Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (806)

Search Parameters:
Journal = MPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4678 KB  
Article
RP-DAD-HPLC Method for Quantitative Analysis of Clofazimine and Pyrazinamide for Inclusion in Fixed-Dose Combination Topical Drug Delivery System
by Marius Brits, Francelle Bouwer and Joe M. Viljoen
Methods Protoc. 2026, 9(1), 16; https://doi.org/10.3390/mps9010016 - 21 Jan 2026
Viewed by 53
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) remains one of the most widely applied analytical techniques in the development and quality control testing of finished pharmaceutical products. The combination of gradient chromatographic methods with diode-array detection (DAD) enhances selectivity, ensuring accuracy and reliability when testing [...] Read more.
Reversed-phase high-performance liquid chromatography (RP-HPLC) remains one of the most widely applied analytical techniques in the development and quality control testing of finished pharmaceutical products. The combination of gradient chromatographic methods with diode-array detection (DAD) enhances selectivity, ensuring accuracy and reliability when testing drugs with diverse chemical properties in a single dosage form (i.e., fixed-dose combination (FDC) products). In this study, an RP-DAD-HPLC method was developed for the quantitative analysis of clofazimine (CFZ) and pyrazinamide (PZA) for inclusion in an FDC topical drug delivery system. Chromatographic separation was achieved using a C18 column (4.6 mm × 150 mm, 5 µm particle size) with gradient elution at 1 mL/min, employing 0.1% aqueous formic acid and acetonitrile (mobile phases). PZA and CFZ were detected at 254 nm and 284 nm, respectively. The method was validated in accordance with ICH Q2 guidelines, assessing specificity (considering interference from solvents, product matrix, and degradation products), linearity (7.8–500.0 µg/mL, r2 = 0.9999), system repeatability (%RSD ≤ 2.7%), and intermediate precision (25–500 µg/mL, %RSD ≤ 0.85%). Method robustness was evaluated using a three-level Box–Behnken design (BBD) with response surface methodology (RSM) to assess the effects of variations in detection wavelength, mobile phase flow rate, and column temperature. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

21 pages, 2566 KB  
Article
Multimodal Wearable Monitoring of Exercise in Isolated, Confined, and Extreme Environments: A Standardized Method
by Jan Hejda, Marek Sokol, Lydie Leová, Petr Volf, Jan Tonner, Wei-Chun Hsu, Yi-Jia Lin, Tommy Sugiarto, Miroslav Rozložník and Patrik Kutílek
Methods Protoc. 2026, 9(1), 15; https://doi.org/10.3390/mps9010015 - 21 Jan 2026
Viewed by 48
Abstract
This study presents a standardized method for multimodal monitoring of exercise execution in isolated, confined, and extreme (ICE) environments, addressing the need for reproducible assessment of neuromuscular and cardiovascular responses under space- and equipment-limited conditions. The method integrates wearable surface electromyography (sEMG), inertial [...] Read more.
This study presents a standardized method for multimodal monitoring of exercise execution in isolated, confined, and extreme (ICE) environments, addressing the need for reproducible assessment of neuromuscular and cardiovascular responses under space- and equipment-limited conditions. The method integrates wearable surface electromyography (sEMG), inertial measurement units (IMU), and electrocardiography (ECG) to capture muscle activation, movement, and cardiac dynamics during space-efficient exercise. Ten exercises suitable for confined habitats were implemented during analog missions conducted in the DeepLabH03 facility, with feasibility evaluated in a seven-day campaign involving three adult participants. Signals were synchronized using video-verified repetition boundaries, sEMG was normalized to maximum voluntary contraction, and sEMG amplitude- and frequency-domain features were extracted alongside heart rate variability indices. The protocol enabled stable real-time data acquisition, reliable repetition-level segmentation, and consistent detection of muscle-specific activation patterns across exercises. While amplitude-based sEMG indices showed no uniform main effect of exercise, robust exercise-by-muscle interactions were observed, and sEMG mean frequency demonstrated sensitivity to differences in movement strategy. Cardiac measures showed limited condition-specific modulation, consistent with short exercise bouts and small sample size. As a proof-of-concept feasibility study, the proposed protocol provides a practical and reproducible framework for multimodal physiological monitoring of exercise in ICE analogs and other constrained environments, supporting future studies on exercise quality, training load, and adaptive feedback systems. The protocol is designed to support near-real-time monitoring and forms a technical basis for future exercise-quality feedback in confined habitats. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

