib (AZD0530). Cell Death Dis. 2013, 4, e915. [Google Scholar] [CrossRef]
- Landragin, C.; Saichi, M.; Laisné, M.; Durand, A.; Prompsy, P.; Leclere, R.; Mesple, J.; Borgman, K.; Trouchet, A.; Faraldo, M.M.; et al. Epigenomic Disorder and Partial EMT Impair Luminal Progenitor Integrity in Brca1-Associated Breast Tumorigenesis. Mol. Cancer 2025, 24, 127. [Google Scholar] [CrossRef]
- Tomecka, P.; Kunachowicz, D.; Górczyńska, J.; Gebuza, M.; Kuźnicki, J.; Skinderowicz, K.; Choromańska, A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int. J. Mol. Sci. 2024, 25, 8972. [Google Scholar] [CrossRef]
- Atia, L.; Fredberg, J.J.; Gov, N.S.; Pegoraro, A.F. Are Cell Jamming and Unjamming Essential in Tissue Development? Cells Dev. 2021, 168, 203727. [Google Scholar] [CrossRef]
- Deng, Y.; Pan, D.; Jin, Y. Jamming Is a First-Order Transition with Quenched Disorder in Amorphous Materials Sheared by Cyclic Quasistatic Deformations. Nat. Commun. 2024, 15, 7072. [Google Scholar] [CrossRef]
- Horta, C.A.; Doan, K.; Yang, J. Mechanotransduction Pathways in Regulating Epithelial-Mesenchymal Plasticity. Curr. Opin. Cell Biol. 2023, 85, 102245. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, J.; Li, Y.; Guo, M. Volumetric Compression Develops Noise-Driven Single-Cell Heterogeneity. Proc. Natl. Acad. Sci. USA 2021, 118, e2110550118. [Google Scholar] [CrossRef] [PubMed]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular Mechanisms of Epithelial–Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef]
- Pajic-Lijakovic, I.; Milivojevic, M. Cell Jamming-to-Unjamming Transitions and Vice Versa in Development: Physical Aspects. Biosystems 2023, 234, 105045. [Google Scholar] [CrossRef] [PubMed]
- Sacco, J.L.; Vaneman, Z.T.; Gomez, E.W. Extracellular Matrix Viscoelasticity Regulates TGFβ1-induced Epithelial-mesenchymal Transition and Apoptosis via Integrin Linked Kinase. J. Cell. Physiol. 2024, 239, e31165. [Google Scholar] [CrossRef]
- Pajic-Lijakovic, I.; Milivojevic, M. The Role of Viscoelasticity in Long Time Cell Rearrangement. Prog. Biophys. Mol. Biol. 2022, 173, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Weinberg, R.A. EMT and Cancer: More Than Meets the Eye. Dev. Cell 2019, 49, 313–316. [Google Scholar] [CrossRef]
- Revenu, C.; Gilmour, D. EMT 2.0: Shaping Epithelia through Collective Migration. Curr. Opin. Genet. Dev. 2009, 19, 338–342. [Google Scholar] [CrossRef]
- Jolly, M.K. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front. Oncol. 2015, 5, 155. [Google Scholar] [CrossRef]
- Jolly, M.K.; Ware, K.E.; Gilja, S.; Somarelli, J.A.; Levine, H. EMT and MET: Necessary or Permissive for Metastasis? Mol. Oncol. 2017, 11, 755–769. [Google Scholar] [CrossRef]
- Aiello, N.M.; Maddipati, R.; Norgard, R.J.; Balli, D.; Li, J.; Yuan, S.; Yamazoe, T.; Black, T.; Sahmoud, A.; Furth, E.E.; et al. EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev. Cell 2018, 45, 681–695.e4. [Google Scholar] [CrossRef]
- Lu, W.; Kang, Y. Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev. Cell 2019, 49, 361–374. [Google Scholar] [CrossRef]
- McMahon, A.; Reeves, G.T.; Supatto, W.; Stathopoulos, A. Mesoderm Migration in Drosophila Is a Multi-Step Process Requiring FGF Signaling and Integrin Activity. Development 2010, 137, 2167–2175. [Google Scholar] [CrossRef]
- Gracia, M.; Theis, S.; Proag, A.; Gay, G.; Benassayag, C.; Suzanne, M. Mechanical Impact of Epithelial−mesenchymal Transition on Epithelial Morphogenesis in Drosophila. Nat. Commun. 2019, 10, 2951. [Google Scholar] [CrossRef] [PubMed]
