Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Authors = Stefania Sabatini

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 15826 KiB  
Article
Wildfire Detection Using Convolutional Neural Networks and PRISMA Hyperspectral Imagery: A Spatial-Spectral Analysis
by Dario Spiller, Andrea Carbone, Stefania Amici, Kathiravan Thangavel, Roberto Sabatini and Giovanni Laneve
Remote Sens. 2023, 15(19), 4855; https://doi.org/10.3390/rs15194855 - 7 Oct 2023
Cited by 6 | Viewed by 4454
Abstract
The exacerbation of wildfires, attributed to the effects of climate change, presents substantial risks to ecological systems, infrastructure, and human well-being. In the context of the Sustainable Development Goals (SDGs), particularly those related to climate action, prioritizing the assessment and management of the [...] Read more.
The exacerbation of wildfires, attributed to the effects of climate change, presents substantial risks to ecological systems, infrastructure, and human well-being. In the context of the Sustainable Development Goals (SDGs), particularly those related to climate action, prioritizing the assessment and management of the occurrence and intensity of extensive wildfires is of utmost importance. In recent times, there has been a significant increase in the frequency and severity of widespread wildfires worldwide, affecting several locations, including Australia, Italy, and the United States of America. The presence of complex phenomena marked by limited predictability leads to significant negative impacts on biodiversity and human lives. The utilization of satellite-derived data with neural networks, such as convolutional neural networks (CNNs), is a potentially advantageous approach for augmenting the monitoring capabilities of wildfires. This research examines the generalization capability of four neural network models, namely the fully connected (FC), one-dimensional (1D) CNN, two-dimensional (2D) CNN, and three-dimensional (3D) CNN model. Each model’s performance, as measured by accuracy, recall, and F1 scores, is assessed through K-fold cross-validation. Subsequently, T-statistics and p-values are computed based on these metrics to conduct a statistical comparison among the different models, allowing us to quantify the degree of similarity or dissimilarity between them. By using training data from Australia and Sicily, the performances of the trained model are evaluated on the test dataset from Oregon. The results are promising, with cross-validation on the training dataset producing mean precision, recall, and F1 scores ranging between approximately 0.97 and 0.98. Especially, the fully connected model has superior generalization capabilities, whilst the 3D CNN offers more refined and less distorted classifications. However, certain issues, such as false fire detection and confusion between smoke and shadows, persist. The aforementioned methodologies offer significant perspectives on the capabilities of neural network technologies in supporting the detection and management of wildfires. These approaches address the crucial matter of domain transferability and the associated dependability of predictions in new regions. This study makes a valuable contribution to the ongoing efforts in climate change by assisting in monitoring and managing wildfires. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

19 pages, 7975 KiB  
Article
Trusted Autonomous Operations of Distributed Satellite Systems Using Optical Sensors
by Kathiravan Thangavel, Dario Spiller, Roberto Sabatini, Stefania Amici, Nicolas Longepe, Pablo Servidia, Pier Marzocca, Haytham Fayek and Luigi Ansalone
Sensors 2023, 23(6), 3344; https://doi.org/10.3390/s23063344 - 22 Mar 2023
Cited by 19 | Viewed by 4312
Abstract
Recent developments in Distributed Satellite Systems (DSS) have undoubtedly increased mission value due to the ability to reconfigure the spacecraft cluster/formation and incrementally add new or update older satellites in the formation. These features provide inherent benefits, such as increased mission effectiveness, multi-mission [...] Read more.
Recent developments in Distributed Satellite Systems (DSS) have undoubtedly increased mission value due to the ability to reconfigure the spacecraft cluster/formation and incrementally add new or update older satellites in the formation. These features provide inherent benefits, such as increased mission effectiveness, multi-mission capabilities, design flexibility, and so on. Trusted Autonomous Satellite Operation (TASO) are possible owing to the predictive and reactive integrity features offered by Artificial Intelligence (AI), including both on-board satellites and in the ground control segments. To effectively monitor and manage time-critical events such as disaster relief missions, the DSS must be able to reconfigure autonomously. To achieve TASO, the DSS should have reconfiguration capability within the architecture and spacecraft should communicate with each other through an Inter-Satellite Link (ISL). Recent advances in AI, sensing, and computing technologies have resulted in the development of new promising concepts for the safe and efficient operation of the DSS. The combination of these technologies enables trusted autonomy in intelligent DSS (iDSS) operations, allowing for a more responsive and resilient approach to Space Mission Management (SMM) in terms of data collection and processing, especially when using state-of-the-art optical sensors. This research looks into the potential applications of iDSS by proposing a constellation of satellites in Low Earth Orbit (LEO) for near-real-time wildfire management. For spacecraft to continuously monitor Areas of Interest (AOI) in a dynamically changing environment, satellite missions must have extensive coverage, revisit intervals, and reconfiguration capability that iDSS can offer. Our recent work demonstrated the feasibility of AI-based data processing using state-of-the-art on-board astrionics hardware accelerators. Based on these initial results, AI-based software has been successively developed for wildfire detection on-board iDSS satellites. To demonstrate the applicability of the proposed iDSS architecture, simulation case studies are performed considering different geographic locations. Full article
Show Figures

