Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (338)

Search Parameters:
Authors = Tian Qiu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11171 KiB  
Article
Artesunate Ameliorates SLE Atherosclerosis Through PPARγ-Driven Cholesterol Efflux Restoration and Disruption of Lipid Raft-Organized TLR9/MyD88 Signaling Pathway
by Miao Zhang, Xinyu Pan, Yuanfang He, Kairong Sun, Zhiyu Wang, Weiyu Tian, Haonan Qiu, Yiqi Wang, Chengping Wen and Juan Chen
Biomolecules 2025, 15(8), 1078; https://doi.org/10.3390/biom15081078 - 25 Jul 2025
Viewed by 305
Abstract
Systemic lupus erythematosus (SLE) is characterized by autoimmune dysregulation, elevated autoantibody production, and persistent inflammation, predisposing patients to atherosclerosis (AS). Atherogenesis is dependent on lipid homeostasis and inflammatory processes, with the formation of lipid-laden, macrophage-derived foam cells (MDFC) essential for atherosclerotic lesion progression. [...] Read more.
Systemic lupus erythematosus (SLE) is characterized by autoimmune dysregulation, elevated autoantibody production, and persistent inflammation, predisposing patients to atherosclerosis (AS). Atherogenesis is dependent on lipid homeostasis and inflammatory processes, with the formation of lipid-laden, macrophage-derived foam cells (MDFC) essential for atherosclerotic lesion progression. Elevated cholesterol levels within lipid rafts trigger heightened pro-inflammatory responses in macrophages via Toll-like receptor 9 (TLR9). Artesunate (ART), an artemisinin derivative sourced from Artemisia annua, exhibits therapeutic potential in modulating inflammation and autoimmune conditions. Nonetheless, its impact and mechanisms in SLE-associated AS (SLE-AS) remain largely unexplored. Our investigation demonstrated that ART could effectively ameliorate lupus-like symptoms and atherosclerotic plaque development in SLE-AS mice. Moreover, ART enhanced cholesterol efflux from MDFC by upregulating ABCA1, ABCG1, and SR-B1 both in vivo and in vitro. Moreover, ART reduced cholesterol accumulation in bone marrow-derived macrophages (BMDMs), thereby diminishing TLR9 recruitment to lipid rafts. ART also suppressed TLR9 expression and its downstream effectors in the kidney and aorta of SLE-AS mice, attenuating the TLR9-mediated inflammatory cascade in CPG2395 (ODN2395)-stimulated macrophages. Through bioinformatics analysis and experimental validation, PPARγ was identified as a pivotal downstream mediator of ART in macrophages. Depleting PPARγ levels reduced the expression of ABCA1, ABCG1, and SR-B1 in macrophages, consequently impeding cholesterol efflux. In conclusion, these findings suggest that ART ameliorates SLE-AS by restoring cholesterol homeostasis through the PPARγ-ABCA1/ABCG1/SR-B1 pathway and suppressing lipid raft-driven TLR9/MyD88 inflammation. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