- Futterman, M.A.; García, A.J.; Zamir, E.A. Evidence for Partial Epithelial-to-mesenchymal Transition (pEMT) and Recruitment of Motile Blastoderm Edge Cells during Avian Epiboly. Dev. Dyn. 2011, 240, 1502–1511. [Google Scholar] [CrossRef]
- Johnen, N.; Francart, M.-E.; Thelen, N.; Cloes, M.; Thiry, M. Evidence for a Partial Epithelial–Mesenchymal Transition in Postnatal Stages of Rat Auditory Organ Morphogenesis. Histochem. Cell Biol. 2012, 138, 477–488. [Google Scholar] [CrossRef]
- Lim, J.; Thiery, J.P. Epithelial-Mesenchymal Transitions: Insights from Development. Development 2012, 139, 3471–3486. [Google Scholar] [CrossRef]
- Savagner, P.; Kusewitt, D.F.; Carver, E.A.; Magnino, F.; Choi, C.; Gridley, T.; Hudson, L.G. Developmental Transcription Factor Slug Is Required for Effective Re-epithelialization by Adult Keratinocytes. J. Cell. Physiol. 2005, 202, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Leopold, P.L.; Vincent, J.; Wang, H. A Comparison of Epithelial-to-Mesenchymal Transition and Re-Epithelialization. Semin. Cancer Biol. 2012, 22, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Grande, M.T.; Sánchez-Laorden, B.; López-Blau, C.; De Frutos, C.A.; Boutet, A.; Arévalo, M.; Rowe, R.G.; Weiss, S.J.; López-Novoa, J.M.; Nieto, M.A. Snail1-Induced Partial Epithelial-to-Mesenchymal Transition Drives Renal Fibrosis in Mice and Can Be Targeted to Reverse Established Disease. Nat. Med. 2015, 21, 989–997. [Google Scholar] [CrossRef]
- Tsai, J.H.; Donaher, J.L.; Murphy, D.A.; Chau, S.; Yang, J. Spatiotemporal Regulation of Epithelial-Mesenchymal Transition Is Essential for Squamous Cell Carcinoma Metastasis. Cancer Cell 2012, 22, 725–736. [Google Scholar] [CrossRef]
- Tran, H.D.; Luitel, K.; Kim, M.; Zhang, K.; Longmore, G.D.; Tran, D.D. Transient SNAIL1 Expression Is Necessary for Metastatic Competence in Breast Cancer. Cancer Res. 2014, 74, 6330–6340. [Google Scholar] [CrossRef]
- Beerling, E.; Seinstra, D.; de Wit, E.; Kester, L.; van der Velden, D.; Maynard, C.; Schäfer, R.; van Diest, P.; Voest, E.; van Oudenaarden, A.; et al. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity. Cell Rep. 2016, 14, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Ocaña, O.H.; Córcoles, R.; Fabra, Á.; Moreno-Bueno, G.; Acloque, H.; Vega, S.; Barrallo-Gimeno, A.; Cano, A.; Nieto, M.A. Metastatic Colonization Requires the Repression of the Epithelial-Mesenchymal Transition Inducer Prrx1. Cancer Cell 2012, 22, 709–724. [Google Scholar] [CrossRef]
- Rogel, M.R.; Soni, P.N.; Troken, J.R.; Sitikov, A.; Trejo, H.E.; Ridge, K.M. Vimentin Is Sufficient and Required for Wound Repair and Remodeling in Alveolar Epithelial Cells. FASEB J. 2011, 25, 3873–3883. [Google Scholar] [CrossRef] [PubMed]
- Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in Cancer. Nat. Rev. Cancer 2018, 18, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Leech, G.; Rust, M.J.; Das, M.; McGorty, R.J.; Ross, J.L.; Robertson-Anderson, R.M. Myosin-Driven Actin-Microtubule Networks Exhibit Self-Organized Contractile Dynamics. Sci. Adv. 2021, 7, eabe4334. [Google Scholar] [CrossRef]
- Tam, W.L.; Weinberg, R.A. The Epigenetics of Epithelial-Mesenchymal Plasticity in Cancer. Nat. Med. 2013, 19, 1438–1449. [Google Scholar] [CrossRef]
- Nagai, T.; Honda, H. A Dynamic Cell Model for the Formation of Epithelial Tissues. Philos. Mag. B 2001, 81, 699–719. [Google Scholar] [CrossRef]
- Polacheck, W.J.; Zervantonakis, I.K.; Kamm, R.D. Tumor Cell Migration in Complex Microenvironments. Cell. Mol. Life Sci. 2013, 70, 1335–1356. [Google Scholar] [CrossRef]