Figure 1

21 pages, 4487 KiB  
Article
Autonomous Satellite Wildfire Detection Using Hyperspectral Imagery and Neural Networks: A Case Study on Australian Wildfire
by Kathiravan Thangavel, Dario Spiller, Roberto Sabatini, Stefania Amici, Sarathchandrakumar Thottuchirayil Sasidharan, Haytham Fayek and Pier Marzocca
Remote Sens. 2023, 15(3), 720; https://doi.org/10.3390/rs15030720 - 26 Jan 2023
Cited by 79 | Viewed by 14692
Abstract
One of the United Nations (UN) Sustainable Development Goals is climate action (SDG-13), and wildfire is among the catastrophic events that both impact climate change and are aggravated by it. In Australia and other countries, large-scale wildfires have dramatically grown in frequency and [...] Read more.
One of the United Nations (UN) Sustainable Development Goals is climate action (SDG-13), and wildfire is among the catastrophic events that both impact climate change and are aggravated by it. In Australia and other countries, large-scale wildfires have dramatically grown in frequency and size in recent years. These fires threaten the world’s forests and urban woods, cause enormous environmental and property damage, and quite often result in fatalities. As a result of their increasing frequency, there is an ongoing debate over how to handle catastrophic wildfires and mitigate their social, economic, and environmental repercussions. Effective prevention, early warning, and response strategies must be well-planned and carefully coordinated to minimise harmful consequences to people and the environment. Rapid advancements in remote sensing technologies such as ground-based, aerial surveillance vehicle-based, and satellite-based systems have been used for efficient wildfire surveillance. This study focuses on the application of space-borne technology for very accurate fire detection under challenging conditions. Due to the significant advances in artificial intelligence (AI) techniques in recent years, numerous studies have previously been conducted to examine how AI might be applied in various situations. As a result of its special physical and operational requirements, spaceflight has emerged as one of the most challenging application fields. This work contains a feasibility study as well as a model and scenario prototype for a satellite AI system. With the intention of swiftly generating alerts and enabling immediate actions, the detection of wildfires has been studied with reference to the Australian events that occurred in December 2019. Convolutional neural networks (CNNs) were developed, trained, and used from the ground up to detect wildfires while also adjusting their complexity to meet onboard implementation requirements for trusted autonomous satellite operations (TASO). The capability of a 1-dimensional convolution neural network (1-DCNN) to classify wildfires is demonstrated in this research and the results are assessed against those reported in the literature. In order to enable autonomous onboard data processing, various hardware accelerators were considered and evaluated for onboard implementation. The trained model was then implemented in the following: Intel Movidius NCS-2 and Nvidia Jetson Nano and Nvidia Jetson TX2. Using the selected onboard hardware, the developed model was then put into practice and analysis was carried out. The results were positive and in favour of using the technology that has been proposed for onboard data processing to enable TASO on future missions. The findings indicate that data processing onboard can be very beneficial in disaster management and climate change mitigation by facilitating the generation of timely alerts for users and by enabling rapid and appropriate responses. Full article
Show Figures