24 pages, 4108 KiB  
Article
Examination of the Coordination and Impediments of Rural Socio-Economic-Spatial Coupling in Western Hunan from the Standpoint of Sustainable Development
by Chengjun Tang, Tian Qiu, Shaoyao He, Wei Zhang, Huizi Zeng and Yiling Li
Sustainability 2025, 17(15), 6691; https://doi.org/10.3390/su17156691 - 22 Jul 2025
Viewed by 208
Abstract
Clarifying the coordination and impediments of social, economic, and spatial connection in rural areas is essential for advancing rural revitalization, urban-rural integration, and regional coordinated development. Utilizing the 24 counties and districts in western Hunan as case studies, we developed an evaluation index [...] Read more.
Clarifying the coordination and impediments of social, economic, and spatial connection in rural areas is essential for advancing rural revitalization, urban-rural integration, and regional coordinated development. Utilizing the 24 counties and districts in western Hunan as case studies, we developed an evaluation index system for sustainable rural development across three dimensions: social, economic, and spatial. We employed the coupling model, coordination model, and obstacle factor model to investigate the comprehensive development level, coupling and coordination status, and obstacle factors of the villages in the study area at three temporal points: 2002, 2012, and 2022. The findings indicate the following: (1) The degree of rural development in western Hunan has escalated swiftly throughout the study period, transitioning from relative homogeneity to a heterogeneous developmental landscape, accompanied by issues such as inadequate development and regional polarization. (2) The overall rural social, economic, and spatial indices are low, and the degree of coupling has increased variably across different study periods; the average coordination degree has gradually improved over time, yet the level of coordination remains low, and spatial development is unbalanced. (3) The criterion-level impediments hindering the sustainable development of rural society, economy, and space are, in descending order, social factors, spatial factors, and economic factors. The urbanization rate, total fixed investment rate, and arable land change rate are the primary impediments in most counties and cities. The study’s findings will inform the planning of rural development in ethnic regions, promote sustainable social and spatial advancement in the countryside, and serve as a reference for rural revitalization efforts. Full article
Show Figures

Figure 1

17 pages, 24576 KiB  
Article
Gallic Acid Alleviates Acetaminophen-Induced Acute Liver Injury by Regulating Inflammatory and Oxidative Stress Signaling Proteins
by Jing Zhao, Yuan Zhao, Shuzhe Song, Sai Zhang, Guodong Yang, Yan Qiu and Weishun Tian
Antioxidants 2025, 14(7), 860; https://doi.org/10.3390/antiox14070860 - 14 Jul 2025
Viewed by 351
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic [...] Read more.
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic window. This study systematically investigated the hepatoprotective effects and underlying molecular mechanisms of GA against APAP-induced acute liver injury (ALI). Mice received an intraperitoneal injection of APAP (300 mg/kg), followed by an oral administration of GA (50 or 100 mg/kg) or NAC (150 mg/kg) 1 h post-intoxication. Both GA and NAC significantly ameliorated hypertrophy and histopathological damage, as evidenced by reduced serum ALT/AST levels and inflammatory cytokines. TUNEL staining revealed a marked suppression of apoptotic and necrotic cell death, further supported by the downregulation of pro-apoptotic Bax and the upregulation of anti-apoptotic Bcl-2 mRNA expression. GA and NAC treatment restored hepatic glutathione (GSH) content, enhanced antioxidant enzyme gene expression, and reduced malondialdehyde (MDA) accumulation. Mechanistically, GA and NAC inhibited MAPK phosphorylation while activating AMPK signaling. Taken together, these findings demonstrate that GA mitigates APAP-induced ALI by modulating oxidative stress and inflammation through the regulation of MAPK/AMPK signaling proteins. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

