Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Authors = Zhuo-Rong Li

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8287 KiB  
Article
cDNA Cloning, Bioinformatics, and Expression Analysis of ApsANS in Acer pseudosieboldianum
by Mingrui Li, Zhuo Weng, Zihan Gong, Xiaoyu Li, Jiayi Ye, Yufu Gao and Liping Rong
Int. J. Mol. Sci. 2025, 26(5), 1865; https://doi.org/10.3390/ijms26051865 - 21 Feb 2025
Viewed by 597
Abstract
Anthocyanin synthetase (ANS), a key enzyme in the final step of the anthocyanin synthesis pathway, catalyzes the conversion of leucoanthocyanidins to anthocyanins. In this study, an ANS structural protein (TRINITY_DN18024_c0_g1) was found to be associated with anthocyanin accumulation in Acer pseudosieboldianum leaves, named [...] Read more.
Anthocyanin synthetase (ANS), a key enzyme in the final step of the anthocyanin synthesis pathway, catalyzes the conversion of leucoanthocyanidins to anthocyanins. In this study, an ANS structural protein (TRINITY_DN18024_c0_g1) was found to be associated with anthocyanin accumulation in Acer pseudosieboldianum leaves, named ApsANS. Real-time quantitative fluorescence PCR analysis revealed that the expression of ApsANS was significantly higher in red-leaved (variant) than green-leaved (wild-type) strains, which was consistent with the transcriptome data. The UPLC results showed that the cyanidin metabolites may be the key substance influencing the final color formation of Acer pseudosieboldianum. The ApsANS gene was cloned and analyzed through bioinformatics analysis. ApsANS has a total length of 1371 bp, and it encodes 360 amino acids. Analysis of the structural domain of the ApsANS protein revealed that ApsANS contains a PcbC functional domain. Protein secondary structure predictions indicate that α-helix, irregularly coiled, and extended chains are the major building blocks. Subcellular localization predicted that ApsANS might be localized in the nucleus. The phylogenetic tree revealed that ApsANS is relatively closely related to ApANS in Acer palmatum. The prediction of miRNA showed that the ApsANS gene is regulated by miR6200. This study provides a theoretical reference for further analyzing the regulatory mechanism of leaf color formation in Acer pseudosieboldianum. Full article
Show Figures

Figure 1

16 pages, 2119 KiB  
Article
Genome-Wide Analysis of the NBS-LRR Gene Family and SSR Molecular Markers Development in Solanaceae
by Xiaoming Song, Chunjin Li, Zhuo Liu, Rong Zhou, Shaoqin Shen, Tong Yu, Li Jia and Nan Li
Horticulturae 2024, 10(12), 1293; https://doi.org/10.3390/horticulturae10121293 - 4 Dec 2024
Cited by 1 | Viewed by 1581
Abstract
The Solanaceae family occupies a significant position, and the study of resistance genes within this family is extremely valuable. Therefore, our goal is to examine disease resistance genes based on the high-quality representative genomes of Solanaceae crops, and to develop corresponding Simple Sequence [...] Read more.
The Solanaceae family occupies a significant position, and the study of resistance genes within this family is extremely valuable. Therefore, our goal is to examine disease resistance genes based on the high-quality representative genomes of Solanaceae crops, and to develop corresponding Simple Sequence Repeat (SSR) molecular markers. Among nine representative Solanaceae species, we identified 819 NBS-LRR genes, which were further divided into 583 CC-NBS-LRR (CNL), 54 RPW8-NBS-LRR (RNL), and 182 TIR-NBS-LRR (TNL) genes. Whole genome duplication (WGD) has played a very important role in the expansion of NBS-LRR genes in Solanaceae crops. Gene structure analysis showed the striking similarity in the conserved motifs of NBS-LRR genes, which suggests a common ancestral origin, followed by evolutionary differentiation and amplification. Gene clustering and events like rearrangement within the NBS-LRR family contribute to their scattered chromosomal distribution. Our findings reveal that the majority of NBS-LRR family genes across all examined species predominantly localize to chromosomal termini. The analysis indicates the significant impact of the most recent whole genome triplication (WGT) on the NBS-LRR family genes. Moreover, we constructed Protein–Protein Interaction (PPI) networks for all 819 NBS-LRR genes, identifying 3820 potential PPI pairs. Notably, 97 genes displayed clear interactive relationships, highlighting their potential role in disease resistance processes. A total of 22,226 SSRs were detected from all genes of nine Solanaceae species. Among these SSRs, we screened 43 NBS-LRR-associated SSRs. Our study lays the foundation for further exploration into SSR development and genetic mapping related to disease resistance in Solanaceae species. Full article
(This article belongs to the Special Issue A Decade of Research on Vegetable Crops: From Omics to Biotechnology)
Show Figures

