Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,359)

Search Parameters:
Keywords = (extended) Kalman filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1877 KiB  
Article
Obstacle Avoidance Tracking Control of Underactuated Surface Vehicles Based on Improved MPC
by Chunyu Song, Qi Qiao and Jianghua Sui
J. Mar. Sci. Eng. 2025, 13(9), 1603; https://doi.org/10.3390/jmse13091603 - 22 Aug 2025
Abstract
This paper addresses the issue of the poor collision avoidance effect of underactuated surface vehicles (USVs) during local path tracking. A virtual ship group control method is suggested by using Freiner coordinates and a model predictive control (MPC) algorithm. We track the planned [...] Read more.
This paper addresses the issue of the poor collision avoidance effect of underactuated surface vehicles (USVs) during local path tracking. A virtual ship group control method is suggested by using Freiner coordinates and a model predictive control (MPC) algorithm. We track the planned path using the MPC algorithm according to the known vessel state and build a hierarchical weighted cost function to handle the state of the virtual vessel, to ensure that the vessel avoids obstacles while tracking the path. In addition, the control system incorporates an Extended Kalman Filter (EKF) algorithm to minimize the state estimation error by continuously updating the ship state and providing more accurate state estimation for the system in a timely manner. In order to validate the anti-interference and robustness of the control system, the simulation experiment is carried out with the “Yukun” as the research object by adding the interference of wind and wave of level 6. The outcome shows that the algorithm suggested in this paper can accurately perform the trajectory-tracking task and make collision avoidance decisions under six levels of external interference. Compared with the original MPC algorithm, the improved MPC algorithm reduces the maximum rudder angle output value by 58%, the integral absolute error by 46%, and the root mean square error value by 46%. The improved control algorithm reduces the maximum rudder angle output value by 42% and the maximum rudder angle output value by 10%. The control method provides a new technical choice for trajectory tracking and collision avoidance of USVs in complex marine environments, with a reliable theoretical basis and practical application value. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

38 pages, 22596 KiB  
Article
Parameter Tuning of Detached Eddy Simulation Using Data Assimilation for Enhancing the Simulation Accuracy of Large-Scale Separated Flow Around a Cylinder
by Kyosuke Nomoto and Shigeru Obayashi
Aerospace 2025, 12(8), 736; https://doi.org/10.3390/aerospace12080736 - 19 Aug 2025
Viewed by 133
Abstract
In this study, data assimilation using PIV measurement data of the cylinder wake obtained from wind tunnel tests was applied to tune the simulation model parameters of Detached Eddy Simulation (DES) to improve the accuracy of large-scale separated flow simulations around a cylinder. [...] Read more.
In this study, data assimilation using PIV measurement data of the cylinder wake obtained from wind tunnel tests was applied to tune the simulation model parameters of Detached Eddy Simulation (DES) to improve the accuracy of large-scale separated flow simulations around a cylinder. The use of DES enables more accurate simulation of large-scale separation flows than RANS. However, it increases computational costs and makes parameter tuning using data assimilation difficult. To reduce the computational time required for data assimilation, the conventional data assimilation method was modified. The background values used for data assimilation were constructed by extracting only velocity data from locations corresponding to observation points. This approach reduced the computational time for background error covariance and Kalman gain, thereby significantly reducing the execution time of the filtering step in data assimilation. As a result of tuning, Cdes significantly increased, while Cb1 decreased. This adjustment extended the length of the recirculation bubble, bringing the time-averaged velocity distribution closer to the PIV measurement data. However, the peak frequency in the PSD obtained from the FFT analysis of velocity fluctuations in the wake shifted slightly toward lower frequencies, slightly increasing the discrepancy with the measurement data. Verifying the relationship between parameter values and flow, it was found that parameter tuning stabilized the separation shear layer generated at the leading edge of the cylinder and enlarged the size of the recirculation bubbles. On the other hand, frequency variations did not show consistent changes in response to parameter value changes, indicating that the effect of parameter tuning was limited under the simulation conditions of this study. To bring the frequency fluctuations closer to experimental results, it is suggested that other methods, such as higher-order spatial and temporal accuracy, should be combined. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