20 pages, 1826 KiB  
Article
Antioxidant Activity of Radix Cyathula officinalis Kuan Polysaccharides and Their Modulatory Effects on the Gut Microbiota of Caenorhabditis elegans
by Rui Li, Xinyue Chen, Lijuan Wu, Lei Xie, Mengqiu Chen, Yujie Qiu, Fan Liu, Ji Chen and Mengliang Tian
Curr. Issues Mol. Biol. 2025, 47(7), 538; https://doi.org/10.3390/cimb47070538 - 11 Jul 2025
Viewed by 357
Abstract
Polysaccharides isolated from Radix Cyathula officinalis Kuan (RCP) are key bioactive components with immunomodulatory, antioxidant, and anti-inflammatory effects. Their efficacy varies according to their geographic origin and processing methods. However, the systemic anti-aging mechanisms and antioxidant efficacy of RCP have not yet been [...] Read more.
Polysaccharides isolated from Radix Cyathula officinalis Kuan (RCP) are key bioactive components with immunomodulatory, antioxidant, and anti-inflammatory effects. Their efficacy varies according to their geographic origin and processing methods. However, the systemic anti-aging mechanisms and antioxidant efficacy of RCP have not yet been comprehensively characterized. This study investigated the antioxidant and anti-aging effects of RCP in vitro and in vivo using a Caenorhabditis elegans heat stress model, comparing rRCP (RCP from raw samples) and wRCP (RCP from wine-processed samples) from key production areas. Among these, the RCP collected from the Zhonggang region exhibited the strongest antioxidant activity. Both rRCP and wRCP enhanced worms’ oxidative stress resistance, reduced their ROS levels, increased their antioxidant enzyme activities, prolonged their lifespan, and improved their reproductive capacity under thermal stress. Notably, the wRCP exhibited more pronounced benefits. Additionally, 16S rRNA sequencing revealed that RCP altered the gut microbiota’s composition by increasing its microbial diversity, enriching beneficial bacteria like Bacillus, and decreasing potential pathogens such as Escherichia and Citricoccus. The treatment also led to an increased abundance of Firmicutes and a slight reduction in Bacteroidetes. Collectively, these findings suggest that RCP, particularly wRCP, holds promise as a therapeutic agent for combating oxidative stress and promoting longevity, in part by modulating the gut microbiome. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

34 pages, 41240 KiB  
Article
Mechanisms of Geometric Parameter Influence on Fast Transient Response Process of the Flow Path Under Inertial Forces
by Kang Zuo, Shuiting Ding, Peng Liu, Tian Qiu, Jiajun Wang, Zijun Li and Chuankai Liu
Appl. Sci. 2025, 15(13), 7320; https://doi.org/10.3390/app15137320 - 29 Jun 2025
Viewed by 199
Abstract
This study investigates the evolution of axial loads in the secondary air system following shaft failure in aeroengines. It addresses a significant gap in the existing literature regarding the effects of inertial forces within the cavity, as well as the unclear mechanisms by [...] Read more.
This study investigates the evolution of axial loads in the secondary air system following shaft failure in aeroengines. It addresses a significant gap in the existing literature regarding the effects of inertial forces within the cavity, as well as the unclear mechanisms by which the geometric parameters of the flow path influence these forces. A combined approach of three-dimensional simulation and experimental validation is utilized to propose a method for analyzing the evolution of axial loads during the fast transient response process, based on changes in the Cavity Inertial Force Dominant Zone (CIDZ). The research examines both single cavities and cavity–tube combination flow paths to explore the impact of inertial forces on the axial load response process and, subsequently, the influence of flow path geometric parameters on this response. The results demonstrate that inertial forces within the cavity and the geometric parameters of the flow path significantly affect the axial load response process by influencing the intensity, phase, and minor oscillation amplitude of the axial load response at various end faces within the cavity. The variation in a single geometric parameter in this study resulted in a maximum impact exceeding 500% on the differences in axial loads at different end faces within the cavity. The study offers theoretical support for the load response analysis of the secondary air system in the context of shaft failure, serving as a foundation for safety design related to this failure mode. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