Figure 1

19 pages, 8708 KiB  
Article
Genome-Wide Analysis of GLK Gene Family in Four Cotton Species Provides Insights into Their Involvement in Cotton Abiotic Stress Response
by Rui Tang, Xin Zhou, Shuangshuang Weng, Fei Wang, Rong Li, Quanliang Xie, Zihan Li, Shuangquan Xie, Aiping Cao, Lu Zhuo, Manhong Wang and Hongbin Li
Agriculture 2024, 14(11), 2086; https://doi.org/10.3390/agriculture14112086 - 19 Nov 2024
Cited by 1 | Viewed by 1279
Abstract
Cotton is a crucial economic crop that supplies natural fibers for the textile industry, with fiber quality being greatly impacted by abiotic stress throughout its growth stages. The Golden2-Like (GLK) gene family plays a key role in plant development and adaptation [...] Read more.
Cotton is a crucial economic crop that supplies natural fibers for the textile industry, with fiber quality being greatly impacted by abiotic stress throughout its growth stages. The Golden2-Like (GLK) gene family plays a key role in plant development and adaptation to abiotic stress. However, the specific functions and regulatory mechanisms of GLK members in cotton remain largely unexplored. In this study, a thorough analysis of GLK in four cotton species (Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense) was conducted. A total of 198 GLK genes were identified in cotton. Conserved sequence analysis revealed that most GLK proteins contain two highly conserved domains: a MYB DNA-binding domain and a C-terminal (GCT) box. Promoter element analysis results show that the GLK gene family contains many stress response-related elements. Expression analysis demonstrated that GhGLK2, GhGLK11, GhGLK16, and GhGLK30 responded significantly to drought, salt, and temperature stresses. And GhGLK2, GhGLK13, GhGLK38, GhGLK42, and GhGLK46 responded significantly to cotton development. Yeast one-hybrid, yeast two-hybrid, and dual-luciferase assay results indicate that GhGLK2 interacts with GhGUN5, GhPIL6, GhNAC6, GhTPX2, and GhERF10. These findings suggest that these GhGLKs may play crucial roles in regulating the response to abiotic stress. Overall, this study provides a solid theoretical foundation for understanding the role of the GLK gene family in cotton’s response to abiotic stress. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

