Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Essential Oils (EOs) and Hydrolates (Hys)
2.3. Canvas Samples
2.4. Gas Chromatography and Mass Spectroscopy Analysis (GC-MS)
2.5. Broth Microdilution Susceptibility Test
2.6. Spray Formulation
2.7. In Situ Microbiological Test
2.8. Chemical-Physical Analysis
2.8.1. Ageing Conditions
2.8.2. pH Measurements
2.8.3. Colorimetric Measurements
2.8.4. Spray Treatment
2.9. Toxicity Study
2.10. Treatment of the Museum Painting
2.10.1. Sampling and Microbial Analysis of the Artwork
2.10.2. Spray Cytocidal Treatment
3. Results
3.1. GC/MS Analysis
3.2. Broth Microdilution Susceptibility Test
3.3. Microbiological Tests on Canvas Samples
3.4. Artificial Ageing
3.5. pH
3.6. Colorimetric Measurements
3.7. Toxicity Study
3.8. Treatment of “Il Silenzio” Painting
3.8.1. Microbiological Test
3.8.2. Cytocidal Treatment
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Poyatos, F.; Morales, F.; Nicholson, A.W.; Giordano, A. Physiology of Biodeterioration on Canvas Paintings. J. Cell. Physiol. 2018, 233, 2741–2751. [Google Scholar] [CrossRef] [PubMed]
- Cremonesi, P. L’ambiente Acquoso per Il Trattamento Di Opere Policrome. Metodologie, Tecniche e Formazione Nel Mondo Del Restauro, 2nd ed.; Il Prato: Padova, Italy, 2012. [Google Scholar]
- Borgioli, L.; de Comelli, A.; Pressi, G. Indagini Microbiologiche per La Verifica Dell’efficacia Di Alcuni Biocidi Esenti Da Metalli Pesanti. Progett. Restauro 2006, 11, 24–29. [Google Scholar]
- Borgioli, L.; Pressi, G.; Secondin, S. Valutazione Dell’efficacia Di Prodotti Biocidei Attraverso Test Microbiologici Di Laboratorio e Saggi Applicativi in Cantiere. Progett. Restauro 2003, 9, 39–46. [Google Scholar]
- Da Silva, M.T.C. Novel Biocides for Cultural Heritage; Universidade de Évora: Évora, Portugal, 2017. [Google Scholar]
- Schmitz-Felten, E.; Kuhl, K.; Graveling, R. Occupational Exposure to Biocides (Disinfectants and Metal Working Fluids)—OSHWiki. Available online: http://oshwiki.eu/wiki/Occupational_exposure_to_biocides_(disinfectants_and_metal_working_fluids) (accessed on 12 January 2022).
- Hwang, J.; Jeong, H.; Jung, Y.; Nam, K.T.; Lim, K.M. Skin Irritation and Inhalation Toxicity of Biocides Evaluated with Reconstructed Human Epidermis and Airway Models. Food Chem. Toxicol. 2021, 150, 112064. [Google Scholar] [CrossRef] [PubMed]
- Faucon, M. Traité d’aromathérapie Scientifique et Médicinale. Les Huiles Essentielles; Éditions Sang de la Terre et Médial: Paris, France, 2017. [Google Scholar]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; ISBN 9780443062414. [Google Scholar]
- Rhind, J. Essential Oils (Fully Revised and Updated 3rd Edition): A Comprehensive Handbook for Aromatic Therapy, 3rd ed.; Singing Dragon: London, UK, 2019. [Google Scholar]
- Faucon, M. Traité d’aromathérapie Scientifique et Médicale: Les Hydrolats; Éditions Sang de la Terre et Médial: Paris, France, 2018. [Google Scholar]