12 pages, 2552 KiB  
Article
Investigating the Mechanism of Emodin in Rheumatoid Arthritis Through the HIF-1α/NLRP3 Pathway and Mitochondrial Autophagy
by Dehao Du, Linlan Zhou, Jiayu Tian, Lianying Cheng, Han Zhang, Yifu Tang, Zexuan Qiu, Tingdan Zhang and Xiaofeng Rong
Curr. Issues Mol. Biol. 2025, 47(7), 486; https://doi.org/10.3390/cimb47070486 - 25 Jun 2025
Viewed by 1379
Abstract
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including [...] Read more.
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including normal control, model group, and emodin-treated groups at different concentrations (5 μM, 10 μM, and 20 μM). We optimized the CoCl2 concentration via CCK-8 assay to ensure cell viability. ELISA, Western blotting, transmission electron microscopy, and immunofluorescence were employed to assess HIF-1α, IL-1β, and IL-18 levels, pyroptosis-related proteins, autophagy markers, and NLRP3 fluorescence intensity. Statistical analysis revealed that increased CoCl2 concentrations led to a significant cell viability reduction (p < 0.05), with 300 μM CoCl2 causing ~50% inhibition at 24 h. Transmission electron microscopy confirmed autophagosome formation in emodin-treated groups, while Western blotting showed dose-dependent downregulation of HIF-1α, NLRP3, BNIP3, and related proteins. Immunofluorescence revealed reduced NLRP3 fluorescence intensity with increasing emodin doses (p < 0.05), alongside dose-dependent cell viability recovery (p < 0.05). Our findings demonstrate that emodin alleviates RA synovitis through dual mechanisms: inhibition of mitochondrial autophagy to regulate the balance between mitochondrial autophagy and pyroptosis, and suppression of HIF-1α/NLRP3-mediated pyroptosis signaling, thereby reducing IL-1β and IL-18 release and inhibiting synovial cell proliferation. This study provides innovative approaches for targeted RA therapy. Full article
Show Figures

Figure 1

34 pages, 9431 KiB  
Article
Gait Recognition via Enhanced Visual–Audio Ensemble Learning with Decision Support Methods
by Ruixiang Kan, Mei Wang, Tian Luo and Hongbing Qiu
Sensors 2025, 25(12), 3794; https://doi.org/10.3390/s25123794 - 18 Jun 2025
Viewed by 443
Abstract
Gait is considered a valuable biometric feature, and it is essential for uncovering the latent information embedded within gait patterns. Gait recognition methods are expected to serve as significant components in numerous applications. However, existing gait recognition methods exhibit limitations in complex scenarios. [...] Read more.
Gait is considered a valuable biometric feature, and it is essential for uncovering the latent information embedded within gait patterns. Gait recognition methods are expected to serve as significant components in numerous applications. However, existing gait recognition methods exhibit limitations in complex scenarios. To address these, we construct a dual-Kinect V2 system that focuses more on gait skeleton joint data and related acoustic signals. This setup lays a solid foundation for subsequent methods and updating strategies. The core framework consists of enhanced ensemble learning methods and Dempster–Shafer Evidence Theory (D-SET). Our recognition methods serve as the foundation, and the decision support mechanism is used to evaluate the compatibility of various modules within our system. On this basis, our main contributions are as follows: (1) an improved gait skeleton joint AdaBoost recognition method based on Circle Chaotic Mapping and Gramian Angular Field (GAF) representations; (2) a data-adaptive gait-related acoustic signal AdaBoost recognition method based on GAF and a Parallel Convolutional Neural Network (PCNN); and (3) an amalgamation of the Triangulation Topology Aggregation Optimizer (TTAO) and D-SET, providing a robust and innovative decision support mechanism. These collaborations improve the overall recognition accuracy and demonstrate their considerable application values. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 801 KiB  
Technical Note
Accurate Rainfall Prediction Using GNSS PWV Based on Pre-Trained Transformer Model
by Wenjie Yin, Chen Zhou, Yuan Tian, Hui Qiu, Wei Zhang, Hua Chen, Pan Liu, Qile Zhao, Jian Kong and Yibin Yao
Remote Sens. 2025, 17(12), 2023; https://doi.org/10.3390/rs17122023 - 12 Jun 2025
Viewed by 1056
Abstract
With an increase in the intensity and frequency of extreme rainfall events, there is a pressing need for accurate rainfall nowcasting applications. In recent years, precipitable water vapor (PWV) data obtained from GNSS observations have been widely used in rainfall prediction. Unlike previous [...] Read more.
With an increase in the intensity and frequency of extreme rainfall events, there is a pressing need for accurate rainfall nowcasting applications. In recent years, precipitable water vapor (PWV) data obtained from GNSS observations have been widely used in rainfall prediction. Unlike previous studies mainly focusing on rainfall occurrences, this study proposes a transformer-based model for hourly rainfall prediction, integrating the GNSS PWV and ERA5 meteorological data. The proposed model employs the ProbSparse self-attention to efficiently capture long-range dependencies in time series data, crucial for correlating historical PWV variations with rainfall events. Additionally, the adoption of the DILATE loss function better captures the structural and timing aspects of rainfall prediction. Furthermore, traditional rainfall prediction models are typically trained on datasets specific to one region, which limits their generalization ability due to regional meteorological differences and the scarcity of data in certain areas. Therefore, we adopt a pre-training and fine-tuning strategy using global datasets to mitigate data scarcity in newly deployed GNSS stations, enhancing model adaptability to local conditions. The evaluation results demonstrate satisfactory performance over other methods, with the fine-tuned model achieving an MSE = 3.954, DTW = 0.232, and TDI = 0.101. This approach shows great potential for real-time rainfall nowcasting in a local area, especially with limited data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