14 pages, 831 KiB  
Article
Migratory Bird-Inspired Adaptive Kalman Filtering for Robust Navigation of Autonomous Agricultural Planters in Unstructured Terrains
by Zijie Zhou, Yitao Huang and Jiyu Sun
Biomimetics 2025, 10(8), 543; https://doi.org/10.3390/biomimetics10080543 - 19 Aug 2025
Viewed by 148
Abstract
This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, [...] Read more.
This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, and somatosensory balance). The algorithm mimics the migratory bird’s ability to integrate multimodal information by fusing laser SLAM, inertial measurement unit (IMU), and GPS data to estimate the position, velocity, and attitude of the planter in real time. Adopting a nonlinear processing approach, the EKF effectively handles nonlinear dynamic characteristics in complex terrain, similar to the adaptive response of a biological nervous system to environmental perturbations. The algorithm demonstrates bio-inspired robustness through the derivation of the nonlinear dynamic teaching model and measurement model and is able to provide high-precision state estimation in complex environments such as mountainous or hilly terrain. Simulation results show that the algorithm significantly improves the navigation accuracy of the planter in unstructured environments. A new method of bio-inspired adaptive state estimation is provided. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 3rd Edition)
Show Figures

Figure 1

28 pages, 5658 KiB  
Article
SOC Estimation for Lithium-Ion Batteries Based on Weighted Multi-Innovation Sage–Husa Adaptive EKF
by Weihua Song, Ranran Liu, Xiaona Jin and Wei Guo
Energies 2025, 18(16), 4364; https://doi.org/10.3390/en18164364 - 16 Aug 2025
Viewed by 331
Abstract
In lithium-ion battery management systems (BMSs), accurate state of charge (SOC) estimation is essential for the stable operation of BMSs. Furthermore, the accuracy of SOC estimation is significantly influenced by the precision of battery model parameters. To improve the SOC estimation accuracy, this [...] Read more.
In lithium-ion battery management systems (BMSs), accurate state of charge (SOC) estimation is essential for the stable operation of BMSs. Furthermore, the accuracy of SOC estimation is significantly influenced by the precision of battery model parameters. To improve the SOC estimation accuracy, this paper focuses on the second-order RC equivalent circuit model, firstly designs a simple and reliable improved adaptive forgetting factor (IAFF) regulation mechanism, and proposes the improved adaptive forgetting factor recursive least squares (IAFFRLS) algorithm, which not only improves the accuracy of parameter identification, but also exhibits excellent performance in anti-interference. Secondly, based on the identified model, a weighted multi-innovation improved Sage–Husa adaptive extended Kalman filter (WMISAEKF) algorithm is proposed to solve the problem of filter divergence caused by noise covariance updating. It fully utilizes historical innovations to reasonably allocate innovation weights to achieve accurate SOC estimation. Compared with the VFFRLS algorithm and AFFRLS algorithm, the IAFFRLS algorithm reduces the root mean square error (RMSE) by 29.30% and 19.29%, respectively, and the RMSE under noise interference is decreased by 82.37% and 78.59%, respectively. Based on the identified model for SOC estimation, the WMISAEKF algorithm reduces the RMSE by 77.78%, compared to the EKF algorithm. Furthermore, the WMISAEKF algorithm could still converge under different levels of noise interference and incorrect initial SOC values, which proves that the proposed algorithm has good stability and robustness. Simulation results verify that the parameter identification algorithm proposed in this paper demonstrates higher identification accuracy and anti-interference performance. The proposed SOC estimation algorithm has higher estimation accuracy and good robustness, which provides a new practical support for extending battery life. Full article
(This article belongs to the Topic Battery Design and Management, 2nd Edition)
Show Figures

Figure 1

24 pages, 1735 KiB  
Article
A Multi-Sensor Fusion-Based Localization Method for a Magnetic Adhesion Wall-Climbing Robot
by Xiaowei Han, Hao Li, Nanmu Hui, Jiaying Zhang and Gaofeng Yue
Sensors 2025, 25(16), 5051; https://doi.org/10.3390/s25165051 - 14 Aug 2025
Viewed by 330
Abstract
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), [...] Read more.
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), Wheel Odometry (Odom), and Ultra-Wideband (UWB). An Extended Kalman Filter (EKF) is employed to integrate IMU and Odom measurements through a complementary filtering model, while a geometric residual-based weighting mechanism is introduced to optimize raw UWB ranging data. This enhances the accuracy and robustness of both the prediction and observation stages. All evaluations were conducted in a simulated environment, including scenarios on flat plates and spherical tank-shaped steel surfaces. The proposed method maintained a maximum localization error within 5 cm in both linear and closed-loop trajectories and achieved over 30% improvement in horizontal accuracy compared to baseline EKF-based approaches. The system exhibited consistent localization performance across varying surface geometries, providing technical support for robotic operations on large steel infrastructures. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