Figure 1

20 pages, 2847 KiB  
Article
The Impact of Spermidine on C2C12 Myoblasts Proliferation, Redox Status and Polyamines Metabolism under H2O2 Exposure
by Roberta Ceci, Guglielmo Duranti, Stefano Giuliani, Marianna Nicoletta Rossi, Ivan Dimauro, Stefania Sabatini, Paolo Mariottini and Manuela Cervelli
Int. J. Mol. Sci. 2022, 23(19), 10986; https://doi.org/10.3390/ijms231910986 - 20 Sep 2022
Cited by 10 | Viewed by 3504
Abstract
A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of [...] Read more.
A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts’ cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts’ viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult. Full article
(This article belongs to the Special Issue Oxidative Stress and Skeletal Muscle Function)
Show Figures

Graphical abstract

16 pages, 1027 KiB  
Article
Moringa oleifera Leaf Extract Protects C2C12 Myotubes against H2O2-Induced Oxidative Stress
by Roberta Ceci, Mariateresa Maldini, Mark E. Olson, Domenico Crognale, Katy Horner, Ivan Dimauro, Stefania Sabatini and Guglielmo Duranti
Antioxidants 2022, 11(8), 1435; https://doi.org/10.3390/antiox11081435 - 24 Jul 2022
Cited by 28 | Viewed by 5078
Abstract
The imbalance between reactive oxygen species (ROS) production and antioxidant defense systems leads to macromolecule and tissue damage as a result of cellular oxidative stress. This phenomenon is considered a key factor in fatigue and muscle damage following chronic or high-intensity physical exercise. [...] Read more.
The imbalance between reactive oxygen species (ROS) production and antioxidant defense systems leads to macromolecule and tissue damage as a result of cellular oxidative stress. This phenomenon is considered a key factor in fatigue and muscle damage following chronic or high-intensity physical exercise. In the present study, the antioxidant effect of Moringa oleifera leaf extract (MOLE) was evaluated in C2C12 myotubes exposed to an elevated hydrogen peroxide (H2O2) insult. The capacity of the extract to influence the myotube redox status was evaluated through an analysis of the total antioxidant capacity (TAC), glutathione homeostasis (GSH and GSSG), total free thiols (TFT), and thioredoxin (Trx) activity, as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and transferase (GST). Moreover, the ability of MOLE to mitigate the stress-induced peroxidation of lipids and oxidative damage (TBARS and protein carbonyls) was also evaluated. Our data demonstrate that MOLE pre-treatment mitigates the highly stressful effects of H2O2 in myotubes (1 mM) by restoring the redox status (TFT, Trx, and GSH/GSSG ratio) and increasing the antioxidant enzymatic system (CAT, SOD, GPx, GST), thereby significantly reducing the TBARs and PrCAR levels. Our study provides evidence that MOLE supplementation has antioxidant potential, allowing myotubes better able to cope with an oxidative insult and, therefore, could represent a useful nutritional strategy for the preservation of muscle well-being. Full article
Show Figures

Figure 1

13 pages, 1934 KiB  
Article
Hydrogen Peroxide Stimulates Dihydrotestosterone Release in C2C12 Myotubes: A New Perspective for Exercise-Related Muscle Steroidogenesis?
by Cristina Antinozzi, Guglielmo Duranti, Roberta Ceci, Marco Lista, Stefania Sabatini, Daniela Caporossi, Luigi Di Luigi, Paolo Sgrò and Ivan Dimauro
Int. J. Mol. Sci. 2022, 23(12), 6566; https://doi.org/10.3390/ijms23126566 - 12 Jun 2022
Cited by 9 | Viewed by 3694
Abstract
Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on [...] Read more.
Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a “performance-enhancing” drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis. Full article
(This article belongs to the Special Issue Oxidative Stress and Skeletal Muscle Function)
Show Figures