12 pages, 456 KB  
Study Protocol
Probiotic and Prebiotic Supplementation for Gastrointestinal Discomfort in Chronic Spinal Cord Injury (PRO-GIDSCI): A Randomized Controlled Crossover Trial Protocol
by Julia Trunz, Cyra Schmandt, Anneke Hertig-Godeschalk, Marija Glisic, Jivko Stoyanov and Claudio Perret
Methods Protoc. 2026, 9(1), 14; https://doi.org/10.3390/mps9010014 - 17 Jan 2026
Viewed by 214
Abstract
Background: Gastrointestinal discomfort affects up to 70% of individuals with spinal cord injury (SCI), largely due to gut dysbiosis caused by altered transit time and reduced gastrointestinal motility from autonomic disruption. Emerging evidence links prebiotics and probiotics to improved microbiome balance and reduced [...] Read more.
Background: Gastrointestinal discomfort affects up to 70% of individuals with spinal cord injury (SCI), largely due to gut dysbiosis caused by altered transit time and reduced gastrointestinal motility from autonomic disruption. Emerging evidence links prebiotics and probiotics to improved microbiome balance and reduced inflammation, yet data in SCI remain limited. Methods: Individuals aged ≥ 18 years, with a chronic SCI (≥1 year) experiencing significant gastrointestinal symptoms, will be invited to participate in this single-center randomized controlled crossover trial. Persons currently taking antibiotics, who have relevant eating or digestive disorders, or who have undergone a recent diet change will be excluded from the study. Participants will be randomized (1:1) into two groups. The first group will take a probiotic (Biotics-G, Burgerstein AG, Rapperswil-Jona, Switzerland) supplement for eight weeks, then after a four-week washout period, they will take a prebiotic (Oat Bran, Naturaplan, manufactured by Swissmill, Zurich, Switzerland) supplement for another eight weeks. The second group will receive the supplements in reverse order. The primary outcome is the Gastrointestinal Quality of Life Index, a questionnaire to assess quality of life related to gastrointestinal disorders. Secondary outcomes consist of gastrointestinal transit time, inflammatory blood markers, and gut microbiome composition. Ethics: The study will be conducted in accordance with the Declaration of Helsinki. The study was approved by the Ethics Committee for Northwest/Central Switzerland (EKNZ, ID: 2025-00238, 24.02.2025, Version 2.0). The study is registered at ClinicalTrials.gov (ID: NCT06870331, 02.04.2025). Written informed consent will be obtained from all participants involved in the study. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

15 pages, 967 KB  
Article
A Method for Assessing Week-Long Cortisol Output Using a Continuously Worn Sweat Patch
by Jerrold S. Meyer, Jenna P. Blain and Karen A. Kalmakis
Methods Protoc. 2026, 9(1), 13; https://doi.org/10.3390/mps9010013 - 16 Jan 2026
Viewed by 189
Abstract
Although sample matrices are available for assessing cortisol output over hours/days (serum, saliva, or urine) or months (hair or nails), there is no current method for measuring integrated cortisol output over a period of 1 week. Therefore, the primary aim of this study [...] Read more.
Although sample matrices are available for assessing cortisol output over hours/days (serum, saliva, or urine) or months (hair or nails), there is no current method for measuring integrated cortisol output over a period of 1 week. Therefore, the primary aim of this study was to develop and validate a method for collecting and measuring sweat-derived cortisol from commercially available skin patches worn for 1 week. Additional aims were to determine whether the accumulated sweat cortisol correlated with salivary cortisol measured during the same week, and whether sweat cortisol was related to psychological stress measured using two different questionnaires. After conducting preliminary in vitro validation studies, we obtained the following data from a convenience sample of university students and employees: (a) cortisol and sodium contents of patches worn for 1 week (sodium was used to correct for variation in sweating rate), (b) mean area-under-the-curve of salivary cortisol concentrations measured for 3 days during the week of patch wearing, and (c) two different measures of psychological stress. The results demonstrate that a continuously worn sweat patch can be used to collect and measure sweat cortisol over a 1-week period. However, the patch’s cortisol contents did not correlate with either the salivary cortisol area under the curve or the participants’ psychological stress. Because previous findings showed that sweat cortisol is significantly related to both circulating and salivary cortisol levels, we hypothesize that the lack of an observed correlation between patch and salivary cortisol may have resulted from limitations of our experimental design. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