- Stupar, M.; Grbić, M.L.; Simić, G.S.; Jelikić, A.; Vukojević, J.; Sabovljević, M. A Sub-Aerial Biofilms Investigation and New Approach in Biocide Application in Cultural Heritage Conservation: Holy Virgin Church (Gradac Monastery, Serbia). Indoor Built Environ. 2014, 23, 584–593. [Google Scholar] [CrossRef]
- Stupar, M.; Grbić, M.L.; Džamić, A.; Unković, N.; Ristić, M.; Jelikić, A.; Vukojević, J. Antifungal Activity of Selected Essential Oils and Biocide Benzalkonium Chloride against the Fungi Isolated from Cultural Heritage Objects. S. Afr. J. Bot. 2014, 93, 118–124. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential Oils as Natural Biocides in Conservation of Cultural Heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veneranda, M.; Blanco-Zubiaguirre, L.; Roselli, G.; di Girolami, G.; Castro, K.; Madariaga, J.M. Evaluating the Exploitability of Several Essential Oils Constituents as a Novel Biological Treatment against Cultural Heritage Biocolonization. Microchem. J. 2018, 138, 1–6. [Google Scholar] [CrossRef]
- Borrego, S.; Valdés, O.; Vivar, I.; Lavin, P.; Guiamet, P.; Battistoni, P.; ’ Omez De Saravia, S.G.; Borges, P.; Fung, D.Y.C.; Velge, P. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage. ISRN Microbiol. 2012, 2012, 826786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsayed, Y.; Shabana, Y. The effect of some essential oils on aspergillus niger and alternaria alternata infestation in archaeological oil paintings. Mediterr. Archaeol. Archaeom. 2018, 18, 71–87. [Google Scholar] [CrossRef]
- Matusiak, K.; Machnowski, W.; Wrzosek, H.; Polak, J.; Rajkowska, K.; Śmigielski, K.; Kunicka-Styczyńska, A.; Gutarowska, B. Application of Cinnamomum Zeylanicum Essential Oil in Vapour Phase for Heritage Textiles Disinfection. Int. Biodeterior. Biodegrad. 2018, 131, 88–96. [Google Scholar] [CrossRef]
- Campanella, L.; Angeloni, R.; Cibin, F.; Dell’Aglio, E.; Grimaldi, F.; Reale, R.; Vitali, M. Capsulated Essential Oil in Gel Spheres for the Protection of Cellulosic Cultural Heritage. Nat. Prod. Res. 2021, 35, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Rakotonirainy, M.S.; Lavédrine, B. Screening for Antifungal Activity of Essential Oils and Related Compounds to Control the Biocontamination in Libraries and Archives Storage Areas. Int. Biodeterior. Biodegrad. 2005, 55, 141–147. [Google Scholar] [CrossRef]
- Rakotonirainy, M.S.; Juchauld, F.; Gillet, M.; Othman-Choulak, M.; Lavedrine, B. The Effect of Linalool Vapour on Silver-Gelatine Photographs and Bookbinding Leathers. Restaurator 2007, 28, 95–111. [Google Scholar] [CrossRef]
- Rakotonirainy, M.S.; Héraud, C.; Lavédrine, B. Detection of Viable Fungal Spores Contaminant on Documents and Rapid Control of the Effectiveness of an Ethylene Oxide Disinfection Using ATP Assay. Luminescence 2003, 18, 113–121. [Google Scholar] [CrossRef]