Figure 1

15 pages, 1710 KiB  
Article
Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil
by Debora Minotti, Lara Vergari, Maria Rita Proto, Lorenzo Barbanti, Stefania Garzoli, Francesca Bugli, Maurizio Sanguinetti, Luigia Sabatini, Alice Peduzzi, Roberto Rosato, Maria Grazia Bellardi, Paola Mattarelli, Daphne De Luca and Maura Di Vito
J. Fungi 2022, 8(2), 140; https://doi.org/10.3390/jof8020140 - 29 Jan 2022
Cited by 7 | Viewed by 4134
Abstract
Preserving artworks from the attacks of biodeteriogens is a primary duty of humanity. Nowadays, restorers use chemicals potentially dangerous for both artworks and human health. The purpose of this work was to find a green and safe formulation based on natural substances with [...] Read more.
Preserving artworks from the attacks of biodeteriogens is a primary duty of humanity. Nowadays, restorers use chemicals potentially dangerous for both artworks and human health. The purpose of this work was to find a green and safe formulation based on natural substances with fungicidal activity to restore ancient oil paintings, particularly “Il Silenzio” (by Jacopo Zucchi) preserved at the Uffizi Museum in Florence, Italy. The study was divided into two phases. First phase (in vitro study): three essential oils (EOs) and four hydrolates (Hys) were analysed by GC-mass spectrometry and in vitro tested against six ATCC strains of molds. An emulsion based on the more active natural compounds was tested on aged and unaged canvases samples to evaluate both their fungicidal activity and the impact on chemical-physical parameters. Finally, an in vivo toxicity test performed on the Galleria mellonella model assessed the safety for health. Second phase (in situ application): the emulsion was sprayed on the back of the painting and left to act for 24 h. Biodeteriogens present on the “Il Silenzio” painting were microbiologically identified before and after the treatment. The emulsion formulated with C. zeylanicum EO and C. aurantium var. amara Hy showed the best antifungal activity both in vitro and in situ without altering the chemical-physical characteristics of paintings. Furthermore, no in vivo toxicity was shown. For the first time, a green antimicrobial emulsion based on Hy and EO, safe for operators, was used to decontaminate an artwork colonised by fungi before the restoration practices. Full article
(This article belongs to the Special Issue Fungi in Indoor Environments)
Show Figures

Figure 1

11 pages, 618 KiB  
Article
Anti-Mold Effectiveness of a Green Emulsion Based on Citrus aurantium Hydrolate and Cinnamomum zeylanicum Essential Oil for the Modern Paintings Restoration
by Maura Di Vito, Lara Vergari, Melinda Mariotti, Maria Rita Proto, Lorenzo Barbanti, Stefania Garzoli, Maurizio Sanguinetti, Luigia Sabatini, Alice Peduzzi, Maria Grazia Bellardi, Paola Mattarelli, Francesca Bugli and Daphne De Luca
Microorganisms 2022, 10(2), 205; https://doi.org/10.3390/microorganisms10020205 - 19 Jan 2022
Cited by 12 | Viewed by 3486
Abstract
A modern painting is characterized by multi-material bases extremely exposed to biodeteriogenic attacks. The aim of this work was to test the antifungal effectiveness of a natural, eco-friendly, and safe emulsion based on Citrus aurantium L. var. amara hydrolate and Cinnamomum zeylanicum Blume [...] Read more.
A modern painting is characterized by multi-material bases extremely exposed to biodeteriogenic attacks. The aim of this work was to test the antifungal effectiveness of a natural, eco-friendly, and safe emulsion based on Citrus aurantium L. var. amara hydrolate and Cinnamomum zeylanicum Blume (from bark) essential oil, named “Zeylantium green emulsion” (Zege), on modern paintings. Colored unaged and aged canvas samples, performed with modern techniques (acrylic, vinylic and alkyd), were used to test in vitro both the antifungal effectiveness of Zege and its impact on the chemical–physical characteristics. Microbiological tests were performed according to the EUCAST international guidelines. pH measurements and colorimetric analysis were performed on unaged and aged canvases before and after Zege spray treatment. Finally, in situ tests were performed using the spray emulsion on canvas samples obtained from Ilaria Margutti’s modern artwork, which had been colonized by molds. Microbiological tests on canvas prototypes showed a time- and dose-dependent effectiveness of the Zege spray. None of the techniques underwent relevant changes in pH. Only the acrylic colors were unaffected in the colorimetric analysis, among all colored unaged or aged canvases. Tests made with modern artwork samples confirmed the in situ antifungal effectiveness. The Zege spray showed encouraging results in regard to the use of this formulation in the restoration of modern paintings. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Essential Oils and Hydrolates)
Show Figures