19 pages, 17761 KiB  
Article
Multi-Target Feeding-Behavior Recognition Method for Cows Based on Improved RefineMask
by Xuwen Li, Ronghua Gao, Qifeng Li, Rong Wang, Shanghao Liu, Weiwei Huang, Liuyiyi Yang and Zhenyuan Zhuo
Sensors 2024, 24(10), 2975; https://doi.org/10.3390/s24102975 - 8 May 2024
Cited by 2 | Viewed by 1555
Abstract
Within the current process of large-scale dairy-cattle breeding, to address the problems of low recognition-accuracy and significant recognition-error associated with existing visual methods, we propose a method for recognizing the feeding behavior of dairy cows, one based on an improved RefineMask instance-segmentation model, [...] Read more.
Within the current process of large-scale dairy-cattle breeding, to address the problems of low recognition-accuracy and significant recognition-error associated with existing visual methods, we propose a method for recognizing the feeding behavior of dairy cows, one based on an improved RefineMask instance-segmentation model, and using high-quality detection and segmentation results to realize the recognition of the feeding behavior of dairy cows. Firstly, the input features are better extracted by incorporating the convolutional block attention module into the residual module of the feature extraction network. Secondly, an efficient channel attention module is incorporated into the neck design to achieve efficient integration of feature extraction while avoiding the surge of parameter volume computation. Subsequently, the GIoU loss function is used to increase the area of the prediction frame to optimize the convergence speed of the loss function, thus improving the regression accuracy. Finally, the logic of using mask information to recognize foraging behavior was designed, and the accurate recognition of foraging behavior was achieved according to the segmentation results of the model. We constructed, trained, and tested a cow dataset consisting of 1000 images from 50 different individual cows at peak feeding times. The method’s effectiveness, robustness, and accuracy were verified by comparing it with example segmentation algorithms such as MSRCNN, Point_Rend, Cascade_Mask, and ConvNet_V2. The experimental results show that the accuracy of the improved RefineMask algorithm in recognizing the bounding box and accurately determining the segmentation mask is 98.3%, which is higher than that of the benchmark model by 0.7 percentage points; for this, the model parameter count size was 49.96 M, which meets the practical needs of local deployment. In addition, the technologies under study performed well in a variety of scenarios and adapted to various light environments; this research can provide technical support for the analysis of the relationship between cow feeding behavior and feed intake during peak feeding periods. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
FNeXter: A Multi-Scale Feature Fusion Network Based on ConvNeXt and Transformer for Retinal OCT Fluid Segmentation
by Zhiyuan Niu, Zhuo Deng, Weihao Gao, Shurui Bai, Zheng Gong, Chucheng Chen, Fuju Rong, Fang Li and Lan Ma
Sensors 2024, 24(8), 2425; https://doi.org/10.3390/s24082425 - 10 Apr 2024
Cited by 9 | Viewed by 2258
Abstract
The accurate segmentation and quantification of retinal fluid in Optical Coherence Tomography (OCT) images are crucial for the diagnosis and treatment of ophthalmic diseases such as age-related macular degeneration. However, the accurate segmentation of retinal fluid is challenging due to significant variations in [...] Read more.
The accurate segmentation and quantification of retinal fluid in Optical Coherence Tomography (OCT) images are crucial for the diagnosis and treatment of ophthalmic diseases such as age-related macular degeneration. However, the accurate segmentation of retinal fluid is challenging due to significant variations in the size, position, and shape of fluid, as well as their complex, curved boundaries. To address these challenges, we propose a novel multi-scale feature fusion attention network (FNeXter), based on ConvNeXt and Transformer, for OCT fluid segmentation. In FNeXter, we introduce a novel global multi-scale hybrid encoder module that integrates ConvNeXt, Transformer, and region-aware spatial attention. This module can capture long-range dependencies and non-local similarities while also focusing on local features. Moreover, this module possesses the spatial region-aware capabilities, enabling it to adaptively focus on the lesions regions. Additionally, we propose a novel self-adaptive multi-scale feature fusion attention module to enhance the skip connections between the encoder and the decoder. The inclusion of this module elevates the model’s capacity to learn global features and multi-scale contextual information effectively. Finally, we conduct comprehensive experiments to evaluate the performance of the proposed FNeXter. Experimental results demonstrate that our proposed approach outperforms other state-of-the-art methods in the task of fluid segmentation. Full article
Show Figures

Figure 1

29 pages, 3121 KiB  
Review
Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review
by Yue Zhuo, He-Li Cheng, Yong-Gang Zhao and Hai-Rong Cui
Pharmaceutics 2024, 16(1), 151; https://doi.org/10.3390/pharmaceutics16010151 - 22 Jan 2024
Cited by 51 | Viewed by 8326
Abstract
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical [...] Read more.
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids. Full article
Show Figures