17 pages, 3989 KiB  
Article
Experimental Investigation on Physical and Mechanical Behaviors of Paraffin Microcapsule Phase-Change Energy-Storage Concrete
by Dongxue Wang, Zipeng Qin, Shixing Liu, Lefeng Chen, Guoxun Chen, Erjin Xu, Liangbin Zhang, Yan Tian, Zhengzheng Liu, Yifan Li, Saixuan Lei, Jiayi Pan, Peisheng Qiu and Xu Zhou
Buildings 2025, 15(11), 1907; https://doi.org/10.3390/buildings15111907 - 1 Jun 2025
Viewed by 523
Abstract
Phase-change materials (PCMs) are gradually being applied in the field of building energy conservation due to their ability to absorb and release heat through phase changes within a specific temperature range. This study prepared a paraffin-microencapsulated phase-change aggregate (PCA) and used the equal [...] Read more.
Phase-change materials (PCMs) are gradually being applied in the field of building energy conservation due to their ability to absorb and release heat through phase changes within a specific temperature range. This study prepared a paraffin-microencapsulated phase-change aggregate (PCA) and used the equal volume sand replacement method to replace standard sand with PCA under a fixed water–cement ratio and curing conditions. Five sets of concrete specimens with varying PCA content were designed and tested for their apparent densities, compressive strengths, water absorptions, thermal conductivities, and microstructures. The experimental results show that the apparent density, compressive strength, ultrasonic velocity, and thermal conductivity of phase-change energy-storage concrete (PCC) gradually decrease with the increasing PCA content. Its apparent density, compressive strength, ultrasonic velocity, and thermal conductivity all reach their minimum values when the PCA content reaches 40%; minimum values are 2.07 g/cm3, 42.461 MPa (56 days), 8.93 km/s, and 1.43 W/(m·K), respectively. The water-absorption rate of PCC specimens exhibits non monotonic response characteristics with the variation of PCA dosage. This study can provide a theoretical basis for the preparation of PCCs by the PCA method. Full article
Show Figures