16 pages, 2642 KB  
Study Protocol
A Study Protocol for Developing a Pragmatic Aetiology-Based Silicosis Prevention and Elimination Approach in Southern Africa
by Norman Nkuzi Khoza, Thokozani Patrick Mbonane, Phoka C. Rathebe and Masilu Daniel Masekameni
Methods Protoc. 2026, 9(1), 12; https://doi.org/10.3390/mps9010012 - 14 Jan 2026
Viewed by 137
Abstract
Workers’ exposure to silica dust is a global occupational and public health concern and is particularly prevalent in Southern Africa, mainly because of inadequate dust control measures. It is worsened by the high prevalence of HIV/AIDS, which exacerbates tuberculosis and other occupational lung [...] Read more.
Workers’ exposure to silica dust is a global occupational and public health concern and is particularly prevalent in Southern Africa, mainly because of inadequate dust control measures. It is worsened by the high prevalence of HIV/AIDS, which exacerbates tuberculosis and other occupational lung diseases. The prevalence of silicosis in the region ranges from 9 to 51%; however, silica dust exposure levels and controls, especially in the informal mining sector, particularly in artisanal small-scale mines (ASMs), leave much to be desired. This is important because silicosis is incurable and can only be eliminated by preventing worker exposure. Additionally, several studies have indicated inadequate occupational health and safety policies, weak inspection systems, inadequate monitoring and control technologies, and inadequate occupational health and hygiene skills. Furthermore, there is a near-absence of silica dust analysis laboratories in southern Africa, except in South Africa. This protocol aims to systematically evaluate the effectiveness of respirable dust and respirable crystalline silica dust exposure evaluation and control methodology for the mining industry. The study will entail testing the effectiveness of current dust control measures for controlling microscale particles using various exposure dose metrics, such as mass, number, and lung surface area concentrations. This will be achieved using a portable Fourier transform infrared spectroscope (FTIR) (Nanozen Industries Inc., Burnaby, BC, Canada), the Nanozen DustCount, which measures both the mass and particle size distribution. The surface area concentration will be analysed by inputting the particle size distribution (PSD) results into the Multiple-Path Particle Dosimetry Model (MPPD) to estimate the retained and cleared doses. The MPPD will help us understand the sub-micron dust deposition and the reduction rate using the controls. To the best of our knowledge, the proposed approach has never been used elsewhere or in our settings. The proposed approach will reduce dependence on highly skilled individuals, reduce the turnaround sampling and analysis time, and provide a reference for regional harmonised occupational exposure limit (OEL) guidelines as a guiding document on how to meet occupational health, safety and environment (OHSE) requirements in ASM settings. Therefore, the outcome of this study will influence policy reforms and protect hundreds of thousands of employees currently working without any form of exposure prevention or protection. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

26 pages, 1643 KB  
Article
Methodologies of Care: A Multimodal, Participatory Research Approach with Vulnerable Families Among South African Communities
by James Reid, Chanté Johannes, Shenaaz Wareley, Collen Ngadhi, Avukonke Nginase, Katerina Demetriou and Nicolette V. Roman
Methods Protoc. 2026, 9(1), 11; https://doi.org/10.3390/mps9010011 - 13 Jan 2026
Viewed by 142
Abstract
Multimodal methods provide valuable opportunities within Participatory Action Research (PAR), to foster meaningful participation, and amplify marginalized voices. However, conventional research approaches have not always adequately captured the complex realities of the lived experiences of families, and multimodal techniques have remained underutilized for [...] Read more.
Multimodal methods provide valuable opportunities within Participatory Action Research (PAR), to foster meaningful participation, and amplify marginalized voices. However, conventional research approaches have not always adequately captured the complex realities of the lived experiences of families, and multimodal techniques have remained underutilized for the exploration of such experiences. This study aimed to explore the use of creative multimodal methods, within a PAR framework, grounded in care among vulnerable South African families. A qualitative design was adopted, incorporating Human-centered Design principles, within a PAR approach. The participants were recruited from the Saldanha Bay Municipality area (n = 70), as well as Mitchells Plain (n = 59). The multimodal methodology included Draw-and-Tell, painting, object and photo elicitation, I-Poems, and LEGO®-based activities. Data were annotated and transcribed verbatim, followed by thematic analysis. A total of 42 participants contributed towards the validation of the methods. The participants described experiences of deep emotional insight, self-reflection, and self-recognition, through engagement with the multimodal activities. The findings revealed that these approaches were: (1) credible, producing internally valid and contextually rich data; (2) contributory, generating original and applicable insights into family life; (3) communicable, offering accessible and structured ways for diverse participants to express their experiences; and (4) conforming, ensuring ethical engagement through inclusive participation. These findings demonstrate the potential of creative, arts-based, and participatory approaches, to advance methodological innovation in qualitative family research. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