Figure 1

10 pages, 3642 KiB  
Article
Studies of Dopamine Oxidation Process by Atmospheric Pressure Glow Discharge Mass Spectrometry
by Dongli Dai, Yueqin Zhu, Zhenli Zhu, Rong Qian, Shangjun Zhuo, Anqi Liu, Xian Li, Wei Li and Qiao Chen
Molecules 2023, 28(9), 3844; https://doi.org/10.3390/molecules28093844 - 1 May 2023
Cited by 7 | Viewed by 2774
Abstract
An atmospheric pressure glow discharge ionisation source was constructed and utilized to study the dopamine (DA) oxidation process coupling with mass spectrometry. During the DA oxidation process catalysed by polyphenol oxidase (PPO), six cationic intermediates were directly detected by the atmospheric pressure glow [...] Read more.
An atmospheric pressure glow discharge ionisation source was constructed and utilized to study the dopamine (DA) oxidation process coupling with mass spectrometry. During the DA oxidation process catalysed by polyphenol oxidase (PPO), six cationic intermediates were directly detected by the atmospheric pressure glow discharge mass spectrometry (APGD-MS). Combined with tandem mass spectrometry, the structures of the dopamine o-semiquinone radical (DASQ) and leukodopaminochrome radical (LDAC) intermediates and structures of the isomers of dopaminochrome (DAC) and 5,6-dihydroxyindole (DHI) were further characterised with the introduction of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and deuterium oxide (D2O) to APGD-MS. Meanwhile, UV–Vis studies confirmed the important role of PPO in catalyzing the DA oxidation reaction. Based on APGD-MS studies, a possible mechanism could be proposed for DA oxidation catalysed by PPO. Furthermore, APGD-MS could provide possibilities for the effective detection and characterisation of short-lived intermediates, even in complicated systems. Full article
(This article belongs to the Special Issue Mass Spectrometry Analysis II)
Show Figures

Figure 1

17 pages, 2943 KiB  
Article
Understanding Relationships between Cultivated Land Pressure and Economic Development Level across Spatiotemporal Characteristics: Implications for Supporting Land-Use Management Decisions
by Dan Yang, Zhenyue Liu, Pengyan Zhang, Zhuo Chen, Yinghui Chang, Qianxu Wang, Xinyue Zhang, Rong Lu, Mengfan Li, Guangrui Xing and Guanghui Li
Int. J. Environ. Res. Public Health 2022, 19(23), 16362; https://doi.org/10.3390/ijerph192316362 - 6 Dec 2022
Cited by 6 | Viewed by 2316
Abstract
Food security is crucial to world peace. Economic development has posed a great threat to the protection of cultivated land. Considering 20 cities in the lower Yellow River (AALYR) as the study area, this study explored the spatial evolution of cultivated land pressure [...] Read more.
Food security is crucial to world peace. Economic development has posed a great threat to the protection of cultivated land. Considering 20 cities in the lower Yellow River (AALYR) as the study area, this study explored the spatial evolution of cultivated land pressure (CLP) and economic development from 1998 to 2018, revealing the spatiotemporal coupling characteristics of the CLP index and economic development. The main results are as follows: we discerned that CLP and economic development have an obvious spatiotemporal consistency during 1998–2018. The CLP showed a spatial pattern of overall stability, as well as local changes. Most prefecture-level cities experienced decreased significantly in CLP and improvements in food security. Overall, there were regional differences in the coupling relationships between CLP and economic development in the study area. The explanatory power of the proportion of secondary and tertiary industries were significantly higher than other driving factors. Therefore, while developing the economy rapidly, we should also protect cultivated land resources and improve the coordination level between them, which is essential to guarantee food security and a steady economic development. Full article
(This article belongs to the Special Issue Management Countermeasures of Ecosystem Degradation)
Show Figures