Figure 1

20 pages, 4972 KiB  
Article
Research on the Optimization of Key Parameters for Heterotrophic Bacteria Assimilation Nitrogen Removal Technology in Aquaculture Tailwater
by Guogen Su, Jianping Xu, Yishuai Du, Hexiang Wang, Huiqin Tian, Li Zhou, Yanfeng Wang, Jianming Sun and Tianlong Qiu
Sustainability 2025, 17(11), 5069; https://doi.org/10.3390/su17115069 - 1 Jun 2025
Viewed by 540
Abstract
With the rapid development of the global aquaculture industry, the issue of effluent pollution from aquaculture has become increasingly severe. Effective management of aquaculture effluent is an urgent requirement for the sustainable development of the aquaculture industry, with a key focus on the [...] Read more.
With the rapid development of the global aquaculture industry, the issue of effluent pollution from aquaculture has become increasingly severe. Effective management of aquaculture effluent is an urgent requirement for the sustainable development of the aquaculture industry, with a key focus on the efficient removal of nitrogen. Heterotrophic bacteria assimilation technology offers advantages such as high efficiency and resource recovery; however, its application in effluent treatment remains limited. Therefore, this study aimed to identify the optimal carbon source for the heterotrophic bacteria assimilation process and to optimize its operating parameters using response surface methodology (RSM). The results revealed that the sucrose group achieved the highest total ammonia nitrogen (TAN) removal rate of 85.1%, significantly outperforming molasses (77.0%) and glucose (62.9%), with microbial biomass also significantly higher than in the other groups. Metagenomic analysis indicated that sucrose promotes the formation of efficient denitrifying microbial communities by enriching the phylum Bacteroidota and the denitrifying functional bacteria Xanthomarina, thereby significantly enhancing denitrification efficiency. The optimal carbon source was determined to be sucrose. Using the optimal parameters of microbial biomass at 1.7 g/L, a hydraulic retention time of 36 h, and a chemical oxygen demand-to-total nitrogen (COD/TN) ratio of 26, the removal rates of total nitrogen (TN), TAN, and nitrite nitrogen (NO2-N) exceeded 85%, while the removal rate of nitrate nitrogen (NO3-N) surpassed 60%. A significant interaction was observed between microbial biomass and hydraulic retention time, which notably affected denitrification efficiency (p < 0.05). This study provides theoretical support for the harmless and resourceful treatment of aquaculture effluent, contributing to the green and sustainable development of the aquaculture industry. Full article
Show Figures

Figure 1

10 pages, 6353 KiB  
Article
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on 3×3-Sn Reconstructed Si(111) Surface
by Zhujuan Li, Qichao Tian, Kaili Wang, Yuyang Mu, Zhenjie Fan, Xiaodong Qiu, Qinghao Meng, Can Wang and Yi Zhang
Appl. Sci. 2025, 15(11), 6150; https://doi.org/10.3390/app15116150 - 29 May 2025
Viewed by 439
Abstract
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth [...] Read more.
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth of SnSe2 films on a 3×3-Sn reconstructed Si(111) surface. The analysis of reflection high-energy electron diffraction reveals the in-plane lattice orientation as SnSe2[110]//3-Sn [112]//Si [110]. In addition, the flat morphology of SnSe2 film was identified by scanning tunneling microscopy (STM), implying the relatively strong adsorption effect of 3-Sn/Si(111) substrate to the SnSe2 adsorbates. Subsequently, the interfacial charge transfer was observed by X-ray photoemission spectroscopy. Afterwards, the direct characterization of electronic structures was obtained via angle-resolved photoemission spectroscopy. In addition to proving the presence of interfacial charge transfer again, a new relatively flat in-gap band was found in monolayer and few-layer SnSe2, which disappeared in multi-layer SnSe2. The interface strain-induced partial structural phase transition of thin SnSe2 films is presumed to be the reason. Our results provide important information on the characterization and effective modulation of electronic structures of SnSe2 grown on 3-Sn/Si(111), paving the way for the further study and application of SnSe2 in 2D electronic devices. Full article
Show Figures