15 pages, 1111 KB  
Article
Color Assessments and Glycolysis of Cetylpyridinium Chloride-Containing Aqueous Solutions and Commercial Mouthwashes
by Robert L. Karlinsey and Tamara R. Karlinsey
Methods Protoc. 2026, 9(1), 10; https://doi.org/10.3390/mps9010010 - 11 Jan 2026
Viewed by 216
Abstract
Background: Effective cetylpyridinium chloride (CPC)-based mouthwashes critically depend on maintaining maximum levels of bioavailable CPC to deliver optimum antimicrobial benefits. While this is traditionally assessed using cellulose-based methods, from economic and efficiency perspectives, there remains a need to identify other potential methods [...] Read more.
Background: Effective cetylpyridinium chloride (CPC)-based mouthwashes critically depend on maintaining maximum levels of bioavailable CPC to deliver optimum antimicrobial benefits. While this is traditionally assessed using cellulose-based methods, from economic and efficiency perspectives, there remains a need to identify other potential methods of assessing bioavailable CPC. Here, we explored whether quaternary ammonium compound (QAC) test strips are sensitive to CPC-based formulations, and if so, whether there might exist a possible correlation with glycolysis outcomes. Methods: Quantitative color parameters were obtained using spectrophotometric assessments of QAC test strips immersed in simple CPC solutions and eight commercial CPC-based mouthwashes available in the USA. Then, using our established glycolysis model, we assessed the glycolytic response of both the simple CPC solutions and commercial CPC-based mouthwashes, and compared these data sets. Results: Significant differences (p < 0.05) among the CPC simple solutions were found. Importantly, spectrophotometric assessments and glycolysis trials produced good correlations. Evaluations of the commercial mouthwashes further underlined this correlation, even though those that comprise zinc salts may impact QAC-based color. Conclusions: Based on these results, we believe the use of QAC test strips provides an attractive option to formulators and brands specializing in the development and/or testing of CPC-based oral care formulations. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

10 pages, 806 KB  
Protocol
An Improved Ferrozine-Based Protocol for Safe, Reproducible, and Accurate Quantification of Iron in Biological and Chemical Samples
by Chao Wang and Shan Zhang
Methods Protoc. 2026, 9(1), 9; https://doi.org/10.3390/mps9010009 - 9 Jan 2026
Viewed by 167
Abstract
Accurate quantification of iron is essential in biological, chemical, and nanomaterial research, yet commonly used ferrozine-based assays suffer from safety hazards, inconsistent reduction efficiency, and unstable absorbance readings. To address these issues, we systematically optimized the classical protocol and validated improvements that enhance [...] Read more.
Accurate quantification of iron is essential in biological, chemical, and nanomaterial research, yet commonly used ferrozine-based assays suffer from safety hazards, inconsistent reduction efficiency, and unstable absorbance readings. To address these issues, we systematically optimized the classical protocol and validated improvements that enhance both operational safety and analytical reproducibility. In this work, samples were digested using perchloric acid and hydrogen peroxide, reduced with hydroxylamine, and complexed with ferrozine, with all steps quantitatively evaluated to identify conditions that minimize variability. The optimized assay introduces three key refinements: combining the two traditional hydroxylamine additions into a single reduction step, extending the post-complexation incubation to 2 h to ensure complete formation of the Fe2+–ferrozine complex, and performing digestion exclusively in 5 mL screw-cap polypropylene tubes to eliminate tube-bursting events frequently observed with flip-cap formats. Kinetic analysis confirmed that absorbance at 562 nm reaches a stable plateau after 2 h, and the resulting standard curve exhibited excellent linearity (R2 = 0.9999). These improvements significantly enhance precision, safety, and ease of implementation. The refined method is broadly applicable and enables reliable quantification of iron in tissues, cultured cells, aqueous solutions, and iron-containing nanomaterials. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