- Pastushenko, I.; Blanpain, C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019, 29, 212–226. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell Migration in Tumors. Curr. Opin. Cell Biol. 2005, 17, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Almagro, J.; Messal, H.A.; Elosegui-Artola, A.; Van Rheenen, J.; Behrens, A. Tissue Architecture in Tumor Initiation and Progression. Trends Cancer 2022, 8, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Loh, C.-Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef]
- Shellard, A.; Mayor, R. All Roads Lead to Directional Cell Migration. Trends Cell Biol. 2020, 30, 852–868. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, A.; Ameli, A.; Park, J.-A.; Kho, A.T.; Tantisira, K.; Santolini, M.; Cheng, F.; Mitchel, J.A.; McGill, M.; O’Sullivan, M.J.; et al. Mechanical Forces Induce an Asthma Gene Signature in Healthy Airway Epithelial Cells. Sci. Rep. 2020, 10, 966. [Google Scholar] [CrossRef]
- Gamboa Castro, M.; Leggett, S.E.; Wong, I.Y. Clustering and Jamming in Epithelial–Mesenchymal Co-Cultures. Soft Matter 2016, 12, 8327–8337. [Google Scholar] [CrossRef]
- Etournay, R.; Popović, M.; Merkel, M.; Nandi, A.; Blasse, C.; Aigouy, B.; Brandl, H.; Myers, G.; Salbreux, G.; Jülicher, F.; et al. Interplay of Cell Dynamics and Epithelial Tension during Morphogenesis of the Drosophila Pupal Wing. eLife 2015, 4, e07090. [Google Scholar] [CrossRef]
- Friedl, P.; Mayor, R. Tuning Collective Cell Migration by Cell–Cell Junction Regulation. Cold Spring Harb. Perspect. Biol. 2017, 9, a029199. [Google Scholar] [CrossRef]
- Kuan, H.-S.; Blackwell, R.; Hough, L.E.; Glaser, M.A.; Betterton, M.D. Hysteresis, Reentrance, and Glassy Dynamics in Systems of Self-Propelled Rods. Phys. Rev. E 2015, 92, 060501. [Google Scholar] [CrossRef]
- Han, Y.L.; Pegoraro, A.F.; Li, H.; Li, K.; Yuan, Y.; Xu, G.; Gu, Z.; Sun, J.; Hao, Y.; Gupta, S.K.; et al. Cell Swelling, Softening and Invasion in a Three-Dimensional Breast Cancer Model. Nat. Phys. 2020, 16, 101–108. [Google Scholar] [CrossRef]
- Haerinck, J.; Goossens, S.; Berx, G. The Epithelial–Mesenchymal Plasticity Landscape: Principles of Design and Mechanisms of Regulation. Nat. Rev. Genet. 2023, 24, 590–609. [Google Scholar] [CrossRef] [PubMed]
- Goossens, S.; Vandamme, N.; Van Vlierberghe, P.; Berx, G. EMT Transcription Factors in Cancer Development Re-Evaluated: Beyond EMT and MET. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2017, 1868, 584–591. [Google Scholar] [CrossRef]
- Huna, A.; Nawrocki-Raby, B.; Padilla-Benavides, T.; Gavard, J.; Coscoy, S.; Bernard, D.; Boissan, M. Loss of the Metastasis Suppressor NME1, But Not of Its Highly Related Isoform NME2, Induces a Hybrid Epithelial–Mesenchymal State in Cancer Cells. Int. J. Mol. Sci. 2021, 22, 3718. [Google Scholar] [CrossRef]
- Nagle, I.; Richert, A.; Quinteros, M.; Janel, S.; Buysschaert, E.; Luciani, N.; Debost, H.; Thevenet, V.; Wilhelm, C.; Prunier, C.; et al. Surface Tension of Model Tissues during Malignant Transformation and Epithelial–Mesenchymal Transition. Front. Cell Dev. Biol. 2022, 10, 926322. [Google Scholar] [CrossRef] [PubMed]
- Eble, J.A.; Niland, S. The Extracellular Matrix in Tumor Progression and Metastasis. Clin. Exp. Metastasis 2019, 36, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Carstens, J.L.; Kim, J.; Scheible, M.; Kaye, J.; Sugimoto, H.; Wu, C.-C.; LeBleu, V.S.; Kalluri, R. Epithelial-to-Mesenchymal Transition Is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer. Nature 2015, 527, 525–530. [Google Scholar] [CrossRef]
- Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.; et al. Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis. Cell 2014, 158, 1110–1122. [Google Scholar] [CrossRef]
- Cheung, K.J.; Ewald, A.J. A Collective Route to Metastasis: Seeding by Tumor Cell Clusters. Science 2016, 352, 167–169. [Google Scholar] [CrossRef]
- Au, S.H.; Storey, B.D.; Moore, J.C.; Tang, Q.; Chen, Y.-L.; Javaid, S.; Sarioglu, A.F.; Sullivan, R.; Madden, M.W.; O’Keefe, R.; et al. Clusters of Circulating Tumor Cells Traverse Capillary-Sized Vessels. Proc. Natl. Acad. Sci. USA 2016, 113, 4947–4952. [Google Scholar] [CrossRef]
- Campinho, P.; Behrndt, M.; Ranft, J.; Risler, T.; Minc, N.; Heisenberg, C.-P. Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly. Nat. Cell Biol. 2013, 15, 1405–1414. [Google Scholar] [CrossRef]
- Miroshnikova, Y.A.; Le, H.Q.; Schneider, D.; Thalheim, T.; Rübsam, M.; Bremicker, N.; Polleux, J.; Kamprad, N.; Tarantola, M.; Wang, I.; et al. Adhesion Forces and Cortical Tension Couple Cell Proliferation and Differentiation to Drive Epidermal Stratification. Nat. Cell Biol. 2018, 20, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Fredberg, J.J. Power Steering, Power Brakes, and Jamming: Evolution of Collective Cell-Cell Interactions. Physiology 2014, 29, 218–219. [Google Scholar] [CrossRef] [PubMed]
- DeCamp, S.J.; Tsuda, V.M.K.; Ferruzzi, J.; Koehler, S.A.; Giblin, J.T.; Roblyer, D.; Zaman, M.H.; Weiss, S.T.; Kılıç, A.; De Marzio, M.; et al. Epithelial Layer Unjamming Shifts Energy Metabolism toward Glycolysis. Sci. Rep. 2020, 10, 18302. [Google Scholar] [CrossRef] [PubMed]
- Giese, W.; Albrecht, J.P.; Oppenheim, O.; Akmeriç, E.B.; Kraxner, J.; Schmidt, D.; Harrington, K.; Gerhardt, H. Polarity-JaM: An Image Analysis Toolbox for Cell Polarity, Junction and Morphology Quantification. Nat. Commun. 2025, 16, 1474. [Google Scholar] [CrossRef]
Cancer or Tissue Type | Description/Reference | Strengths | Limitations |
---|---|---|---|
Breast cancer | Altered expression of cell–cell adhesion like E-cadherin and -catenin molecules MCF-7 and 4T1 (derived from the mammary gland tissue of a mouse BALB/c strain) cell lines [27] | Identification of cell density control via 3D tissue junctions for physical guidance of collective movements independent of cell–cell junction composition and stability. Downregulation of E-cadherin and p120-catenin led to a transition from coordinated to uncoordinated collective motility across the extracellular junction. | Experimental analysis is largely based on a 2D cross-sectional analysis utilizing 2D trajectories. For tissue sections, the analysis has been carried out using 3D trajectories for cell movements. Fixated tumor specimens have been analyzed in serial section slices. The cell spheroids are rather simple as they contain only the cell line. |
Breast cancer | Adhesive differences in MCF-7 and MCF-10A [31] | Migrating epithelial (cancer) cells represent an active, non-equilibrium system, and the cell monolayer exhibits glass-like behavior, implying jamming action as the basis for intercellular interactions. Phase contrast time lapse microscopy has been utilized. | EMT and the jamming-to-unjamming transition are not regarded as separate events. Two epithelial cell lines have been employed that largely differ in cell adhesion. The migratory capacity of the cells has been analyzed on rather stiff flat culture dishes in 2D. |