Graphical abstract

13 pages, 1516 KiB  
Article
“Spazio Huntington”: Tracing the Early Motor, Cognitive and Behavioral Profiles of Kids with Proven Pediatric Huntington Disease and Expanded Mutations > 80 CAG Repeats
by Federica Graziola, Sabrina Maffi, Melissa Grasso, Giacomo Garone, Simone Migliore, Eugenia Scaricamazza, Consuelo Ceccarelli, Melissa Casella, Ludovica Busi, Barbara D’Alessio, Alessandro De Luca, Giovanna Stefania Colafati, Umberto Sabatini, Alessandro Capuano and Ferdinando Squitieri
J. Pers. Med. 2022, 12(1), 120; https://doi.org/10.3390/jpm12010120 - 17 Jan 2022
Cited by 2 | Viewed by 2939
Abstract
The “Spazio Huntington—A Place for Children” program was launched in 2019. The aim was to contact at risk kids within Huntington disease (HD) families, to provide counseling to their parents and to start a prospective follow-up of kids suspicious to manifest pediatric HD [...] Read more.
The “Spazio Huntington—A Place for Children” program was launched in 2019. The aim was to contact at risk kids within Huntington disease (HD) families, to provide counseling to their parents and to start a prospective follow-up of kids suspicious to manifest pediatric HD (PHD). We met 25 at risk kids in two years, four of whom with PHD and highly expanded (HE) mutations beyond 80 CAG repeats. We rated motor, neuropsychological and behavioral changes in all PHD kids by the Unified HD Rating Scale (UHDRS)-total motor score (TMS) and additional measures of (1) cognitive level (Leiter International Performance Scale), (2) adaptive functioning (Adaptive Behavior Assessment Systems), (3) receptive language (Peabody Picture Vocabulary Test) and (4) behavioral abnormalities (Child Behavior Check List and Children’s Yale–Brown Obsessive Compulsive Scale). All PHD kids showed a severe progression of neurological and psychiatric manifestations including motor, cognitive and behavioral changes. The magnetic resonance imaging contributed to confirm the suspicious clinical observation by highlighting very initial striatum abnormalities in PHD. Spazio Huntington is a program to prospectively study PHD, the most atypical face of HD, and may represent the basis to recruit PHD patients in future clinical trials. Full article
(This article belongs to the Special Issue The Many Faces of Huntington Disease)
Show Figures