- di Vito, M.; Bellardi, M.G.; Colaizzi, P.; Ruggiero, D.; Mazzuca, C.; Micheli, L.; Sotgiu, S.; Iannuccelli, S.; Michelozzi, M.; Mondello, F.; et al. Hydrolates and Gellan: An Eco-Innovative Synergy for Safe Cleaning of Paper Artworks. Stud. Conserv. 2018, 63, 13–23. [Google Scholar] [CrossRef]
- di Vito, M.; Bellardi, M.G.; Mondello, F.; Modesto, M.; Michelozzi, M.; Bugli, F.; Sanguinetti, M.; Sclocchi, M.C.; Sebastiani, M.L.; Biffi, S.; et al. Monarda Citriodora Hydrolate vs Essential Oil Comparison in Several Anti-Microbial Applications. Ind. Crops Prod. 2019, 128, 206–212. [Google Scholar] [CrossRef]
- di Vito, M.; Smolka, A.; Proto, M.R.; Barbanti, L.; Gelmini, F.; Napoli, E.; Bellardi, M.G.; Mattarelli, P.; Beretta, G.; Sanguinetti, M.; et al. Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils? Antibiotics 2021, 10, 88. [Google Scholar] [CrossRef]
- Rodriquez-Tudela, J.L.; Donnelly, J.P.; Arendrup, M.C.; Arikan, S.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Denning, D.; et al. EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia–forming moulds Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Clin. Microbiol. Infect. 2008, 14, 982–984. [Google Scholar]
- Cremonesi, P.; Signorini, E. Un Approccio Alla Pulitura Dei Dipinti Mobili; Il Prato: Padova, Italy, 2012; ISBN 9788863361919. [Google Scholar]
- Oleari, C. Misurare Il Colore. Fisiologia Della Visione a Colori. Fotometria—Colorimetria e Norme Internazionali, 2nd ed.; Hoepli: Milano, Italy, 2008. [Google Scholar]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Đorđević, D.; Hladnik, A.; Javoršek, A. Performance Of Five Chromatic Adaptation Transforms Using Large Number Of Color Patches. Acta Graph. 2009, 20, 9–19. [Google Scholar]
- Singkum, P.; Suwanmanee, S.; Pumeesat, P.; Luplertlop, N. A Powerful in Vivo Alternative Model in Scientific Research: Galleria Mellonella. Acta Microbiol. Et Immunol. Hung. 2019, 66, 31–55. [Google Scholar] [CrossRef] [PubMed]
- Jeżewska, A.; Szewczyńska, M.; Woźnica, A. Occupational Exposure to Airborne Chemical Substances in Paintings Conservators. Med. Pr. 2014, 65, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varnai, V.M.; Macan, J.; Ćalušić, A.L.; Prester, L.; Macan, B.K. Upper Respiratory Impairment in Restorers of Cultural Heritage. Occup. Med. 2011, 61, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Maxim, D. Health effects of exposure to indoor fungi case study-the restorers of mural paintings. Eur. J. Sci. Theol. 2013, 9, 149–157. [Google Scholar]
- IFRA; RIFM. Guidance for the Use of Ifra Standards; 2020; pp. 1–74. Available online: https://ifrafragrance.org/docs/default-source/ifra-code-of-practice-and-standards/49th-amendment/ifra-49th-amendment-(att-01)---guidance-for-the-use-of-ifra-standardsa7006c445f36499bbb0eb141e8c0d4be.pdf?sfvrsn=7fb244c8_2 (accessed on 9 January 2022).
- IFRA STANDARD. Amendment 17th Safrole, Isosafrole and Dihydrosafrole; 1987; Available online: https://ifrafragrance.org/standards/IFRA_STD_179.pdf (accessed on 9 January 2022).