Figure 1

15 pages, 2332 KiB  
Article
Effect of Breastmilk Microbiota and Sialylated Oligosaccharides on the Colonization of Infant Gut Microbial Community and Fecal Metabolome
by Juan Ding, Runze Ouyang, Sijia Zheng, Yanfeng Wang, Yan Huang, Xiao Ma, Yuxin Zou, Rong Chen, Zhihong Zhuo, Zhen Li, Qi Xin, Lina Zhou, Surong Mei, Jingyu Yan, Xin Lu, Zhigang Ren, Xinyu Liu and Guowang Xu
Metabolites 2022, 12(11), 1136; https://doi.org/10.3390/metabo12111136 - 18 Nov 2022
Cited by 13 | Viewed by 3595
Abstract
The complex microbiota and sialylated oligosaccharides in breastmilk are important bioactive components that affect the gut microbiota. However, the effect of breastmilk microbiota and sialylated oligosaccharides on the gut microbiota during the neonatal period has been largely overlooked. Here, 16S rRNA gene sequencing [...] Read more.
The complex microbiota and sialylated oligosaccharides in breastmilk are important bioactive components that affect the gut microbiota. However, the effect of breastmilk microbiota and sialylated oligosaccharides on the gut microbiota during the neonatal period has been largely overlooked. Here, 16S rRNA gene sequencing and metabolomics analysis were applied to the breastmilk and feces of 69 newborns to clarify the link between breastmilk components and the newborn gut. Results showed that Staphylococcus, Enterococcus, and Bacteroides were commonly shared and positively correlated between breastmilk and the neonatal intestine and they were the main bacteria of breastmilk that interacted with the newborn fecal metabolome. Breastmilk Staphylococcus mainly interacted with amino acids, whereas Bacteroides was involved in the tryptophan, nucleotide, and vitamin metabolism. Breastmilk sialylated oligosaccharides were related to Bacteroides and amino acids of the newborn fecal metabolites. Moreover, Bacteroides was related to the interaction between breastmilk 3′-sialyllactose and newborn fecal metabolites in the mediation effect models. Finally, we pointed out that breastmilk Bacteroides was important in the milk–gut interaction, and it was negatively associated with waist circumference in infants aged 1 year. Our study provides a scientific basis for understanding the role of breastmilk in the development of newborn gut microbiota and metabolome. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

19 pages, 907 KiB  
Review
Targeted Approaches to HER2-Low Breast Cancer: Current Practice and Future Directions
by Heng-Zhou Lai, Jie-Rong Han, Xi Fu, Yi-Feng Ren, Zhuo-Hong Li and Feng-Ming You
Cancers 2022, 14(15), 3774; https://doi.org/10.3390/cancers14153774 - 3 Aug 2022
Cited by 12 | Viewed by 6968
Abstract
HER2-low breast cancer (BC) has a poor prognosis, making the development of more suitable treatment an unmet clinical need. While chemotherapy is the main method of treatment for HER2-low BC, not all patients benefit from it. Antineoplastic therapy without chemotherapy has shown promise [...] Read more.
HER2-low breast cancer (BC) has a poor prognosis, making the development of more suitable treatment an unmet clinical need. While chemotherapy is the main method of treatment for HER2-low BC, not all patients benefit from it. Antineoplastic therapy without chemotherapy has shown promise in clinical trials and is being explored further. As quantitative detection techniques become more advanced, they assist in better defining the expression level of HER2 and in guiding the development of targeted therapies, which include directly targeting HER2 receptors on the cell surface, targeting HER2-related intracellular signaling pathways and targeting the immune microenvironment. A new anti-HER2 antibody-drug conjugate called T-DM1 has been successfully tested and found to be highly effective in clinical trials. With this progress, it could eventually be transformed from a disease without a defined therapeutic target into a disease with a defined therapeutic molecular target. Furthermore, efforts are being made to compare the sequencing and combination of chemotherapy, endocrine therapy, and HER2-targeted therapy to improve prognosis to customize the subtype of HER2 low expression precision treatment regimens. In this review, we summarize the current and upcoming treatment strategies, to achieve accurate management of HER2-low BC. Full article
(This article belongs to the Special Issue Precision Medicine in Breast Cancer Treatment)
Show Figures