Figure 1

12 pages, 705 KiB  
Article
Effect of Tadalafil Administration on Redox Homeostasis and Polyamine Levels in Healthy Men with High Level of Physical Activity
by Guglielmo Duranti, Roberta Ceci, Luigi Di Luigi, Cristina Antinozzi, Ivan Dimauro, Stefania Sabatini, Manuela Cervelli and Paolo Sgrò
Int. J. Environ. Res. Public Health 2021, 18(19), 9962; https://doi.org/10.3390/ijerph18199962 - 22 Sep 2021
Cited by 4 | Viewed by 4940
Abstract
Background: The phosphodiesterase type 5 inhibitor (PDE5I) tadalafil, in addition to its therapeutic role, has shown antioxidant effects in different in vivo models. Supplementation with antioxidants has received interest as a suitable tool for preventing or reducing exercise-related oxidative stress, possibly leading to [...] Read more.
Background: The phosphodiesterase type 5 inhibitor (PDE5I) tadalafil, in addition to its therapeutic role, has shown antioxidant effects in different in vivo models. Supplementation with antioxidants has received interest as a suitable tool for preventing or reducing exercise-related oxidative stress, possibly leading to the improvement of sport performance in athletes. However, the use/abuse of these substances must be evaluated not only within the context of amateur sport, but especially in competitions where elite athletes are more exposed to stressful physical practice. To date, very few human studies have addressed the influence of the administration of PDE5Is on redox balance in subjects with a fitness level comparable to elite athletes; therefore, the aim of this study was to investigate for the first time whether acute ingestion of tadalafil could affect plasma markers related to cellular damage, redox homeostasis, and blood polyamines levels in healthy subjects with an elevated cardiorespiratory fitness level. Methods: Healthy male volunteers (n = 12), with a VO2max range of 40.1–56.0 mL/(kg × min), were administered with a single dose of tadalafil (20 mg). Plasma molecules related to muscle damage and redox-homeostasis, such as creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), reduced/oxidized glutathione ratio (GSH/GSSG), free thiols (FTH), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), as well as thiobarbituric acid reactive substances (TBARs), protein carbonyls (PrCAR), and polyamine levels (spermine (Spm) and spermidine (Spd)) were evaluated immediately before and 2, 6 and 24 hours after the acute tadalafil administration. Results: A single tadalafil administration induced an increase in CK and LDH plasma levels 24 after consumption. No effects were observed on redox homeostasis or antioxidant enzyme activities, and neither were they observed on the oxidation target molecules or polyamines levels. Conclusion: Our results show that in subjects with an elevated fitness level, a single administration of tadalafil induced a significant increase in muscle damage target without affecting plasma antioxidant status. Full article
Show Figures

Figure 1

16 pages, 1387 KiB  
Article
Moringa oleifera Leaf Extract Upregulates Nrf2/HO-1 Expression and Ameliorates Redox Status in C2C12 Skeletal Muscle Cells
by Guglielmo Duranti, Mariateresa Maldini, Domenico Crognale, Katy Horner, Ivan Dimauro, Stefania Sabatini and Roberta Ceci
Molecules 2021, 26(16), 5041; https://doi.org/10.3390/molecules26165041 - 20 Aug 2021
Cited by 33 | Viewed by 6645
Abstract
Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related [...] Read more.
Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related to redox homeostasis of transcription factors such as the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present study was to evaluate in vitro the capacity of MOLE to influence the redox status in C2C12 myotubes through the modulation of the total antioxidant capacity (TAC), glutathione levels, Nrf2 and its target gene heme oxygenase-1 (HO-1) expression, as well as enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and transferase (GST). Moreover, the impact of MOLE supplementation on lipid peroxidation and oxidative damage (i.e., TBARS and protein carbonyls) was evaluated. Our results highlight for the first time that MOLE increased not only Nrf2 and HO-1 protein levels in a dose-dependent manner, but also improved glutathione redox homeostasis and the enzyme activities of CAT, SOD, GPx and GST. Therefore, it is intriguing to speculate that MOLE supplementation could represent a valuable nutrition for the health of skeletal muscles. Full article
(This article belongs to the Special Issue Measurement of Antioxidant Activity: Advances and Perspectives)
Show Figures