19 pages, 1836 KB  
Protocol
Decoding Cerebrospinal Fluid: Integrative Metabolomics Across Multiple Platforms
by Antoine Presset, Sylvie Bodard, Antoine Lefèvre, Edward Oujagir, Camille Dupuy, Jean-Michel Escoffre and Lydie Nadal-Desbarats
Methods Protoc. 2026, 9(1), 8; https://doi.org/10.3390/mps9010008 - 8 Jan 2026
Viewed by 271
Abstract
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized [...] Read more.
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized protocol for CSF collection along with an integrative multiplatform metabolomic workflow that combines proton nuclear magnetic resonance spectroscopy (1H-NMRS) and high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Integrating these complementary analytical modalities enhances metabolite coverage and improves analytical robustness, enabling a more comprehensive and reliable characterization of the CSF metabolome. This workflow supports the discovery of potential biomarkers and advances our understanding of neurochemical alterations within the CNS. Full article
(This article belongs to the Section Omics and High Throughput)
Show Figures

Figure 1

22 pages, 396 KB  
Article
Repeatability and Variability of a High-Fat High-Fructose Diet-Induced Metabolic Syndrome Model in Young Adult Male Wistar Rats
by Danail Pavlov, Silvia Gancheva, Klementina Moneva-Marinova, Antoaneta Georgieva, Milena Todorova, Nadezhda Stefanova, Mehmed Reyzov, Elis Rafailova, Miroslav Eftimov, Maria Tzaneva, Stefka Valcheva-Kuzmanova and Maria Zhelyazkova-Savova
Methods Protoc. 2026, 9(1), 7; https://doi.org/10.3390/mps9010007 - 6 Jan 2026
Viewed by 427
Abstract
Metabolic syndrome is a disorder of energy metabolism characterized by persistently high prevalence and significant medical and economic burden on society. An effective animal model that closely replicates the key features of the syndrome in humans is essential for evaluating therapeutic strategies aimed [...] Read more.
Metabolic syndrome is a disorder of energy metabolism characterized by persistently high prevalence and significant medical and economic burden on society. An effective animal model that closely replicates the key features of the syndrome in humans is essential for evaluating therapeutic strategies aimed at improving health outcomes. High-calorie diet-induced animal models of metabolic syndrome are preferred by many research groups for studying its pathogenesis, prevention and therapy. However, there are numerous variations in the types and proportions of carbohydrates and/or fats in the diets used. In 2015, our research team developed a diet-induced model of metabolic syndrome in young adult male Wistar rats that was based on adding 17% animal fat and 17% fructose to the standard rat chow and 10% fructose to the drinking water. This model reliably induced the morphometric and biochemical alterations that represent the core diagnostic features of the syndrome in humans. Since its initial introduction, we have utilized the high-fat high-fructose diet-induced model of metabolic syndrome/obesity in ten experimental studies. The current paper provides a protocol for applying the model, presents its repeatability and discusses the variability in the morphometric, biochemical, histopathological, immunohistochemical, and behavioral data of 10 experimental studies on Wistar rats. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
25 pages, 3923 KB  
Protocol
A Protocol for the Biomechanical Evaluation of the Types of Setting Motions in Volleyball Based on Kinematics and Muscle Synergies
by Valentina Lanzani, Cristina Brambilla, Nicol Moscatelli and Alessandro Scano
Methods Protoc. 2026, 9(1), 6; https://doi.org/10.3390/mps9010006 - 3 Jan 2026
Viewed by 373
Abstract
Setting is a fundamental movement in volleyball. While there are several optimal interpreters of the role in professional play, there is a surprising lack of advanced measurement techniques for the evaluation of the movement from a biomechanical perspective. We proposed a comprehensive motion [...] Read more.
Setting is a fundamental movement in volleyball. While there are several optimal interpreters of the role in professional play, there is a surprising lack of advanced measurement techniques for the evaluation of the movement from a biomechanical perspective. We proposed a comprehensive motion analysis protocol based on kinematics and motor coordination assessment (muscle synergies) for an in-depth analysis of the setting gesture. We also quantified the test–retest performance and discussed in detail the potential of the method. A single experienced player (age 27) tested and retested the protocol. The protocol was quite rapid to perform (about 30 min, including placement of kinematic and electromyography sensors on the patient’s body); we found high test and re-test consistency in different sessions within this participant (ICC > 0.90). These preliminary results suggest that the protocol could support the use of the state-of-the-art methods for motion analysis and biomechanics in volleyball and sports in general. Full article
(This article belongs to the Special Issue Methods on Sport Biomechanics—2nd Edition)
Show Figures