- IFRA Standard. 49th Amendment Cinnamic Aldehyde Molecular Formula; 2020; pp. 1–4. Available online: https://ifrafragrance.org/standards/IFRA_STD_018.pdf (accessed on 9 January 2022).
Ancient Techniques | |||
---|---|---|---|
Sample | Technique | Preparation | Paint Layer |
T1 | Tempera | Priming: white lead (zinc white) 12.5 g, litharge. (minium) 12.5 g, black of vine 0.5 g, boiled linseed oil 14 g | Egg-red tempera and respective pigments: red earth, ultramarine blue, green earth, yellow ochre |
T2 | Tempera | Bologna chalk and 1:9 rabbit glue | Egg-red tempera and respective pigments: red earth, ultramarine blue, green earth, yellow ochre |
O1 | Oil | Priming: white lead (zinc white) 12.5 g, litharge. (minium) 12.5 g, black of vine 0.5 g, boiled linseed oil 14 g | Boiled linseed oil and respective pigments: red earth, ultramarine blue, green earth, yellow ochre |
O2 | Oil | Bologna chalk and 1:9 rabbit glue | Boiled linseed oil and respective pigments: red earth, ultramarine blue, green earth, yellow ochre |
N° | Component 1 | LRI 2 | LRI 3 | EO (%) 4 |
---|---|---|---|---|
1 | α-thujene | 920 | 923 | 0.1 |
2 | α-pinene | 938 | 943 | 2.7 |
3 | camphene | 942 | 946 | 0.2 |
4 | β-pinene | 985 | 986 | 0.2 |
5 | α-phellandrene | 998 | 996 | 0.4 |
6 | p-cymene | 1020 | 1026 | 3.8 |
7 | 1,8-cineole | 1022 | 1027 | 4.4 |
8 | γ-terpinene | 1050 | 1054 | tr |
9 | cis-linalool oxide | 1060 | 1058 | tr |
10 | linalool | 1089 | 1092 | 4.9 |
11 | camphor | 1130 | 1126 | 0.1 |
12 | α-terpineol | 1019 | 1021 | 0.1 |
13 | 4-terpinenyl acetate | 1283 | 1286 | 0.1 |
14 | O-anisaldheyde | 1250 | 1242 * | 0.1 |
15 | cinnamaldheyde | 1269 | 1275 | 66.0 |
16 | eugenol | 1333 | 1331 | 4.1 |
17 | β-caryophyllene | 1429 | 1426 | 5.8 |
18 | (E)-cinnamyl acetate | 1441 | 1439 | 5.5 |
19 | humulene | 1450 | 1454 | 0.4 |
20 | eugenol acetate | 1480 | 1483 | 0.1 |
21 | O-metoxy cinnamaldheyde | 1507 | 1505 | 0.3 |
22 | δ-cadinene | 1529 | 1530 | 0.1 |
23 | caryophyllene oxide | 1577 | 1583 | 0.3 |
24 | benzyl benzoate | 1741 | 1739 | 0.3 |
SUM (%) | 100.0 | |||
Monoterpene hydrocarbons | 7.4 | |||
Oxygenated monoterpenes | 9.6 | |||
Sesquiterpene hydrocarbons | 6.3 | |||
Oxygenated sesquiterpene | 0.3 | |||
Others | 76.4 |
Essential Oil | Fungal Strain | MIC | MFC |
---|---|---|---|
C. zeylanicum | Alternaria alternata | 0.031% | 0.031% |
Aspergillus niger ATCC 9642 | 0.125% | 0.125% | |
Aureobasidium pullulans ATCC 15233 | 0.031% | 0.031% | |
Chaetomium globosum ATCC 6205 | 0.008% | 0.008% | |
Cladosporium cladosporioides ATCC 16022 | 0.008% | 0.008% | |
Penicillium citrinum | 0.125% | 0.125% | |
M. didyma | Alternaria alternata | 2% | 2% |
Aspergillus niger ATCC 9642 | 4% | 4% | |
Aureobasidium pullulans ATCC 15233 | 2% | 2% | |
Chaetomium globosum ATCC 6205 | 4% | >4% | |
Cladosporium cladosporioides ATCC 16022 | 4% | >4% | |
Penicillium citrinum | 4% | 4% | |
M. fistulosa | Alternaria alternata | 1% | 1% |