Figure 1

12 pages, 4320 KiB  
Article
CTAB Enhanced Room-Temperature Detection of NO2 Based on MoS2-Reduced Graphene Oxide Nanohybrid
by Wenbo Li, Hao Li, Rong Qian, Shangjun Zhuo, Pengfei Ju and Qiao Chen
Nanomaterials 2022, 12(8), 1300; https://doi.org/10.3390/nano12081300 - 11 Apr 2022
Cited by 13 | Viewed by 3358
Abstract
A new NO2 nanohybrid of a gas sensor (CTAB-MoS2/rGO) was constructed for sensitive room-temperature detection of NO2 by 3D molybdenum disulfide (MoS2) and reduced graphene oxide (rGO), assisted with hexadecyl trimethyl ammonium bromide (CTAB). In comparison with [...] Read more.
A new NO2 nanohybrid of a gas sensor (CTAB-MoS2/rGO) was constructed for sensitive room-temperature detection of NO2 by 3D molybdenum disulfide (MoS2) and reduced graphene oxide (rGO), assisted with hexadecyl trimethyl ammonium bromide (CTAB). In comparison with MoS2 and MoS2/rGO, the BET and SEM characterization results depicted the three-dimensional structure of the CTAB-MoS2/rGO nanohybrid, which possessed a larger specific surface area to provide more active reaction sites to boost its gas-sensing performance. Observations of the gas-sensing properties indicated that the CTAB-MoS2/rGO sensor performed a high response of 45.5% for 17.5 ppm NO2, a remarkable selectivity of NO2, an ultra-low detection limit of 26.55 ppb and long-term stability for a 30-day measurement. In addition, the response obtained for the CTAB-MoS2/rGO sensor was about two to four times that obtained for the MoS2/rGO sensor and the MoS2 sensor toward 8 ppm NO2, which correlated with the heterojunction between MoS2 and rGO, and the improvement in surface area and conductivity correlated with the introduction of CTAB and rGO. The excellent performance of the CTAB-MoS2/rGO sensor further suggested the advantage of CTAB in assisting a reliable detection of trace NO2 and an alternative method for highly efficiently detecting NO2 in the environment. Full article
(This article belongs to the Topic Advances and Applications of 2D Materials)
Show Figures

Graphical abstract

15 pages, 2989 KiB  
Article
Dehydration-Induced WRKY Transcriptional Factor MfWRKY70 of Myrothamnus flabellifolia Enhanced Drought and Salinity Tolerance in Arabidopsis
by Xiang-Ying Xiang, Jia Chen, Wen-Xin Xu, Jia-Rui Qiu, Li Song, Jia-Tong Wang, Rong Tang, Duoer Chen, Cai-Zhong Jiang and Zhuo Huang
Biomolecules 2021, 11(2), 327; https://doi.org/10.3390/biom11020327 - 22 Feb 2021
Cited by 43 | Viewed by 4564
Abstract
The resurrection plants Myrothamnus flabellifolia can survive long term severe drought and desiccation conditions and soon recover after rewatering. However, few genes related to such excellent drought tolerance and underlying molecular mechanism have been excavated. WRKY transcription factors play critical roles in biotic [...] Read more.
The resurrection plants Myrothamnus flabellifolia can survive long term severe drought and desiccation conditions and soon recover after rewatering. However, few genes related to such excellent drought tolerance and underlying molecular mechanism have been excavated. WRKY transcription factors play critical roles in biotic and abiotic stress signaling, in which WRKY70 functions as a positive regulator in biotic stress response but a negative regulator in abiotic stress signaling in Arabidopsis and some other plant species. In the present study, the functions of a dehydration-induced MfWRKY70 of M. flabellifolia participating was investigated in the model plant Arabidopsis. Our results indicated that MfWRKY70 was localized in the nucleus and could significantly increase tolerance to drought, osmotic, and salinity stresses by promoting root growth and water retention, as well as enhancing the antioxidant enzyme system and maintaining reactive oxygen species (ROS) homeostasis and membrane-lipid stability under stressful conditions. Moreover, the expression of stress-associated genes (P5CS, NCED3 and RD29A) was positively regulated in the overexpression of MfWRKY70 Arabidopsis. We proposed that MfWRKY70 may function as a positive regulator for abiotic stress responses and can be considered as a potential gene for improvement of drought and salinity tolerance in plants. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 2606 KiB  
Article
Blocking Effect of Demethylzeylasteral on the Interaction between Human ACE2 Protein and SARS-CoV-2 RBD Protein Discovered Using SPR Technology
by Zhi-Ling Zhu, Xiao-Dan Qiu, Shuo Wu, Yi-Tong Liu, Ting Zhao, Zhong-Hao Sun, Zhuo-Rong Li and Guang-Zhi Shan
Molecules 2021, 26(1), 57; https://doi.org/10.3390/molecules26010057 - 24 Dec 2020
Cited by 27 | Viewed by 5384
Abstract
The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting [...] Read more.
The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections. Full article
Show Figures