Graphical abstract

14 pages, 894 KiB  
Review
Can Physical Activity Influence Human Gut Microbiota Composition Independently of Diet? A Systematic Review
by Barbara Dorelli, Francesca Gallè, Corrado De Vito, Guglielmo Duranti, Matteo Iachini, Matteo Zaccarin, Jacopo Preziosi Standoli, Roberta Ceci, Ferdinando Romano, Giorgio Liguori, Vincenzo Romano Spica, Stefania Sabatini, Federica Valeriani and Maria Sofia Cattaruzza
Nutrients 2021, 13(6), 1890; https://doi.org/10.3390/nu13061890 - 31 May 2021
Cited by 39 | Viewed by 7628
Abstract
Evidence suggests that physical activity (PA) influences the human gut microbiota composition, but its role is unclear because of dietary interference. The aim of this review is to clarify this issue from this new perspective in healthy individuals. Articles analyzing intestinal microbiota from [...] Read more.
Evidence suggests that physical activity (PA) influences the human gut microbiota composition, but its role is unclear because of dietary interference. The aim of this review is to clarify this issue from this new perspective in healthy individuals. Articles analyzing intestinal microbiota from fecal samples by 16S rRNA amplicon sequencing were selected by searching the electronic databases PubMed, Scopus, and Web of Science until December 2020. For each study, methodological quality was assessed, and results about microbiota biodiversity indices, phylum and genus composition, and information on PA and diet were considered. From 997 potentially relevant articles, 10 met the inclusion criteria and were analyzed. Five studies involved athletes, three were performed on active people classified on the basis of habitual PA level, and two among sedentary subjects undergoing exercise interventions. The majority of the studies reported higher variability and prevalence of the phylum Firmicutes (genera Ruminococcaceae or Fecalibacteria) in active compared to inactive individuals, especially in athletes. The assessment of diet as a possible confounder of PA/exercise effects was completed only in four studies. They reported a similar abundance of Lachnospiraceae, Paraprevotellaceae, Ruminococcaceae, and Veillonellaceae, which are involved in metabolic, protective, structural, and histological functions. Further studies are needed to confirm these findings. Full article
(This article belongs to the Special Issue The Role of Nutrition in Exercise and Sports)
Show Figures

Figure 1

19 pages, 20961 KiB  
Article
Emerging Role for Linear and Circular Spermine Oxidase RNAs in Skeletal Muscle Physiopathology
by Jonathan Fernando Reinoso-Sánchez, Giulia Baroli, Guglielmo Duranti, Silvia Scaricamazza, Stefania Sabatini, Cristiana Valle, Mariangela Morlando, Robert Anthony Casero, Irene Bozzoni, Paolo Mariottini, Roberta Ceci and Manuela Cervelli
Int. J. Mol. Sci. 2020, 21(21), 8227; https://doi.org/10.3390/ijms21218227 - 3 Nov 2020
Cited by 15 | Viewed by 3667
Abstract
Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. [...] Read more.
Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. Spermine oxidase (SMOX), a polyamine catabolic enzyme plays a critical role in muscle differentiation and the existence of a circRNA arising from SMOX gene has been recently identified. In this study, we evaluated the expression profile of circular and linear SMOX in both C2C12 differentiation and dexamethasone-induced myotubes atrophy. To validate our findings in vivo their expression levels were also tested in two murine models of amyotrophic lateral sclerosis: SOD1G93A and hFUS+/+, characterized by progressive muscle atrophy. During C2C12 differentiation, linear and circular SMOX show the same trend of expression. Interestingly, in atrophy circSMOX levels significantly increased compared to the physiological state, in both in vitro and in vivo models. Our study demonstrates that SMOX represents a new player in muscle physiopathology and provides a scientific basis for further investigation on circSMOX RNA as a possible new therapeutic target for the treatment of muscle atrophy. Full article
(This article belongs to the Special Issue Muscle Atrophy: Discovery of Mechanisms and Potential Therapies)
Show Figures