Aspergillus niger ATCC 9642 | 1% | 2% | |
Aureobasidium pullulans ATCC 15233 | 4% | >4% | |
Chaetomium globosum ATCC 6205 | 4% | >4% | |
Cladosporium cladosporioides ATCC 16022 | 2% | 2% | |
Hydrolats | Fungal Strains | MIC | MFC |
C. aurantium var. amara | Alternaria alternata | 1.56% | 1.56% |
Aspergillus niger ATCC 9642 | 6.25% | 6.25% | |
Aureobasidium pullulans ATCC 15233 | 3.125% | 3.125% | |
Chaetomium globosum ATCC 6205 | 1.56% | 1.56% | |
Cladosporium cladosporioides ATCC 16022 | 1.56% | 1.56% | |
Penicillium citrinum | 1.56% | 1.56% | |
M. citriodora | Alternaria alternata | 12.5% | 12.5% |
Aspergillus niger ATCC 9642 | 50% | 50% | |
Aureobasidium pullulans ATCC 15233 | 12.5% | 12.5% | |
Chaetomium globosum ATCC 6205 | 12.5% | 12.5% | |
Cladosporium cladosporioides ATCC 16022 | 6.25% | 6.25% | |
Penicillium citrinum | ≥50% | ≥50% | |
M. didyma | Alternaria alternata | ≥50% | ≥50% |
Aspergillus niger ATCC 9642 | ≥50% | ≥50% | |
Aureobasidium pullulans ATCC 15233 | ≥50% | ≥50% | |
Chaetomium globosum ATCC 6205 | ≥50% | ≥50% | |
Cladosporium cladosporioides ATCC 16022 | 6.25% | 3.125% | |
Penicillium citrinum | ≥50% | ≥50% | |
M. fistulosa | Alternaria alternata | 25% | 25% |
Aspergillus niger ATCC 9642 | ≥50% | ≥50% | |
Aureobasidium pullulans ATCC 15233 | 25% | 25% | |
Chaetomium globosum ATCC 6205 | 12.5% | 12.5% | |
Cladosporium cladosporioides ATCC 16022 | 12.5% | 12.5% | |
Penicillium citrinum | ≥50% | ≥50% |
Colour | Technique | Unaged | Aged | ||||||
---|---|---|---|---|---|---|---|---|---|
A-BT 1 | A-AT 2 | AV 3 | SD 4 | A-BT | A-AT | AV | SD | ||
Red | T1 5 | 6.5 | 5.6 | −0.9 * | 0.4 | 4.5 | 5.0 | 0.5 ns | 0.4 |
T2 6 | 5.3 | 5.7 | 0.3 ns | 0.2 | 4.1 | 4.7 | 0.5 (+) | 0.3 | |
O1 8 | 5.8 | 5.8 | 0.0 ns | 0.1 | 5.4 | 6.2 | 0.8 ** | 0.1 | |
O2 7 | 5.4 | 5.6 | 0.2 ns | 0.2 | 4.8 | 4.9 | 0.2 ns | 0.1 | |
Blue | T1 | 6.0 | 5.7 | −0.3 ns | 0.2 | 4.5 | 5.3 | 0.8 * | 0.3 |
T2 | 5.4 | 5.7 | 0.3 * | 0.0 | 4.7 | 5.1 | 0.4 * | 0.1 | |
O1 | 6.1 | 5.9 | −0.3 ns | 0.3 | 5.3 | 6.4 | 1.0 ** | 0.1 | |
O2 | 5.7 | 5.5 | −0.2 ns | 0.4 | 4.6 | 4.9 | 0.3 ** | 0.1 | |
Green | T1 | 5.7 | 5.4 | −0.3 ns | 0.2 | 4.4 | 4.8 | 0.4 ** | 0.1 |
T2 | 5.5 | 5.7 | 0.2 (+) | 0.1 | 4.8 | 5.0 | 0.3 (+) | 0.1 | |
O1 | 6.1 | 5.9 | −0.2 ns | 0.2 | 5.8 | 6.2 | 0.4 * | 0.1 | |
O2 | 6.0 | 5.7 | −0.3 ns | 0.3 | 6.2 | 5.7 | −0.5 * | 0.2 | |
Ocher | T1 | 5.6 | 4.9 | −0.7 ns | 1.0 | 4.7 | 4.6 | 0.0 ns | 0.1 |
T2 | 5.8 | 5.8 | 0.0 ns | 0.2 | 4.8 | 5.2 | 0.4 * | 0.1 | |
O1 | 6.1 | 6.1 | 0.0 ns | 0.2 | 5.5 | 6.3 | 0.8 ** | 0.2 | |
O2 | 5.5 | 5.6 | 0.1 ns | 0.2 | 5.8 | 6.0 | 0.2 (+) | 0.1 |
Unaged Canvas (Mean Values) | Aged Canvas (Mean Values) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | ||||||||||||||
Colour | Sample | L* | a* | b* | L* | a* | b* | DE | SD-DE 1 | L* | a* | b* | L* | a* | b* | DE | SD-DE |
Red | T1 2 | 34.2 | 18.2 | 14.4 | 35.2 | 19.1 | 15.4 | 1.8 | 0.4 | 47.7 | 9.4 | 4.9 | 40.0 | 13.4 | 10.1 | 17.8 | 17.0 |