33 pages, 7587 KiB  
Article
A Fractional-Order State Estimation Method for Supercapacitor Energy Storage
by Arsalan Rasoolzadeh, Sayed Amir Hashemi and Majid Pahlevani
Electronics 2025, 14(16), 3231; https://doi.org/10.3390/electronics14163231 - 14 Aug 2025
Viewed by 264
Abstract
Supercapacitors (SCs) are emerging as a dependable energy storage technology in industrial applications, valued for their high power output and exceptional longevity. In high-power applications, SCs are not used as single cells but are configured in a series–parallel combination to form a bank. [...] Read more.
Supercapacitors (SCs) are emerging as a dependable energy storage technology in industrial applications, valued for their high power output and exceptional longevity. In high-power applications, SCs are not used as single cells but are configured in a series–parallel combination to form a bank. Accurate state-of-charge estimation is essential for effective energy management in power systems employing SC banks. This work presents a novel state estimation approach for SC banks. First, a dynamic model of an SC bank is derived by applying a fractional-order Thévenin equivalent circuit to a single-cell SC. Then, an observability analysis is conducted, which reveals that the system is empirically weakly observable. This is the fundamental challenge for state-of-the-art observers to robustly perform state estimation. To address this challenge, an implicitly regularized observer is developed based on generalized parameter estimation techniques. The performance of the proposed observer is benchmarked against a fractional-order extended Kalman filter using experimental data. The results demonstrate that incorporating a regularization law into the observer dynamics effectively mitigates observability limitations, offering a robust solution for the SC bank state estimation. Full article
(This article belongs to the Special Issue Hybrid Energy Harvesting Systems: New Developments and Applications)
Show Figures

Figure 1

13 pages, 1530 KiB  
Article
Interval Observer for Vehicle Sideslip Angle Estimation Using Extended Kalman Filters
by Fernando Viadero-Monasterio, Miguel Meléndez-Useros, Basilio Lenzo and Beatriz López Boada
Machines 2025, 13(8), 707; https://doi.org/10.3390/machines13080707 - 9 Aug 2025
Viewed by 280
Abstract
Accurate estimation of the vehicle sideslip angle is critical for the effective operation of advanced driver assistance systems and active safety functions such as electronic stability control. However, direct measurement of sideslip angle is impractical in series-production vehicles due to high sensor cost. [...] Read more.
Accurate estimation of the vehicle sideslip angle is critical for the effective operation of advanced driver assistance systems and active safety functions such as electronic stability control. However, direct measurement of sideslip angle is impractical in series-production vehicles due to high sensor cost. Furthermore, existing estimation methods often neglect the impact of model uncertainties on estimation error, which can compromise estimation reliability and, consequently, vehicle stability. To address these limitations, this paper proposes an interval observer based on a Kalman filter that accounts explicitly for model uncertainties in the sideslip angle estimation process. The proposed method generates both upper and lower bounds of the estimated sideslip angle, providing a quantifiable measure of uncertainty that enhances the robustness of control systems that depend on this measurement. Given the limitations of simplified vehicle models, a combined vehicle roll and lateral dynamics model is utilized to improve estimation accuracy. The effectiveness of the proposed methodology is demonstrated through a series of simulation experiments conducted using CarSim. Full article
(This article belongs to the Special Issue Vehicle Dynamics Estimation and Fault Monitoring)
Show Figures

Figure 1

18 pages, 1814 KiB  
Article
Student’s t Kernel-Based Maximum Correntropy Criterion Extended Kalman Filter for GPS Navigation
by Dah-Jing Jwo, Yi Chang, Yun-Han Hsu and Amita Biswal
Appl. Sci. 2025, 15(15), 8645; https://doi.org/10.3390/app15158645 - 5 Aug 2025
Viewed by 367
Abstract
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting [...] Read more.
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting the effectiveness of satellite navigation filters. This paper presents a robust Extended Kalman Filter (EKF) based on the Maximum Correntropy Criterion with a Student’s t kernel (STMCCEKF) for GPS navigation under non-Gaussian noise. Unlike traditional EKF and Gaussian-kernel MCCEKF, the proposed method enhances robustness by leveraging the heavy-tailed Student’s t kernel, which effectively suppresses outliers and dynamic observation noise. A fixed-point iterative algorithm is used for state update, and a new posterior error covariance expression is derived. The simulation results demonstrate that STMCCEKF outperforms conventional filters in positioning accuracy and robustness, particularly in environments with impulsive noise and multipath interference. The Student’s t-distribution kernel efficiently mitigates heavy-tailed non-Gaussian noise, while it adaptively adjusts process and measurement noise covariances, leading to improved estimation performance. A detailed explanation of several key concepts along with practical examples are discussed to aid in understanding and applying the Global Positioning System (GPS) navigation filter. By integrating cutting-edge reinforcement learning with robust statistical approaches, this work advances adaptive signal processing and estimation, offering a significant contribution to the field. Full article
Show Figures