Figure 1

14 pages, 9436 KiB  
Article
Non-Redundant Essential Roles of Proteasomal Ubiquitin Receptors Rpn10 and Rpn13 in Germ Cell Formation and Fertility
by Wan-Yu Yue, Yi Zhang, Tian-Xia Jiang and Xiao-Bo Qiu
Cells 2025, 14(10), 696; https://doi.org/10.3390/cells14100696 - 12 May 2025
Viewed by 496
Abstract
Primordial germ cells (PGCs) undergo proliferation, migration, and sexual differentiation to produce gonocytes, which eventually generate germ cells. The proteasome, which degrades most cellular proteins, is a protein complex with dozens of subunits. The proteasomal ubiquitin receptors Rpn10 and Rpn13 have been shown [...] Read more.
Primordial germ cells (PGCs) undergo proliferation, migration, and sexual differentiation to produce gonocytes, which eventually generate germ cells. The proteasome, which degrades most cellular proteins, is a protein complex with dozens of subunits. The proteasomal ubiquitin receptors Rpn10 and Rpn13 have been shown to play partially overlapping roles in binding ubiquitin chains in vitro and in liver function in vivo. However, the specific role of Rpn10 and Rpn13 in germ cell production remains unclear. We show here that Rpn10 and Rpn13 are each essential for germ cell production and fertility. The conditional deletion of either Rpn10 or Rpn13 in PGCs results in infertility in both male and female mice. Germ cells in testes and ovaries all decreased dramatically in the Rpn13 conditional knockout (cKO) mice. Specifically, the deletion of Rpn13 in PGCs disrupts the assembly of the 26S proteasome, reduces the number of PGCs, and blocks the meiosis of spermatocytes at the zygotene stage during prophase I; on the other hand, the deletion of Rpn10 in PGCs sharply reduces PGC migration. These results are important for understanding the roles of Rpn10 and Rpn13 in germ cell development and related reproductive diseases. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis)
Show Figures

Graphical abstract

25 pages, 18349 KiB  
Article
Surface-Dependent Meteorological Responses to a Taklimakan Dust Event During Summer near the Northern Slope of the Tibetan Plateau
by Binrui Wang, Hongyu Ji, Zhida Zhang, Jiening Liang, Lei Zhang, Mengqi Li, Rui Qiu, Hongjing Luo, Weiming An, Pengfei Tian and Mansur O. Amonov
Remote Sens. 2025, 17(9), 1561; https://doi.org/10.3390/rs17091561 - 28 Apr 2025
Viewed by 493
Abstract
The northern slope of the Tibetan Plateau (TP) is the crucial affected area for dust originating from the Taklimakan Desert (TD). However, few studies have focused on the meteorological element responses to TD dust over different surface types near the TP. Satellite data [...] Read more.
The northern slope of the Tibetan Plateau (TP) is the crucial affected area for dust originating from the Taklimakan Desert (TD). However, few studies have focused on the meteorological element responses to TD dust over different surface types near the TP. Satellite data and the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) were used to analyze the dust being transported from the TD to the TP and its effect from 30 July to 2 August 2016. In the TD, the middle-upper dust layer weakened the solar radiation reaching the lower dust layer, which reduced the temperature within the planetary boundary layer (PBL) during daytime. At night, the dust’s thermal preservation effect increased temperatures within the PBL and decreased temperatures at approximately 0.5 to 2.5 km above PBL. In the TP without snow cover, dust concentration was one-fifth of the TD, while the cooling layer intensity was comparable to the TD. However, within the PBL, the lower concentration and thickness of dust allowed dust to heat atmospheric continuously throughout the day. In the TP with snow cover, dust diminished planetary albedo, elevating temperatures above 6 km, hastening snow melting, which absorbed latent heat and increased the atmospheric water vapor content, consequently decreasing temperatures below 6 km. Surface meteorological element responses to dust varied significantly across different surface types. In the TD, 2 m temperature (T2) decreased by 0.4 °C during daytime, with the opposite nighttime variation. In the TP without snow cover, T2 was predominantly warming. In the snow-covered TP, T2 decreased throughout the day, with a maximum cooling of 1.12 °C and decreased PBL height by up to 258 m. Additionally, a supplementary simulation of a dust event from 17 June to 19 June 2016 further validated our findings. The meteorological elements response to dust is significantly affected by the dust concentration, thickness, and surface type, with significant day–night differences, suggesting that surface types and dust distribution should be considered in dust effect studies to improve the accuracy of climate predictions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