T2 3 | 35.2 | 18.5 | 15.1 | 35.2 | 18.6 | 15.4 | 0.7 | 0.4 | 34.9 | 18.9 | 15.1 | 34.8 | 19.0 | 15.0 | 0.4 | 0.2 | |
O1 4 | 35.0 | 21.1 | 19.0 | 34.3 | 21.0 | 19.1 | 1.4 | 0.6 | 32.8 | 19.6 | 18.3 | 34.2 | 20.1 | 19.0 | 2.0 | 0.2 | |
O2 5 | 33.3 | 15.6 | 12.5 | 33.3 | 15.5 | 12.5 | 0.5 | 0.2 | 31.4 | 19.8 | 18.2 | 32.1 | 20.1 | 18.5 | 0.8 | 0.2 | |
Blue | T1 | 25.1 | 9.7 | −24.2 | 24.9 | 9.2 | −23.7 | 0.9 | 0.5 | 40.7 | 5.9 | −10.0 | 40.7 | 5.9 | −10.0 | 7.7 | 4.6 |
T2 | 28.3 | 29.6 | −56.0 | 28.1 | 28.6 | −54.6 | 1.7 | 0.2 | 30.2 | 21.2 | −40.3 | 30.2 | 21.2 | −40.3 | 7.2 | 9.6 | |
O1 | 25.8 | 6.5 | −19.9 | 25.9 | 6.3 | −18.9 | 1.0 | 0.1 | 27.8 | 8.2 | −29.3 | 27.8 | 8.2 | −29.3 | 2.6 | 0.5 | |
O2 | 26.9 | 14.2 | −36.7 | 26.6 | 13.2 | −35.1 | 1.7 | 1.4 | 34.3 | 21.5 | −56.4 | 34.3 | 21.5 | −56.4 | 1.9 | 0.5 | |
Green | T1 | 36.9 | −5.4 | 10.6 | 36.5 | −5.3 | 10.7 | 0.7 | 0.4 | 41.3 | −1.9 | 8.8 | 41.3 | −1.9 | 8.8 | 3.2 | 1.4 |
T2 | 35.0 | −5.8 | 9.9 | 35.2 | −5.7 | 9.8 | 0.3 | 0.1 | 36.6 | −3.2 | 11.0 | 36.6 | −3.2 | 11.0 | 1.3 | 0.8 | |
O1 | 32.7 | −3.8 | 7.9 | 33.0 | −3.6 | 8.0 | 0.4 | 0.2 | 46.5 | −4.7 | 11.0 | 46.5 | −4.7 | 11.0 | 0.6 | 0.2 | |
O2 | 33.0 | −4.3 | 6.5 | 32.8 | −4.2 | 6.6 | 0.3 | 0.1 | 42.4 | −3.8 | 9.6 | 42.4 | −3.8 | 9.6 | 0.8 | 0.3 | |
Ocher | T1 | 59.5 | 14.7 | 45.4 | 59.3 | 14.9 | 46.3 | 0.9 | 0.2 | 58.3 | 13.2 | 42.0 | 58.3 | 13.2 | 42.0 | 1.3 | 0.6 |
T2 | 61.4 | 18.0 | 49.8 | 60.1 | 20.9 | 50.1 | 0.7 | 0.4 | 61.2 | 19.2 | 53.6 | 61.2 | 19.2 | 53.6 | 2.4 | 0.5 | |
O1 | 38.2 | 9.5 | 5.0 | 38.1 | 9.5 | 5.6 | 0.9 | 0.5 | 57.9 | 12.9 | 43.2 | 57.9 | 12.9 | 43.1 | 1.8 | 0.4 | |
O2 | 59.3 | 18.8 | 48.2 | 59.8 | 19.2 | 49.1 | 0.7 | 0.3 | 58.2 | 17.7 | 47.4 | 58.2 | 17.7 | 47.4 | 1.6 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minotti, D.; Vergari, L.; Proto, M.R.; Barbanti, L.; Garzoli, S.; Bugli, F.; Sanguinetti, M.; Sabatini, L.; Peduzzi, A.; Rosato, R.; et al. Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil. J. Fungi 2022, 8, 140. https://doi.org/10.3390/jof8020140
Minotti D, Vergari L, Proto MR, Barbanti L, Garzoli S, Bugli F, Sanguinetti M, Sabatini L, Peduzzi A, Rosato R, et al. Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil. Journal of Fungi. 2022; 8(2):140. https://doi.org/10.3390/jof8020140
Chicago/Turabian StyleMinotti, Debora, Lara Vergari, Maria Rita Proto, Lorenzo Barbanti, Stefania Garzoli, Francesca Bugli, Maurizio Sanguinetti, Luigia Sabatini, Alice Peduzzi, Roberto Rosato, and et al. 2022. "Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil" Journal of Fungi 8, no. 2: 140. https://doi.org/10.3390/jof8020140
APA StyleMinotti, D., Vergari, L., Proto, M. R., Barbanti, L., Garzoli, S., Bugli, F., Sanguinetti, M., Sabatini, L., Peduzzi, A., Rosato, R., Bellardi, M. G., Mattarelli, P., De Luca, D., & Di Vito, M. (2022). Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil. Journal of Fungi, 8(2), 140. https://doi.org/10.3390/jof8020140