Breast cancer | MCF10A, MCF10A.Vector; MCF10A.14-3-3ζ; MCF10.ErbB2, MCF10AT; and MCF10CA1a [28] | The concept of jamming has been shown to be important for cancer cell lines with different invasion capabilities. Higher velocities were linked to larger cooperative cell clusters across diverse cell lines. Structure and migration dynamics were consistent with previous theoretical descriptions of the cell jamming. Jamming-associated migratory mechanisms have been detected. | These model systems obviously lack a number of factors that play a role in vivo, in particular immune cells, cancer stem cells, connective tissue, vascularity, and 3D. |
Breast tissue | MCF-10A with RAB5A expression [15] | RAB5A can trigger large-scale, coordinated movements across dozens of cells and ballistic movements in monolayers that are otherwise kinetically locked. This is related to elevated traction forces and the elongation of cell protrusions, which orient themselves to the local speed. A simple model based on mechanical connection tension and an active mechanism for cell realignment for the speed of self-propelled cells identifies monolayer dynamics modes that account for the onset of motion through a mixture of large-scale directed migration and local unjamming. | 2D monolayers and cell lines. |
Breast tissue | MCF-10A and MCF10DCIS.com cells (ductal carcinoma in situ (DCIS) cell line that has been derived from a xenograft lesion following two trocar passages of the premalignant cell line MCF-10AT) [17] | Investigation of unjamming in a number of normal and tumorigenic epithelial 2D and 3D collectives. Unjamming in tumor spheroids is linked to persistent and coordinated rotations that gradually reshape the ECM while fluidizing the cells at the peripheral region. The endogenous ERK1/2 signaling path (RAB5A) is a physical–chemical trigger that initiates the collective invasion and spread of otherwise jammed cancers. Spheroid surrounding ECM is explored. | Tumor slices have utilized that are only 2D. Only a few cell lines are explored. |
Breast tissue | MCF-10A and 4T1 with E-cadherin knock down [32] | Long-term mechanical compression leads to cell arrest in benign epithelial cells and increases the migration of cancer cells in transitions that correlate with cell shape. These findings prompted them to examine the roles of cell–cell adhesion and substrate traction in unjamming transitions. Cadherin-driven cell–cell adhesion controls reaction to compressive stress and drives of unjamming in stressed monolayers. Compression stress cannot trigger EMT in unjammed cells. Traction force microscopy revealed the reduction in traction forces in compressed cells within the monolayer independent of cell type and movement. | Only a few cell lines are explored in a 2D setting. |
Breast tissue | MCF-10A cell spheroids exhibit predominantly epithelial traits and MDA-MB-231 cell spheroids expresses primarily mesenchymal traits [33] | Non-equilibrium phase separation based upon jamming and unjamming transitions seem to offer a unifying physical concept for cellular migratory dynamics inside and out of a tumor. | MDA-MB-231 spheroids have been generated only by addition of 2.5% Matrigel. The comparison of MCF-10A and MDA-MB-231 spheroids is hampered by the different amounts of serum and serum types, such as 5% horse serum for MCF-10A and 10% fetal calf serum for MDA-MB-231. |