Figure 1

16 pages, 3267 KB  
Protocol
Human Amniotic Membrane Procurement Protocol and Evaluation of a Simplified Alkaline Decellularization Method
by David A. de la Garza Kalife, Antonio Rojas Murillo, Rodolfo Franco Marquez, Diana Laura Morales Wong, Jorge Lara Arias, José Felix Vilchez Cavazos, Hector Leija Gutierrez, Mario A. Simental Mendía and Elsa Nancy Garza Treviño
Methods Protoc. 2026, 9(1), 5; https://doi.org/10.3390/mps9010005 - 1 Jan 2026
Viewed by 350
Abstract
Amniotic membrane (AM) has gained wide application in regenerative medicine due to its biocompatibility and extracellular matrix (ECM) composition. Effective decellularization is essential to minimize immunogenicity while preserving tissue architecture. This study standardized AM procurement and compared a simplified alkaline-based decellularization protocol with [...] Read more.
Amniotic membrane (AM) has gained wide application in regenerative medicine due to its biocompatibility and extracellular matrix (ECM) composition. Effective decellularization is essential to minimize immunogenicity while preserving tissue architecture. This study standardized AM procurement and compared a simplified alkaline-based decellularization protocol with a conventional detergent–alkaline method, emphasizing practicality, histological integrity, and collagen preservation. Methods: Human AM was aseptically obtained from placental tissue and processed using either method. Histological analysis with hematoxylin eosin and Masson’s trichrome staining quantified nuclear content and collagen integrity. Results: The alkaline method achieved the greatest nuclear clearance but retained epithelial outlines, indicating partial persistence of cellular structures. In contrast, the detergent method achieved complete morphological decellularization but showed slightly higher residual nuclear signal. Masson’s trichrome staining revealed that the detergent-based method preserved collagen intensity most closely to native tissue (mean gray values: 128.3 ± 28.2 vs. 140.2 ± 23.4), while the alkaline group exhibited significantly reduced staining (177.8 ± 17.2; p < 0.001). Conclusions: the simplified alkaline method provided efficient decellularization with reduced cost, time, and cytotoxic risk, making it a practical approach for AM processing. However, partial ECM alteration suggests that detergent-based methods remain preferable when optimal structural preservation is required. Full article
(This article belongs to the Section Tissue Engineering and Organoids)
Show Figures

Figure 1

14 pages, 958 KB  
Article
Development of an ELISA Using Recombinant Chimeric SM Protein for Serological Detection of SARS-CoV-2 Antibodies
by Gulnur Nakhanova, Olga Chervyakova, Kamshat Shorayeva, Aisha Issabek, Sabina Moldagulova, Asankadyr Zhunushov, Aknur Ulankyzy, Aigerim Zhakypbek, Alisher Omurtay, Aziz Nakhanov, Zharkinay Absatova, Yeraly Shayakhmetov, Kuanysh Jekebekov, Temirlan Baiseit and Aslan Kerimbayev
Methods Protoc. 2026, 9(1), 4; https://doi.org/10.3390/mps9010004 - 22 Dec 2025
Viewed by 431
Abstract
The emergence and spread of coronavirus infections have created a necessity to develop serological methods for assessing population immunity. The enzyme-linked immunosorbent assay (ELISA) remains one of the most accessible and informative approaches for these purposes. The choice of recombinant proteins plays an [...] Read more.
The emergence and spread of coronavirus infections have created a necessity to develop serological methods for assessing population immunity. The enzyme-linked immunosorbent assay (ELISA) remains one of the most accessible and informative approaches for these purposes. The choice of recombinant proteins plays an important role in the sensitivity and specificity of the test system, and in this regard, the creation of a domestic ELISA based on the chimeric SM protein to the SARS-CoV-2 virus is relevant. In this work, a recombinant chimeric SM protein expressed in the E. coli system and purified using metal-affinity chromatography on Ni-NTA agarose was constructed and presented for the first time. An ELISA test system was developed and tested using panels of positive and negative sera, including samples obtained before the COVID-19 pandemic. The obtained sensitivity (90.48%) and specificity (93.65%) indicators with a ROC curve AUC = 0.9623 (OD450 = 0.213) indicate the diagnostic accuracy of the test system. The positive diagnostic ratio (LR+) = 14.25.0 indicates the reliability of a positive result. The domestically developed ELISA test system can be used for serological monitoring and assessment of the immune status of the population. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