Figure 1

21 pages, 5837 KiB  
Article
Towards a Valuation and Taxation Information Model for Chinese Rural Collective Construction Land
by Zhongguo Xu, Yuefei Zhuo, Guan Li, Rong Liao and Cifang Wu
Sustainability 2019, 11(23), 6610; https://doi.org/10.3390/su11236610 - 22 Nov 2019
Cited by 8 | Viewed by 3808
Abstract
To promote rural revitalisation, China’s central government revised the land administration law to allow rural collective construction land (RCL) to be traded in the market and attract private and financial capitals into rural investment and development. However, the land value appreciation income of [...] Read more.
To promote rural revitalisation, China’s central government revised the land administration law to allow rural collective construction land (RCL) to be traded in the market and attract private and financial capitals into rural investment and development. However, the land value appreciation income of the market access is closely related to geographical location. Hence, the value appreciation of RCL is enormous in villages around cities and towns. By contrast, the land value appreciation of RCL is low in villages away from cities and towns. This marked difference will lead to a significant impact on the rural social structure. To avoid the excessive widening of the income gap in rural areas, China’s central government attempted to conduct land value capture by revising and implementing land tax laws and reasonably distributing the value appreciation income of market access amongst the state, collectives and individuals. In response to the requirements of land reform, this study firstly identifies the legal constraints on the taxation of RCL in China through the structured retrieval and organisation of legal documents on land taxation. Thereafter, the technical constraints are analysed through the structural retrieval and organisation of the technical specifications of China’s land valuation. Lastly, this study proposes a land administration domain model (LADM) valuation and taxation information model on the basis of the aforementioned constraints. The major contents of the proposed model encompass improving the information management of taxpayer identity registration, supplementing land valuation methods and strengthening valuation information of the large-scale influencing factors. The proposed model is the technical basis to prompt the interconnection between the real estate registration and real estate taxation systems, which will be conducive to the efficient collaboration of the two systems. Full article
(This article belongs to the Special Issue Real Estate Landscapes: Appraisal, Accounting and Assessment)
Show Figures

Figure 1

14 pages, 774 KiB  
Article
Effect of Freezing on Photosystem II and Assessment of Freezing Tolerance of Tea Cultivar
by Yun-Long Shi, Zhuo-Yu Cai, Da Li, Jian-Liang Lu, Jian-Hui Ye, Yue-Rong Liang and Xin-Qiang Zheng
Plants 2019, 8(10), 434; https://doi.org/10.3390/plants8100434 - 22 Oct 2019
Cited by 16 | Viewed by 6693
Abstract
Freezing tolerant tea cultivars are urgently needed. The tea cultivars with highly freezing tolerance showed resistance to freezing stress induced photoinhibition. Freezing sensitivity index (H) of 47 tea clonal cultivars was investigated after severe freezing winter in 2016. To develop instrumental methods for [...] Read more.
Freezing tolerant tea cultivars are urgently needed. The tea cultivars with highly freezing tolerance showed resistance to freezing stress induced photoinhibition. Freezing sensitivity index (H) of 47 tea clonal cultivars was investigated after severe freezing winter in 2016. To develop instrumental methods for freezing tolerance selection, the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm) and leaf color indicator a on the Hunter color scale were determined on control group (non-frozen) and frozen group (being frozen at −15 °C for 2 h and then stood at 20 °C for 5 h) of the cultivars. When the two indicators were expressed as the ratios (RFv/Fm and Ra) of frozen group to control group, linear regression of the freezing sensitivity index (H) upon the RFv/Fm and Ra produced significant relationship respectively, i.e., H = 60.31 − 50.09 RFv/Fm (p < 0.01) and H = 30.03 − 10.82 Ra (p < 0.01). Expression of gene psbA encoding D1 protein and gene psbD encoding D2 protein in PSII showed that the frezzing tolerant tea cultivars maintained a high expression level of psbA after freezing stress, which is considered to be beneficial to de novo synthesis of D1 protein and sustaining PSII activity. These findings can provide instrumental tools for assessing freezing tolerance of tea cultivars in tea breeding program. Full article
(This article belongs to the Special Issue Plant and Microbe Adaptations to Cold)
Show Figures

Figure 1

Back to TopTop