Breast and cervix tissue | Tumor explants obtained from patients with two types of carcinomas (four breast carcinomas and twelve cervical carcinomas) are examined for their nuclear shape in cell clusters [34] | Tracking viable cells in explants of solid tumors from patients demonstrates that an elongated cell and nucleus shape and low nuclear density characterize the unjammed phase. Cancer cell unjamming represents an emergent physical feature that promotes cancer progression. | 2D histological analyses of the shape of cells and cell nuclei; only two different cancer types (cell lines) have been explored. |
Bronchial epithelial | Maturation and strengthening of cell–cell and cell–matrix adhesions in immortalized human bronchial epithelial cells (HBECs) [14] | Complex dynamics in the aging of a cell monolayer, in which cell movement becomes gradually slower over time, while the distance over which cell movements are correlated first rises and then diminishes. Alteration of this behavior is independent of cell density but relies on the ripening of cell–cell and cell–substrate adhesions. | 2D monolayer. Two cell types are explored. |
Kidney tissue | Madin–Darby Canine Kidney (MDCK) [29] | Traction forces that propel collective cell migration are generated primarily many cell rows away from the leading edge and extend over vast distances. | A canine cell line has been employed. 2D traction force measurements. |
Lung and skin tissue | 3D spheroid invasion analysis of two distinct human cancer cell lines, such as the highly metastatic and mesenchymal-like MV3 melanoma cells and epithelial A549 lung carcinoma cells [35] | 3D spheroid invasion assay using in collagen-based gels. The timing of invasion correlated with matrix porosity and vimentin levels, whereas spheroid expansion rate linked with MMP1 levels. Cell motility and matrix restriction are linked via EMT-related matrix breakdown. | Only a few cell lines are explored. The analysis of unjamming transitions must be performed instead of considering different states. |
Skin tissue | MV3 melanoma cells (mesenchymal-like cells) [36] | 3D interface assay with a gap between two high-density collagen grids has been employed to jointly analyze cancer cell invasion efficacy, invasion mode and MMP dependence. Inhibition of collagen breakdown severely impaired migration in 3D collagen in a density-dependent fashion, but migration controlled by the interface remained effective and took place through cell jamming. | The ECM consists only of collagen. Only based on one cell line. |
Skin tissue | Human A431 epidermoid carcinoma cells migrate collectively in confined microchannels. Most separation events, referred to as “ruptures,” concern individual A431 cells that detach, but ruptures of large groups of about 20 cells within wider channels can also be seen [37] | Phase field cell motility model has been created by defining three different cell states, such as follower, guided, and highly motile “leader” cells, depending on their spatial location. Ruptures of about 20 cells within wider channels can also be observed. | Unjamming is required but not sufficient to induce ruptures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierke, C.T. ECM Mechanics Control Jamming-to-Unjamming Transition of Cancer Cells. Cells 2025, 14, 943. https://doi.org/10.3390/cells14130943
Mierke CT. ECM Mechanics Control Jamming-to-Unjamming Transition of Cancer Cells. Cells. 2025; 14(13):943. https://doi.org/10.3390/cells14130943
Chicago/Turabian StyleMierke, Claudia Tanja. 2025. "ECM Mechanics Control Jamming-to-Unjamming Transition of Cancer Cells" Cells 14, no. 13: 943. https://doi.org/10.3390/cells14130943
APA StyleMierke, C. T. (2025). ECM Mechanics Control Jamming-to-Unjamming Transition of Cancer Cells. Cells, 14(13), 943. https://doi.org/10.3390/cells14130943