12 pages, 1475 KB  
Article
Raman Spectroscopy for Testing Wood Pellets
by Tereza Zemánková, Martin Kizovský, Zdeněk Pilát, Pavlína Modlitbová, Jan Ježek, Martin Šiler and Ota Samek
Methods Protoc. 2026, 9(1), 3; https://doi.org/10.3390/mps9010003 - 21 Dec 2025
Viewed by 341
Abstract
The creation of bioenergy based on the biomass wood pellet industry, which accounts for the majority of the global biomass supply, is one of the most common and important ways to utilize waste wood, wood dust, and other byproducts of wood manufacturing, known [...] Read more.
The creation of bioenergy based on the biomass wood pellet industry, which accounts for the majority of the global biomass supply, is one of the most common and important ways to utilize waste wood, wood dust, and other byproducts of wood manufacturing, known as forestry residues. Pellet production processes might greatly benefit from fast monitoring systems that may allow for at least a semi-quantitative measurement of crucial parameters such as lignin and cellulose. The determination of lignin and cellulose is complicated and time-consuming because it usually requires time-demanding and labor-intensive sample preparation. This, however, might be a crucial problem. In this context, the application of Raman spectroscopic techniques is considered a promising approach, as it enables rapid, reliable, and label-free analysis of wood pellets, providing information about the chemical composition of the biomass, specifically lignin and cellulose. The purpose of this article is to report on the application of Raman spectroscopy exemplified by the detection of the lignin/cellulose ratio. In our methodological approach, we integrated the area under the selected Raman bands to avoid a large scatter of data when only the intensities of the bands were used. Moreover, the acquired Raman spectra displayed very strong signals from both substances, which contributes to the feasibility of the analysis even with a portable instrument. This study is expected to be of assistance in situations when the monitoring of the chemical changes and the quick inspection of pellets are required in near real time, online, and in situ. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

13 pages, 942 KB  
Article
Quantile Regression in Epidemiology: Capturing Heterogeneity Beyond the Mean
by Charalambos Gnardellis
Methods Protoc. 2026, 9(1), 2; https://doi.org/10.3390/mps9010002 - 21 Dec 2025
Viewed by 374
Abstract
Ordinary linear regression is the most common approach for modeling relationships between continuous outcomes and explanatory variables in epidemiological research. However, this method relies on restrictive assumptions—normality, homoscedasticity, and linearity—that are often violated in real-world biomedical data. When these assumptions fail, mean-based estimates [...] Read more.
Ordinary linear regression is the most common approach for modeling relationships between continuous outcomes and explanatory variables in epidemiological research. However, this method relies on restrictive assumptions—normality, homoscedasticity, and linearity—that are often violated in real-world biomedical data. When these assumptions fail, mean-based estimates may obscure important heterogeneity across the outcome distribution. This study aims to illustrate the methodological and interpretive advantages of quantile regression over ordinary regression in the analysis of epidemiological data. Secondary data were derived from a cross-sectional study of 1415 healthy Greek adults aged 25–82 years. Body mass index (BMI) served as the outcome variable, while sex, age, physical activity, dieting status, and daily energy intake were considered predictors. Both ordinary and quantile regression models were applied to estimate associations between BMI and its determinants across the 25th, 50th, 75th, and 90th quantiles. Ordinary regression identified positive associations of BMI with age and energy intake and a negative association with physical activity. Quantile regression revealed that these relationships were not constant across the BMI distribution. The inverse association with physical activity intensified at higher quantiles, and the gender effect reversed direction at the upper tail, suggesting heterogeneity was not captured by mean-based models. Quantile regression provides a distribution-sensitive alternative to ordinary regression, offering insight into covariate effects across different points of the outcome distribution and serving as both a robust analytical tool and an educational framework for applied epidemiological research. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

Back to TopTop