Graphical abstract

12 pages, 1105 KiB  
Article
Quercetin Supplementation Improves Neuromuscular Function Recovery from Muscle Damage
by Ilenia Bazzucchi, Federica Patrizio, Roberta Ceci, Guglielmo Duranti, Stefania Sabatini, Paolo Sgrò, Luigi Di Luigi and Massimo Sacchetti
Nutrients 2020, 12(9), 2850; https://doi.org/10.3390/nu12092850 - 17 Sep 2020
Cited by 24 | Viewed by 8074
Abstract
This study was aimed at investigating whether quercetin (Q) may improve the recovery of neuromuscular function and biochemical parameters in the 7 days following an eccentric exercise-induced muscle damage (EEIMD). Sixteen men (25.9 ± 3.3 y) ingested Q (1000 mg/day) or placebo (PLA) [...] Read more.
This study was aimed at investigating whether quercetin (Q) may improve the recovery of neuromuscular function and biochemical parameters in the 7 days following an eccentric exercise-induced muscle damage (EEIMD). Sixteen men (25.9 ± 3.3 y) ingested Q (1000 mg/day) or placebo (PLA) for 14 days following a double-blind crossover study design. A neuromuscular (NM) test was performed pre–post, 24 h, 48 h, 72 h, 96 h and 7 days after an intense eccentric exercise. The force–velocity relationship of the elbow flexor muscles and their maximal voluntary isometric contraction (MVIC) were recorded simultaneously to the electromyographic signals (EMG). Pain, joint angle, arm circumference, plasma creatine kinase (CK) and lactate-dehydrogenase (LDH) were also assessed. The results showed that Q supplementation significantly attenuated the strength loss compared to PLA. During the recovery, force–velocity relationship and mean fibers conduction velocity (MFCV) persisted significantly less when participants consumed PLA rather than Q, especially at the highest angular velocities (p < 0.02). A greater increase in biomarkers of damage was also evident in PLA with respect to Q. Q supplementation for 14 days seems able to ameliorate the recovery of eccentric exercise-induced weakness, neuromuscular function impairment and biochemical parameters increase probably due to its strong anti-inflammatory and antioxidant action. Full article
(This article belongs to the Special Issue Nutrition and Muscle Recovery)
Show Figures

Figure 1

19 pages, 2991 KiB  
Article
The Phosphodiesterase Type 5 Inhibitor Sildenafil Improves DNA Stability and Redox Homeostasis in Systemic Sclerosis Fibroblasts Exposed to Reactive Oxygen Species
by Luigi Di Luigi, Guglielmo Duranti, Ambra Antonioni, Paolo Sgrò, Roberta Ceci, Clara Crescioli, Stefania Sabatini, Andrea Lenzi, Daniela Caporossi, Francesco Del Galdo, Ivan Dimauro and Cristina Antinozzi
Antioxidants 2020, 9(9), 786; https://doi.org/10.3390/antiox9090786 - 25 Aug 2020
Cited by 16 | Viewed by 3587
Abstract
Systemic sclerosis (SSc) is a multi-system connective tissue disease characterized by the increased deposition of extracellular matrix proteins such as collagen and fibronectin. Although the pathogenesis is not completely understood, a number of studies suggest that free radicals could be the major contributors [...] Read more.
Systemic sclerosis (SSc) is a multi-system connective tissue disease characterized by the increased deposition of extracellular matrix proteins such as collagen and fibronectin. Although the pathogenesis is not completely understood, a number of studies suggest that free radicals could be the major contributors to the disease. Indeed, different studies demonstrated how oxidative stress could contribute to the fibrotic process activation at the level of the skin and visceral organs. Emerging evidences highlight the beneficial effects of sildenafil, a phosphodiesterase type 5 inhibitor (PDE5i), which protects different cell lines from the cell damage induced by reactive oxygen species (ROS). These data make sildenafil a good candidate for therapeutic treatment aimed to protect biological macromolecules against oxidative damage, thus preserving cell viability. The purpose of this study was to evaluate the sensitivity of SSc dermal fibroblasts to an oxidative insult and the ability for sildenafil to prevent/reduce the DNA damage due to ROS action. Additionally, we evaluated the capacity for sildenafil to influence redox homeostasis and cytotoxicity, as well as cell proliferation and cell cycle progression. We demonstrated that SSc fibroblasts have an increased sensitivity to a pro-oxidant environment in comparison to healthy controls. The sildenafil treatment reduced ROS-induced DNA damage, counteracted the negative effects of ROS on cell viability and proliferation, and promoted the activity of specific enzymes involved in redox homeostasis maintenance. To our knowledge, in this report, we demonstrate, for the first time, that sildenafil administration prevents ROS-induced instability in human dermal fibroblasts isolated by SSc patients. These results expand the use of PDE5i as therapeutic agents in SSc by indicating a protective role in tissue damage induced by oxidative insult. Full article
(This article belongs to the Special Issue Redox-Active Molecules as Therapeutic Agents)
Show Figures

Figure 1

Back to TopTop