Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Thanitporn Narkkun

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3472 KiB  
Article
Aminosilane-Functionalized Zeolite Y in Pebax Mixed Matrix Hollow Fiber Membranes for CO2/CH4 Separation
by Soon-Chien Lu, Thakorn Wichidit, Thanitporn Narkkun, Kuo-Lun Tung, Kajornsak Faungnawakij and Chalida Klaysom
Polymers 2023, 15(1), 102; https://doi.org/10.3390/polym15010102 - 26 Dec 2022
Cited by 9 | Viewed by 2874
Abstract
Due to their interfacial defects between inorganic fillers and polymer matrices, research into mixed matrix membranes (MMMs) is challenging. In the application of CO2 separation, these defects can potentially jeopardize the performance of membranes. In this study, aminosilane functionalization is employed to [...] Read more.
Due to their interfacial defects between inorganic fillers and polymer matrices, research into mixed matrix membranes (MMMs) is challenging. In the application of CO2 separation, these defects can potentially jeopardize the performance of membranes. In this study, aminosilane functionalization is employed to improve the nano-sized zeolite Y (ZeY) particle dispersion and adhesion in polyether block amide (Pebax). The performance of CO2/CH4 separation of Pebax mixed matrix composite hollow fiber membranes, incorporated with ZeY and aminosilane-modified zeolite Y (Mo-ZeY), is investigated. The addition of the zeolite filler at a small loading at 5 wt.% has a positive impact on both gas permeability and separation factor. Due to the CO2-facilitated transport effect, the performance of MMMs is further improved by the amino-functional groups modified on the ZeY. When 5 wt.% of Mo-ZeY is incorporated, the gas permeability and CO2/CH4 separation factor of the Pebax membrane are enhanced by over 100% and 35%, respectively. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

15 pages, 4040 KiB  
Article
Cigarette Butt Waste as Material for Phase Inverted Membrane Fabrication Used for Oil/Water Emulsion Separation
by Aris Doyan, Chew Lee Leong, Muhammad Roil Bilad, Kiki Adi Kurnia, Susilawati Susilawati, Saiful Prayogi, Thanitporn Narkkun and Kajornsak Faungnawakij
Polymers 2021, 13(12), 1907; https://doi.org/10.3390/polym13121907 - 8 Jun 2021
Cited by 23 | Viewed by 5806
Abstract
The increasing rate of oil and gas production has contributed to a release of oil/water emulsion or mixtures to the environment, becoming a pressing issue. At the same time, pollution of the toxic cigarette butt has also become a growing concern. This study [...] Read more.
The increasing rate of oil and gas production has contributed to a release of oil/water emulsion or mixtures to the environment, becoming a pressing issue. At the same time, pollution of the toxic cigarette butt has also become a growing concern. This study explored utilization of cigarette butt waste as a source of cellulose acetate-based (CA) polymer to develop a phase inverted membrane for treatment of oil/water emulsion and compare it with commercial polyvinylidene difluoride (PVDF) and polysulfone (PSF). Results show that the CA-based membrane from waste cigarette butt offers an eco-friendly material without compromising the separation efficiency, with a pore size range suitable for oil/water emulsion filtration with the rejection of >94.0%. The CA membrane poses good structural property similar to the established PVDF and PSF membranes with equally asymmetric morphology. It also poses hydrophilicity properties with a contact angle of 74.5°, lower than both PVDF and PSF membranes. The pore size of CA demonstrates that the CA is within the microfiltration range with a mean flow pore size of 0.17 µm. The developed CA membrane shows a promising oil/water emulsion permeability of 180 L m−2 h−1 bar−1 after five filtration cycles. However, it still suffers a high degree of irreversible fouling (>90.0%), suggesting potential future improvements in terms of membrane fouling management. Overall, this study demonstrates a sustainable approach to addressing oil/water emulsion pollution treated CA membrane from cigarette butt waste. Full article
(This article belongs to the Special Issue Polymer Nanocomposite Membranes for Environmental Applications)
Show Figures

Graphical abstract

17 pages, 4462 KiB  
Article
Development of Polyvinylidene Fluoride Membrane via Assembly of Tannic Acid and Polyvinylpyrrolidone for Filtration of Oil/Water Emulsion
by Normi Izati Mat Nawi, Syasya Ong Amat, Muhammad Roil Bilad, Nik Abdul Hadi Md Nordin, Norazanita Shamsuddin, Saiful Prayogi, Thanitporn Narkkun and Kajornsak Faungnawakij
Polymers 2021, 13(6), 976; https://doi.org/10.3390/polym13060976 - 22 Mar 2021
Cited by 30 | Viewed by 4295
Abstract
Wastewater containing oil/water emulsion has a serious ecological impact and threatens human health. The impact worsens as its volume increases. Oil/water emulsion needs to be treated before it is discharged or reused again for processing. A membrane-based process is considered attractive in effectively [...] Read more.
Wastewater containing oil/water emulsion has a serious ecological impact and threatens human health. The impact worsens as its volume increases. Oil/water emulsion needs to be treated before it is discharged or reused again for processing. A membrane-based process is considered attractive in effectively treating oil/water emulsion, but progress has been dampened by the membrane fouling issue. The objective of this study is to develop polyvinylidene fluoride (PVDF) membranes customized for oil/water emulsion separation by incorporating assembly of tannic acid (TA) and polyvinylpyrrolidone (PVP) in the polymer matrix. The results show that the assembly of TA/PVP complexation was achieved as observed from the change in colour during the phase inversion and as also proven from the characterization analyses. Incorporation of the TA/PVP assembly leads to enhanced surface hydrophilicity by lowering the contact angle from 82° to 47°. In situ assembly of the TA/PVP complex also leads to enhanced clean water permeability by a factor of four as a result of enhanced mean flow pore size from 0.2 to 0.9 µm. Owing to enhanced surface chemistry and structural advantages, the optimum hydrophilic PVDF/TA/PVP membrane poses permeability of 540.18 L/(m2 h bar) for oil/water emulsion filtration, three times higher than the pristine PVDF membrane used as the reference. Full article
(This article belongs to the Special Issue Polymer Adhesion and Interfaces for Advanced Manufacturing)
Show Figures

Graphical abstract

17 pages, 29640 KiB  
Article
Polyvinylidene Fluoride Membrane Via Vapour Induced Phase Separation for Oil/Water Emulsion Filtration
by Normi Izati Mat Nawi, Nur Rifqah Sait, Muhammad Roil Bilad, Norazanita Shamsuddin, Juhana Jaafar, Nik Abdul Hadi Nordin, Thanitporn Narkkun, Kajornsak Faungnawakij and Dzeti Farhah Mohshim
Polymers 2021, 13(3), 427; https://doi.org/10.3390/polym13030427 - 29 Jan 2021
Cited by 26 | Viewed by 3821
Abstract
Membrane-based technology is an attractive option for the treatment of oily wastewater because of its high oil removal efficiency, small footprint and operational simplicity. However, filtration performance is highly restricted by membrane fouling, especially when treating oil/water emulsion as a result of strong [...] Read more.
Membrane-based technology is an attractive option for the treatment of oily wastewater because of its high oil removal efficiency, small footprint and operational simplicity. However, filtration performance is highly restricted by membrane fouling, especially when treating oil/water emulsion as a result of strong interaction between oil droplets and the hydrophobic property of the membrane. This study explores the fabrication of polyvinylidene fluoride (PVDF)-based membrane via the vapour induced phase separation (VIPS) method while incorporating polyvinyl pyrrolidone (PVP) as a hydrophilic additive to encounter membrane fouling issues and improve membrane filterability. The resulting membranes were characterized and tested for oil/water emulsion filtration to evaluate their hydraulic, rejection and anti-fouling properties. Results show that the changes in membrane morphology and structure from typical macrovoids with finger-like substructure to cellular structure and larger membrane pore size were observed by the prolonged exposure time from 0 to 30 min through the VIPS method. The enhanced clean water permeability is attributed to the addition of PVP–LiCl in the dope solution that enlarges the mean flow pore size from 0.210 ± 0.1 to 7.709 ± 3.5 µm. The best performing membrane was the VIPS membrane with an exposure time of 5 min (M-5), showing oil/water emulsion permeability of 187 Lm−2 h−1 bar−1 and oil rejection of 91.3% as well as an elevation of 84% of clean water permeability compared to pristine PVDF developed using a typical non-solvent induced phase separation (NIPS) method. Despite the relatively high total fouling, M-5 was able to maintain its high permeability by water flushing as a simple operation for membrane fouling control. The performance was achieved thanks to combination of the large mean flow pore size and hydrophilic property from residual PVP in the membarne matrix. Overall, the results demonstrate the potential of the optimum VIPS method in the presence of PVP and LiCl additives for oil/water emulsion treatment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 4787 KiB  
Article
Development of Polysulfone Membrane via Vapor-Induced Phase Separation for Oil/Water Emulsion Filtration
by Nafiu Umar Barambu, Muhammad Roil Bilad, Mohamad Azmi Bustam, Nurul Huda, Juhana Jaafar, Thanitporn Narkkun and Kajornsak Faungnawakij
Polymers 2020, 12(11), 2519; https://doi.org/10.3390/polym12112519 - 29 Oct 2020
Cited by 26 | Viewed by 4440
Abstract
The discharge of improperly treated oil/water emulsion by industries imposes detrimental effects on human health and the environment. The membrane process is a promising technology for oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane fouling. It occurs [...] Read more.
The discharge of improperly treated oil/water emulsion by industries imposes detrimental effects on human health and the environment. The membrane process is a promising technology for oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane fouling. It occurs as a result of the strong interaction between the hydrophobic oil droplets and the hydrophobic membrane surface. This issue has attracted research interest in developing the membrane material that possesses high hydraulic and fouling resistance performances. This research explores the vapor-induced phase separation (VIPS) method for the fabrication of a hydrophilic polysulfone (PSF) membrane with the presence of polyethylene glycol (PEG) as the additive for the treatment of oil/water emulsion. Results show that the slow nonsolvent intake in VIPS greatly influences the resulting membrane structure that allows the higher retention of the additive within the membrane matrix. By extending the exposure time of the cast film under humid air, both surface chemistry and morphology of the resulting membrane can be enhanced. By extending the exposure time from 0 to 60 s, the water contact angle decreases from 70.28 ± 0.61° to 57.72 ± 0.61°, and the clean water permeability increases from 328.70 ± 8.27 to 501.89 ± 8.92 (L·m−2·h−1·bar−1). Moreover, the oil rejection also improves from 85.06 ± 1.6 to 98.48 ± 1.2%. The membrane structure was transformed from a porous top layer with a finger-like macrovoid sub-structure to a relatively thick top layer with a sponge-like macrovoid-free sub-structure. Overall results demonstrate the potential of the VIPS process to enhance both surface chemistry and morphology of the PSF membrane. Full article
(This article belongs to the Special Issue Polymeric Membrane Materials for Separation Liquid and Gas Mixtures)
Show Figures

Graphical abstract

17 pages, 5141 KiB  
Article
Development of Hydrophilic PVDF Membrane Using Vapour Induced Phase Separation Method for Produced Water Treatment
by Normi Izati Mat Nawi, Ho Min Chean, Norazanita Shamsuddin, Muhammad Roil Bilad, Thanitporn Narkkun, Kajornsak Faungnawakij and Asim Laeeq Khan
Membranes 2020, 10(6), 121; https://doi.org/10.3390/membranes10060121 - 16 Jun 2020
Cited by 89 | Viewed by 9499
Abstract
During the production of oil and gas, a large amount of oily wastewater is generated, which would pollute the environment if discharged without proper treatment. As one of the most promising treatment options, membrane material used for oily wastewater treatment should possess desirable [...] Read more.
During the production of oil and gas, a large amount of oily wastewater is generated, which would pollute the environment if discharged without proper treatment. As one of the most promising treatment options, membrane material used for oily wastewater treatment should possess desirable properties of high hydraulic performance combined with high membrane fouling resistance. This project employs the vapor induced phase separation (VIPS) technique to develop a hydrophilic polyvinylidene fluoride (PVDF) membrane with polyethylene glycol (PEG) as an additive for produced water treatment. Results show that thanks to its slow nonsolvent intake, the VIPS method hinders additive leaching during the cast film immersion. The results also reveal that the exposure of the film to the open air before immersion greatly influences the structure of the developed membranes. By extending the exposure time from 0 to 30 min, the membrane morphology change from typical asymmetric with large macrovoids to the macrovoid-free porous symmetric membrane with a granular structure, which corresponds to 35% increment of steady-state permeability to 189 L·m−2h−1bar−1, while maintaining >90% of oil rejection. It was also found that more PEG content resides in the membrane matrix when the exposure time is extended, contributes to the elevation of surface hydrophilicity, which improves the membrane antifouling properties. Overall results demonstrate the potential of VIPS method for the fabrication of hydrophilic PVDF membrane by helping to preserve hydrophilic additive in the membrane matrices. Full article
Show Figures

Graphical abstract

12 pages, 3181 KiB  
Article
Electrospun Nylon 6,6/ZIF-8 Nanofiber Membrane for Produced Water Filtration
by Nur Syakinah Abd Halim, Mohd Dzul Hakim Wirzal, Muhammad Roil Bilad, Nik Abdul Hadi Md Nordin, Zulfan Adi Putra, Abdull Rahim Mohd Yusoff, Thanitporn Narkkun and Kajornsak Faungnawakij
Water 2019, 11(10), 2111; https://doi.org/10.3390/w11102111 - 11 Oct 2019
Cited by 22 | Viewed by 5394
Abstract
This study develops electrospun nylon 6,6 nanofiber membrane (NFM), incorporating zeolitic imidazolate framework-8 (ZIF-8) as the additive for produced water (PW) filtration. Electrospun NFM is suitable to be used as a filter, especially for water treatment, since it has a huge surface area [...] Read more.
This study develops electrospun nylon 6,6 nanofiber membrane (NFM), incorporating zeolitic imidazolate framework-8 (ZIF-8) as the additive for produced water (PW) filtration. Electrospun NFM is suitable to be used as a filter, especially for water treatment, since it has a huge surface area to volume ratio, high porosity, and great permeability compared to the conventional membranes. These properties also enhance its competitiveness to be used as reverse osmosis pre-treatment, as the final stage of PW treatment water reuse purpose. However, the fouling issue and low mechanical strength of NFM reduces hydraulic performance over time. Therefore, this study employs ZIF-8 as an additive to improve nylon 6,6 NFM properties to reduce fouling and increase membrane tensile strength. Results show that the optimum loading of ZIF-8 was at 0.2%. This loading gives the highest oil rejection (89%), highest steady-state pure water permeability (1967 L/(m2·h·bar)), 2× higher than untreated nylon 6,6 NFM with tensile strength 5× greater (3743 MPa), and a steady-state permeability of 1667 L/(m2·h·bar) for filtration of real produced water. Full article
(This article belongs to the Special Issue Advances in Water and Wastewater Monitoring and Treatment Technology)
Show Figures

Figure 1

13 pages, 2621 KiB  
Article
Development of A Novel Corrugated Polyvinylidene difluoride Membrane via Improved Imprinting Technique for Membrane Distillation
by Normi Izati Mat Nawi, Muhammad Roil Bilad, Nurazrina Zolkhiflee, Nik Abdul Hadi Nordin, Woei Jye Lau, Thanitporn Narkkun, Kajornsak Faungnawakij, Nasrul Arahman and Teuku Meurah Indra Mahlia
Polymers 2019, 11(5), 865; https://doi.org/10.3390/polym11050865 - 13 May 2019
Cited by 36 | Viewed by 4504
Abstract
Membrane distillation (MD) is an attractive technology for desalination, mainly because its performance that is almost independent of feed solute concentration as opposed to the reverse osmosis process. However, its widespread application is still limited by the low water flux, low wetting resistance [...] Read more.
Membrane distillation (MD) is an attractive technology for desalination, mainly because its performance that is almost independent of feed solute concentration as opposed to the reverse osmosis process. However, its widespread application is still limited by the low water flux, low wetting resistance and high scaling vulnerability. This study focuses on addressing those limitations by developing a novel corrugated polyvinylidene difluoride (PVDF) membrane via an improved imprinting technique for MD. Corrugations on the membrane surface are designed to offer an effective surface area and at the same time act as a turbulence promoter to induce hydrodynamic by reducing temperature polarization. Results show that imprinting of spacer could help to induce surface corrugation. Pore defect could be minimized by employing a dual layer membrane. In short term run experiment, the corrugated membrane shows a flux of 23.1 Lm−2h−1 and a salt rejection of >99%, higher than the referenced flat membrane (flux of 18.0 Lm−2h−1 and similar rejection). The flux advantage can be ascribed by the larger effective surface area of the membrane coupled with larger pore size. The flux advantage could be maintained in the long-term operation of 50 h at a value of 8.6 Lm−2h−1. However, the flux performance slightly deteriorates over time mainly due to wetting and scaling. An attempt to overcome this limitation should be a focus of the future study, especially by exploring the role of cross-flow velocity in combination with the corrugated surface in inducing local mixing and enhancing system performance. Full article
(This article belongs to the Special Issue Thermal Analysis of Polymer Materials)
Show Figures

Graphical abstract

Back to TopTop