Figure 1

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 240
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 - 1 Aug 2025
Viewed by 526
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 - 1 Aug 2025
Viewed by 481
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 - 31 Jul 2025
Viewed by 329
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

16 pages, 3379 KiB  
Article
Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
by Huiqin Sun and Honghui Wang
Vehicles 2025, 7(3), 80; https://doi.org/10.3390/vehicles7030080 - 30 Jul 2025
Viewed by 316
Abstract
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating [...] Read more.
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating the Dugoff tire model was established. By introducing the maximum correntropy criterion, an unscented Kalman filter was developed to estimate longitudinal velocity, sideslip angle at the center of mass, and yaw rate. Building upon the speed differential control achieved through Ackermann steering model-based rear-wheel speed calculation, improvements were made to the conventional exponential reaching law, while a novel switching function was proposed to formulate a new sliding mode controller for computing an additional yaw moment to realize torque differential control. Finally, simulations conducted on the Carsim/Simulink platform demonstrated that the maximum correntropy criterion unscented Kalman filter effectively improves estimation accuracy, achieving at least a 22.00% reduction in RMSE metrics compared to conventional unscented Kalman filter. With torque control exhibiting higher vehicle stability than speed control, the RMSE values of yaw rate and sideslip angle at the center of mass are reduced by at least 20.00% and 4.55%, respectively, enabling stable operation during medium-to-high-speed cornering conditions. Full article
Show Figures

Figure 1

25 pages, 8468 KiB  
Article
An Autonomous Localization Vest System Based on Advanced Adaptive PDR with Binocular Vision Assistance
by Tianqi Tian, Yanzhu Hu, Xinghao Zhao, Hui Zhao, Yingjian Wang and Zhen Liang
Micromachines 2025, 16(8), 890; https://doi.org/10.3390/mi16080890 - 30 Jul 2025
Viewed by 280
Abstract
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and [...] Read more.
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and binocular vision, designed to provide a low-cost, high-reliability, and high-precision solution for rescuers. By analyzing the characteristics of measurement data from various body parts, the chest is identified as the optimal placement for sensors. A chest-mounted advanced APDR method based on dynamic step segmentation detection and adaptive step length estimation has been developed. Furthermore, step length features are innovatively integrated into the visual tracking algorithm to constrain errors. Visual data is fused with dead reckoning data through an extended Kalman filter (EKF), which notably enhances the reliability and accuracy of the positioning system. A wearable autonomous localization vest system was designed and tested in indoor corridors, underground parking lots, and tunnel environments. Results show that the system decreases the average positioning error by 45.14% and endpoint error by 38.6% when compared to visual–inertial odometry (VIO). This low-cost, wearable solution effectively meets the autonomous positioning needs of rescuers in disaster scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence for Micro Inertial Sensors)
Show Figures

Figure 1

29 pages, 20494 KiB  
Article
Research on INS/GNSS Integrated Navigation Algorithm for Autonomous Vehicles Based on Pseudo-Range Single Point Positioning
by Zhongchao Liang, Kunfeng He, Zijian Wang, Haobin Yang and Junqiang Zheng
Electronics 2025, 14(15), 3048; https://doi.org/10.3390/electronics14153048 - 30 Jul 2025
Viewed by 269
Abstract
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical [...] Read more.
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical navigation scenarios. The proposed method dynamically compensates for positioning inaccuracies and sensor drift by integrating differential GNSS corrections to reduce errors and employing an adaptive EKF to address temporal synchronization discrepancies and misalignment angle deviations. Simulation and experimental results demonstrate that the framework keeps horizontal positioning error within 2 m and achieves a maximum accuracy improvement of 4.2 m compared to conventional single-point positioning. This low-cost solution ensures robust performance for practical autonomous navigation scenarios. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

Back to TopTop