17 pages, 8791 KiB  
Article
The Estimation of Carbon Storage and Volume in Forest Stands: A Model Incorporating Species Composition and Site Quality
by Weiping Hua, Tian Qiu, Xidian Jiang, Junzhong Pan and Baoyin Li
Forests 2025, 16(4), 682; https://doi.org/10.3390/f16040682 - 14 Apr 2025
Viewed by 406
Abstract
We developed a model for estimating the carbon storage and volume of entire forest stands at the provincial level, aiming to improve the accuracy of regional productivity assessments. Based on data from the branches, roots, leaves, and trunks of eight dominant tree species [...] Read more.
We developed a model for estimating the carbon storage and volume of entire forest stands at the provincial level, aiming to improve the accuracy of regional productivity assessments. Based on data from the branches, roots, leaves, and trunks of eight dominant tree species (grouped by origin) in Fujian Province, combined with plot-level data, we developed a compatible carbon storage estimation model. This model integrates species composition coefficients and uses stand volume as the independent variable. We estimated the model parameters using a combination of the immune evolutionary algorithm and an improved simplex method, which enhances convergence speed and solution stability compared to the traditional version. The accuracy of the model was validated by cross-model validation and concurrent testing. Applying the model to forest stand data from Wuyishan City, we simulated theoretical logging volumes to demonstrate its practical utility. The results demonstrated that the model exhibited high accuracy in fitting the observed data, with reliable predictions of carbon storage and volume across different forest components. In the case study area, the volume was 21.0521 million cubic meters and the carbon storage was 7.3238 million tons, both of which increased with decreasing interval periods. When logging factors were considered, the increases in carbon storage fluctuated as the interval periods increased and were higher than those when logging factors were not considered. This study confirmed that the developed models were effective for predicting land carbon storage and volume, and the simulation method successfully overcame the challenges associated with model estimation. Full article
(This article belongs to the Special Issue Research Advances in Management and Design of Forest Operations)
Show Figures

Figure 1

20 pages, 9476 KiB  
Review
Flavonoids from Scutellaria baicalensis: Promising Alternatives for Enhancing Swine Production and Health
by Jing Wu, Yueqin Qiu, Min Tian, Li Wang, Kaiguo Gao, Xuefen Yang and Zongyong Jiang
Int. J. Mol. Sci. 2025, 26(8), 3703; https://doi.org/10.3390/ijms26083703 - 14 Apr 2025
Cited by 1 | Viewed by 1133
Abstract
Concerns over vaccine safety, bacterial resistance, and drug residues have led to increased interest in plant extracts for improving swine nutrition and health. Scutellaria baicalensis Georgi, rich in four primary flavonoids—baicalin, baicalein, wogonoside, and wogonin—demonstrates significant pharmacological properties, including anti-inflammatory, antioxidant, antibacterial, and [...] Read more.
Concerns over vaccine safety, bacterial resistance, and drug residues have led to increased interest in plant extracts for improving swine nutrition and health. Scutellaria baicalensis Georgi, rich in four primary flavonoids—baicalin, baicalein, wogonoside, and wogonin—demonstrates significant pharmacological properties, including anti-inflammatory, antioxidant, antibacterial, and antiviral activities in swine. These flavonoids have been shown to enhance growth performance, improve immunity, modulate gut microbiota, and aid in the prevention and treatment of various diseases. This review highlights the pharmacological effects of these flavonoids in swine, with a focus on network pharmacology to reveal the underlying molecular mechanisms. By constructing drug-target networks and identifying key signaling pathways, the review reveals how these flavonoids interact with biological systems to promote health. Furthermore, it discusses the practical applications of Scutellaria baicalensis flavonoids in swine production and outlines potential future research directions. This work provides a theoretical framework for understanding the therapeutic targets of these flavonoids, offering valuable insights for advancing sustainable and healthy pig farming practices. Full article
(This article belongs to the Special Issue Natural Bioactives and Inflammation, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop