Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Ramachandran Balaji

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5937 KiB  
Review
Recent Advances in Wearable Textile-Based Triboelectric Nanogenerators
by Sivasubramaniyan Neelakandan, S. R. Srither, N. R. Dhineshbabu, Suman Maloji, Oscar Dahlsten, Ramachandran Balaji and Ragini Singh
Nanomaterials 2024, 14(18), 1500; https://doi.org/10.3390/nano14181500 - 15 Sep 2024
Cited by 11 | Viewed by 4156
Abstract
We review recent results on textile triboelectric nanogenerators (T-TENGs), which function both as harvesters of mechanical energy and self-powered motion sensors. T-TENGs can be flexible, breathable, and lightweight. With a combination of traditional and novel manufacturing methods, including nanofibers, T-TENGs can deliver promising [...] Read more.
We review recent results on textile triboelectric nanogenerators (T-TENGs), which function both as harvesters of mechanical energy and self-powered motion sensors. T-TENGs can be flexible, breathable, and lightweight. With a combination of traditional and novel manufacturing methods, including nanofibers, T-TENGs can deliver promising power output. We review the evolution of T-TENG device structures based on various textile material configurations and fabrication methods, along with demonstrations of self-powered systems. We also provide a detailed analysis of different textile materials and approaches used to enhance output. Additionally, we discuss integration capabilities with supercapacitors and potential applications across various fields such as health monitoring, human activity monitoring, human–machine interaction applications, etc. This review concludes by addressing the challenges and key research questions that remain for developing viable T-TENG technology. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

32 pages, 8059 KiB  
Article
Intelligent Energy Management across Smart Grids Deploying 6G IoT, AI, and Blockchain in Sustainable Smart Cities
by Mithul Raaj A T, Balaji B, Sai Arun Pravin R R, Rani Chinnappa Naidu, Rajesh Kumar M, Prakash Ramachandran, Sujatha Rajkumar, Vaegae Naveen Kumar, Geetika Aggarwal and Arooj Mubashara Siddiqui
IoT 2024, 5(3), 560-591; https://doi.org/10.3390/iot5030025 - 31 Aug 2024
Cited by 11 | Viewed by 4915
Abstract
In response to the growing need for enhanced energy management in smart grids in sustainable smart cities, this study addresses the critical need for grid stability and efficient integration of renewable energy sources, utilizing advanced technologies like 6G IoT, AI, and blockchain. By [...] Read more.
In response to the growing need for enhanced energy management in smart grids in sustainable smart cities, this study addresses the critical need for grid stability and efficient integration of renewable energy sources, utilizing advanced technologies like 6G IoT, AI, and blockchain. By deploying a suite of machine learning models like decision trees, XGBoost, support vector machines, and optimally tuned artificial neural networks, grid load fluctuations are predicted, especially during peak demand periods, to prevent overloads and ensure consistent power delivery. Additionally, long short-term memory recurrent neural networks analyze weather data to forecast solar energy production accurately, enabling better energy consumption planning. For microgrid management within individual buildings or clusters, deep Q reinforcement learning dynamically manages and optimizes photovoltaic energy usage, enhancing overall efficiency. The integration of a sophisticated visualization dashboard provides real-time updates and facilitates strategic planning by making complex data accessible. Lastly, the use of blockchain technology in verifying energy consumption readings and transactions promotes transparency and trust, which is crucial for the broader adoption of renewable resources. The combined approach not only stabilizes grid operations but also fosters the reliability and sustainability of energy systems, supporting a more robust adoption of renewable energies. Full article
(This article belongs to the Special Issue 6G Optical Internet of Things (OIoT) for Sustainable Smart Cities)
Show Figures

Figure 1

18 pages, 7179 KiB  
Article
Exposure to Secondhand Smoke Extract Increases Cisplatin Resistance in Head and Neck Cancer Cells
by Balaji Sadhasivam, Jimmy Manyanga, Vengatesh Ganapathy, Pawan Acharya, Célia Bouharati, Mayilvanan Chinnaiyan, Toral Mehta, Basil Mathews, Samuel Castles, David A. Rubenstein, Alayna P. Tackett, Yan D. Zhao, Ilangovan Ramachandran and Lurdes Queimado
Int. J. Mol. Sci. 2024, 25(2), 1032; https://doi.org/10.3390/ijms25021032 - 14 Jan 2024
Cited by 3 | Viewed by 5027
Abstract
Chemotherapy and radiotherapy resistance are major obstacles in the long-term efficacy of head and neck squamous cell carcinoma (HNSCC) treatment. Secondhand smoke (SHS) exposure is common and has been proposed as an independent predictor of HNSCC recurrence and disease-free survival. However, the underlying [...] Read more.
Chemotherapy and radiotherapy resistance are major obstacles in the long-term efficacy of head and neck squamous cell carcinoma (HNSCC) treatment. Secondhand smoke (SHS) exposure is common and has been proposed as an independent predictor of HNSCC recurrence and disease-free survival. However, the underlying mechanisms responsible for these negative patient outcomes are unknown. To assess the effects of SHS exposure on cisplatin efficacy in cancer cells, three distinct HNSCC cell lines were exposed to sidestream (SS) smoke, the main component of SHS, at concentrations mimicking the nicotine level seen in passive smokers’ saliva and treated with cisplatin (0.01–100 µM) for 48 h. Compared to cisplatin treatment alone, cancer cells exposed to both cisplatin and SS smoke extract showed significantly lower cisplatin-induced cell death and higher cell viability, IC50, and indefinite survival capacity. However, SS smoke extract exposure alone did not change cancer cell viability, cell death, or cell proliferation compared to unexposed control cancer cells. Mechanistically, exposure to SS smoke extract significantly reduced the expression of cisplatin influx transporter CTR1, and increased the expression of multidrug-resistant proteins ABCG2 and ATP7A. Our study is the first to document that exposure to SHS can increase cisplatin resistance by altering the expression of several proteins involved in multidrug resistance, thus increasing the cells’ capability to evade cisplatin-induced cell death. These findings emphasize the urgent need for clinicians to consider the potential role of SHS on treatment outcomes and to advise cancer patients and caregivers on the potential benefits of avoiding SHS exposure. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

8 pages, 3251 KiB  
Communication
Non-Destructive Discrimination of Blue Inks on Suspected Documents through the Combination of Raman Spectroscopy and Chemometric Analysis
by Sruthi Thiraviam Saravanan, Jaysiva Ganesamurthi, Shen-Ming Chen, Tse-Wei Chen, Chun-Jung Chen, Keseven Lakshmanan, Partheeban Chinnamuthu, Xiaoheng Liu and Ramachandran Balaji
J 2023, 6(4), 536-543; https://doi.org/10.3390/j6040035 - 26 Sep 2023
Viewed by 2321
Abstract
Increasingly sophisticated techniques for falsifying and forging legal documents demand non-destructive and accurate analysis methods. Researchers have extensively investigated ink discrimination through an interdisciplinary analysis involving Raman spectroscopy and chemometrics, which is now regarded as a leading forensic document analysis approach. In this [...] Read more.
Increasingly sophisticated techniques for falsifying and forging legal documents demand non-destructive and accurate analysis methods. Researchers have extensively investigated ink discrimination through an interdisciplinary analysis involving Raman spectroscopy and chemometrics, which is now regarded as a leading forensic document analysis approach. In this study, a groundbreaking method was developed to identify the specific origin of blue-ink pens used in written documents. By employing Raman spectroscopy in conjunction with principal component analysis (PCA), we successfully differentiated between 45 different blue-ink pens used on various documents. The Raman spectroscopy analysis provided a visual examination of each blue ink’s unique Raman signature, and PCA was then applied to the processed spectral data. Moreover, we successfully distinguished highly similar ink types in documents through the combined use of Raman spectroscopy, Pearson’s correlation analysis, and a statistical approach (PCA). Full article
Show Figures

Figure 1

13 pages, 5127 KiB  
Article
Electrochemical Monitoring of Sulfadiazine via La@CeO Incorporated with Reduced Graphene Oxide
by Francis Packiaraj Don Disouza, Ruspika Sundaresan, Shen-Ming Chen, Balaji Ramachandran and Narendhar Chandrasekar
Analytica 2023, 4(3), 300-312; https://doi.org/10.3390/analytica4030023 - 6 Jul 2023
Cited by 8 | Viewed by 2355
Abstract
In recent years, indiscriminate consumption and dumping of antibiotics have become destructive to human health and causes ecotoxicological pollution. Here, the irregular particle nanosized dendrite structure of lanthanum-doped cerium oxide (LCO) decorated with sheet-like reduced graphene oxide (RGO) composite was utilized to detect [...] Read more.
In recent years, indiscriminate consumption and dumping of antibiotics have become destructive to human health and causes ecotoxicological pollution. Here, the irregular particle nanosized dendrite structure of lanthanum-doped cerium oxide (LCO) decorated with sheet-like reduced graphene oxide (RGO) composite was utilized to detect the sulfonamide-based drug sulfadiazine (SZ). LCO@RGO nanocomposite was prepared using the hydrothermal method, the synergistic effect between LCO and RGO facilitates electron transferability and conductivity which enhances the electrochemical properties toward the detection of SZ. The detection of SZ expressed a lower detection limit (0.005 µM) and linear range (0.01–265 µM) of the fabricated LCO@RGO/GCE electrode toward SZ, analyzed using the highly sensitive DPV technique. Also, DPV was utilized to determined shows good repeatability, reproducibility, and storage stability of fabricated LCO@RGO/GCE. Moreover, effective practicability was proven in human blood serum and river water samples with great recovery results. All the above probes the synthesized LCO@RGO’s thriving and outstanding electrocatalytic performance of this nanocomposite’s highly sensitive detection of SZ in real biological and environmental samples. Full article
(This article belongs to the Section Sensors)
Show Figures

Figure 1

19 pages, 2283 KiB  
Article
Bioactive Efficacy of Identified Phytochemicals Solasodine, Lupeol and Quercetin from Solanum xanthocarpum against the RgpB Protein of Porphyromonas gingivalis—A Molecular Docking and Simulation Analysis
by Deepavalli Arumuganainar, Gopinath Subramanian, Santhosh Basavarajappa, Mohamed Ibrahim Hashem, Kurumathur Vasudevan Arun, Subbusamy Kanakasabapathy Balaji, Pradeep Kumar Yadalam, Baskar Venkidasamy and Ramachandran Vinayagam
Processes 2023, 11(7), 1887; https://doi.org/10.3390/pr11071887 - 23 Jun 2023
Cited by 4 | Viewed by 2108
Abstract
Periodontal diseases are highly prevalent oral conditions associated with severe complications in the oral cavity. These inflammatory diseases are caused by the oral microbiome and are influenced by several factors, such as aging, tobacco usage, systemic illness and inadequate oral hygiene. Plant-derived phytochemicals [...] Read more.
Periodontal diseases are highly prevalent oral conditions associated with severe complications in the oral cavity. These inflammatory diseases are caused by the oral microbiome and are influenced by several factors, such as aging, tobacco usage, systemic illness and inadequate oral hygiene. Plant-derived phytochemicals are extensively utilized in managing various periodontal diseases due to the presence of antioxidant, anti-inflammatory and antibacterial activities. Plant materials have shifted attention from conventional medicine to indigenous medicine. Solanum xanthocarpum is a medicinal herb found in India. It exhibits various pharmacological properties essential for periodontal disease prevention and management. The current work analyzes various pharmacological properties of S. xanthocarpum aqueous extract. The S. xanthocarpum extracts’ antioxidant, anti-inflammatory and anti-microbial properties were ascertained by DPPH assay, HRBC membrane stabilization assay and disk diffusion assay, respectively. S. xanthocarpum’s active phytochemical components were detected using gas chromatography–mass spectrometry (GC-MS) estimation. Furthermore, molecular docking and simulation analysis were conducted to determine the interaction between phytocompounds and the RgpB protein of Porphyromonas gingivalis. Phytocompounds possessing anti-microbial, antioxidant and anti-inflammatory properties were detected through GC-MS estimation. The molecular docking and simulation analysis revealed the inhibitory mechanisms of the phytocompounds Solasodine, Lupeol and Quercetin against arginine-specific gingipain RgpB protein. Insilico analysis revealed that Lupeol had the highest binding energy of −263.879 Kcal/mol among the phytocompounds studied, followed by Solasodine with a binding energy of −102.457 Kcal/mol and Quercetin with a binding energy of 33.6821 Kcal/mol. The study revealed that S. xanthocarpum has significant potential as an herbal remedy for preventing and treating periodontal diseases. This may facilitate drug development in the future. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Plants)
Show Figures

Figure 1

14 pages, 6355 KiB  
Article
Fabrication of an Electrocatalyst Based on Rare Earth Manganites Incorporated with Carbon Nanofiber Hybrids: An Efficient Electrochemical Biosensor for the Detection of Anti-Inflammatory Drug Mefenamic Acid
by Saranvignesh Alagarsamy, Ruspika Sundaresan, Shen-Ming Chen, J. Meena Devi, Narendhar Chandrasekar and Balaji Ramachandran
C 2023, 9(2), 47; https://doi.org/10.3390/c9020047 - 6 May 2023
Cited by 14 | Viewed by 3024
Abstract
Pharmaceutical and personal care products are emerging as a new category of environmental pollution. Analytical drug detection from a biological sample for detection is still crucial today. Mefenamic acid (MA) is an anti-inflammatory drug utilized for its antipyretic and analgesic properties, which is [...] Read more.
Pharmaceutical and personal care products are emerging as a new category of environmental pollution. Analytical drug detection from a biological sample for detection is still crucial today. Mefenamic acid (MA) is an anti-inflammatory drug utilized for its antipyretic and analgesic properties, which is harmful to patients at higher dosages and is also recognized as a chemical pollutant that harms the environment. In this view, Dysprosium manganite/carbon nanofiber (DMO/CNF) was prepared by hydrothermal method for the electrochemical detection of MA. DMO/CNF/GCE exhibits high selectivity, excellent anti-interference, good stability, and reproducibility toward the detection of MA. The enhanced electrochemical performance of DMO/CNF/GCE was attributed to their synergetic interaction. Under optimized conditions, DMO/CNF/GCE shows a wide linear range of 0.01–741 μM and a low LOD of 0.009 μM. Satisfactory recoveries were obtained for human blood and tablet samples. Thus, the proposed DMO/CNF nanocomposite emerges as a promising material for the detection of MA. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications)
Show Figures

Figure 1

15 pages, 4655 KiB  
Review
A Brief Review of Graphene-Based Biosensors Developed for Rapid Detection of COVID-19 Biomarkers
by Narendhar Chandrasekar, Ramachandran Balaji, Ramaswamy Sandeep Perala, Nik Zulkarnine Nik Humaidi, Kirubanandan Shanmugam, Ying-Chih Liao, Michael Taeyoung Hwang and Saravanan Govindaraju
Biosensors 2023, 13(3), 307; https://doi.org/10.3390/bios13030307 - 22 Feb 2023
Cited by 18 | Viewed by 4701
Abstract
The prevalence of mutated species of COVID-19 antigens has provided a strong impetus for identifying a cost-effective, rapid and facile strategy for identifying the viral loads in public places. The ever-changing genetic make-up of SARS-CoV-2 posts a significant challenfge for the research community [...] Read more.
The prevalence of mutated species of COVID-19 antigens has provided a strong impetus for identifying a cost-effective, rapid and facile strategy for identifying the viral loads in public places. The ever-changing genetic make-up of SARS-CoV-2 posts a significant challenfge for the research community to identify a robust mechanism to target, bind and confirm the presence of a viral load before it spreads. Synthetic DNA constructs are a novel strategy to design complementary DNA sequences specific for antigens of interest as in this review’s case SARS-CoV-2 antigens. Small molecules, complementary DNA and protein–DNA complexes have been known to target analytes in minimal concentrations. This phenomenon can be exploited by nanomaterials which have unique electronic properties such as ballistic conduction. Graphene is one such candidate for designing a device with a very low LOD in the order of zeptomolar and attomolar concentrations. Surface modification will be the significant aspect of the device which needs to have a high degree of sensitivity at the same time as providing a rapid signaling mechanism. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

16 pages, 11185 KiB  
Article
Barrier Performance of Spray Coated Cellulose Nanofibre Film
by Kirubanandan Shanmugam, Narendhar Chandrasekar and Ramachandran Balaji
Micro 2023, 3(1), 192-207; https://doi.org/10.3390/micro3010014 - 3 Feb 2023
Cited by 4 | Viewed by 3457
Abstract
Cellulose nanofibre (CNF) is the sustainable nanomaterial used for developing high-performance barrier materials that are renewable, recyclable, and biodegradable. The CNF film has very low oxygen permeability; however, its water vapor permeability is significantly higher than that of conventional packaging plastics. The fabrication [...] Read more.
Cellulose nanofibre (CNF) is the sustainable nanomaterial used for developing high-performance barrier materials that are renewable, recyclable, and biodegradable. The CNF film has very low oxygen permeability; however, its water vapor permeability is significantly higher than that of conventional packaging plastics. The fabrication method influences their barrier properties of the film. A spray-coating CNF on a stainless-steel plate was developed to form a compact film with two unique surfaces, namely a smooth layer on the base side and rough layer on the free side. It improves both the ease of preparation of the film and reduces the water vapour permeability via tailoring the basis weight and thickness of the film through simple adjusting CNF content in the suspension. The air permanence of the film from 1.0 wt.% to 2.0 wt.% CNF suspension is less than 0.003 µm/Pa·S confirming that is an impermeable film and proves a good packaging material. SEM, optical profilometry, and AFM revealed that the spray-coated surface was smooth and glossy. For sprayed CNF films with basis weight between 86.26 ± 13.61 and 155.85 ± 18.01 g/m2, WVP were ranged from 6.99 ± 1.17 × 10−11 to 4.19 ± 1.45 × 10−11 g/m·Pa·S. In comparison, the WVP of 100 g/m2 vacuum filtered CNF film was 5.50 ± 0.84 × 10−11 g/m·Pa·S, spray-coated film (of 96.6 g/m2) also show similar permeability at around 5.34 ± 0.603 × 10−11 g/m·Pa·S. The best performance was achieved with spraying of 2.0 wt.% CNF and a water vapour permeability of 3.91 × 10−11 g/m·s·Pa. Spray coated CNF film is impermeable against air and water vapour and a potential alternative to synthetic plastics. Full article
Show Figures

Figure 1

12 pages, 2683 KiB  
Article
Enhancing Stability of High-Concentration β-Tricalcium Phosphate Suspension for Biomedical Application
by Kai-Wen Chuang, Yi-Chen Liu, Ramachandran Balaji, Yu-Chieh Chiu, Jiashing Yu and Ying-Chih Liao
Materials 2023, 16(1), 228; https://doi.org/10.3390/ma16010228 - 27 Dec 2022
Cited by 2 | Viewed by 2826
Abstract
We propose a novel process to efficiently prepare highly dispersed and stable Tricalcium Phosphate (β-TCP) suspensions. TCP is coupled with a polymer to enhance its brittleness to be used as an artificial hard tissue. A high solid fraction of β-TCP is mixed with [...] Read more.
We propose a novel process to efficiently prepare highly dispersed and stable Tricalcium Phosphate (β-TCP) suspensions. TCP is coupled with a polymer to enhance its brittleness to be used as an artificial hard tissue. A high solid fraction of β-TCP is mixed with the polymer in order to improve the mechanical strength of the prepared material. The high solid fractions led to fast particle aggregation due to Van der Waals forces, and sediments appeared quickly in the suspension. As a result, we used a dispersant, dispex AA4040 (A40), to boost the surface potential and steric hindrance of particles to make a stable suspension. However, the particle size of β-TCP is too large to form a suspension, as the gravity effect is much more dominant than Brownian motion. Hence, β-TCP was subjected to wet ball milling to break the aggregated particles, and particle size was reduced to ~300 nm. Further, to decrease sedimentation velocity, cellulose nanocrystals (CNCs) are added as a thickening agent to increase the overall viscosity of suspension. Besides the viscosity enhancement, CNCs were also wrapped with A40 micelles and increase the stability of the suspension. These CNC/A40 micelles further facilitated stable suspension of β-TCP particles with an average hydration radius of 244.5 nm. Finally, β-TCP bone cement was formulated with the suspension, and the related cytotoxicity was estimated to demonstrate its applicability for hard tissue applications. Full article
(This article belongs to the Special Issue Advanced Materials – Microstructure, Manufacturing and Analysis)
Show Figures

Figure 1

10 pages, 1444 KiB  
Article
CBCT Evaluation of Sticky Bone in Horizontal Ridge Augmentation with and without Collagen Membrane—A Randomized Parallel Arm Clinical Trial
by Jane Belinda Tony, Harinath Parthasarathy, Anupama Tadepalli, Deepa Ponnaiyan, Ahmed Alamoudi, Mona Awad Kamil, Khalid J. Alzahrani, Khalaf F. Alsharif, Ibrahim F. Halawani, Mrim M. Alnfiai, Lakshmi Ramachandran, Thodur Madapusi Balaji and Shankargouda Patil
J. Funct. Biomater. 2022, 13(4), 194; https://doi.org/10.3390/jfb13040194 - 19 Oct 2022
Cited by 16 | Viewed by 4660
Abstract
Guided bone regeneration (GBR) is a reliable technique used to treat ridge deficiencies prior or during implant placement. Injectable-platelet rich fibrin (i-PRF) laced with a bone substitute (sticky bone) has heralded the way for advancing the outcomes of bone regeneration. This study evaluated [...] Read more.
Guided bone regeneration (GBR) is a reliable technique used to treat ridge deficiencies prior or during implant placement. Injectable-platelet rich fibrin (i-PRF) laced with a bone substitute (sticky bone) has heralded the way for advancing the outcomes of bone regeneration. This study evaluated the efficacy of sticky bone in horizontal ridge augmentation with and without collagen membrane. A total of 20 partially edentulous patients (Group-I n = 10; Group-II n = 10) that indicated GBR were included, and the surgical procedure was carried out. In Group-I, the sticky bone and collagen membrane were placed in ridge-deficient sites and Group-II received only sticky bone. At the end of 6 months, 20 patients (Group-I (n = 10); Group-II (n = 10)) completed the follow-up period. A CBCT examination was performed to assess changes in the horizontal ridge width (HRW) and vertical bone height (VBH). A statistically significant increase in HRW (p < 0.05) was observed in both groups with mean gains of 1.35 mm, 1.55 mm, and 1.93 mm at three levels (crest, 3 mm, and 6 mm) in Group-I and 2.7 mm, 2.8 mm, and 2.6 mm at three levels in Group-II. The intergroup comparison revealed statistical significance (p < 0.05) with respect to HRW and KTW (Keratinised tissue width) gains of 0.775 at the 6-month follow-up. Sticky-bone (Xenogenic-bone graft + i-PRF) served as a promising biomaterial in achieving better horizontal bone width gain. Full article
(This article belongs to the Special Issue Biomaterials and Bioengineering in Dentistry)
Show Figures

Figure 1

24 pages, 2919 KiB  
Review
A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications
by Melvin S. Samuel, Madhumita Ravikumar, Ashwini John J., Ethiraj Selvarajan, Himanshu Patel, P. Sharath Chander, J. Soundarya, Srikanth Vuppala, Ramachandran Balaji and Narendhar Chandrasekar
Catalysts 2022, 12(5), 459; https://doi.org/10.3390/catal12050459 - 20 Apr 2022
Cited by 231 | Viewed by 19396
Abstract
In recent times, metal oxide nanoparticles (NPs) have been regarded as having important commercial utility. However, the potential toxicity of these nanomaterials has also been a crucial research concern. In this regard, an important solution for ensuring lower toxicity levels and thereby facilitating [...] Read more.
In recent times, metal oxide nanoparticles (NPs) have been regarded as having important commercial utility. However, the potential toxicity of these nanomaterials has also been a crucial research concern. In this regard, an important solution for ensuring lower toxicity levels and thereby facilitating an unhindered application in human consumer products is the green synthesis of these particles. Although a naïve approach, the biological synthesis of metal oxide NPs using microorganisms and plant extracts opens up immense prospects for the production of biocompatible and cost-effective particles with potential applications in the healthcare sector. An important area that calls for attention is cancer therapy and the intervention of nanotechnology to improve existing therapeutic practices. Metal oxide NPs have been identified as therapeutic agents with an extended half-life and therapeutic index and have also been reported to have lesser immunogenic properties. Currently, biosynthesized metal oxide NPs are the subject of considerable research and analysis for the early detection and treatment of tumors, but their performance in clinical experiments is yet to be determined. The present review provides a comprehensive account of recent research on the biosynthesis of metal oxide NPs, including mechanistic insights into biological production machinery, the latest reports on biogenesis, the properties of biosynthesized NPs, and directions for further improvement. In particular, scientific reports on the properties and applications of nanoparticles of the oxides of titanium, cerium, selenium, zinc, iron, and copper have been highlighted. This review discusses the significance of the green synthesis of metal oxide nanoparticles, with respect to therapeutically based pharmaceutical applications as well as energy and environmental applications, using various novel approaches including one-minute sonochemical synthesis that are capable of responding to various stimuli such as radiation, heat, and pH. This study will provide new insight into novel methods that are cost-effective and pollution free, assisted by the biodegradation of biomass. Full article
(This article belongs to the Special Issue Recent Advances on Nano-Catalysts for Biological Processes)
Show Figures

Figure 1

14 pages, 3535 KiB  
Article
Biogenic Synthesis of Iron Oxide Nanoparticles Using Enterococcus faecalis: Adsorption of Hexavalent Chromium from Aqueous Solution and In Vitro Cytotoxicity Analysis
by Melvin S. Samuel, Saptashwa Datta, Narendhar Chandrasekar, Ramachandran Balaji, Ethiraj Selvarajan and Srikanth Vuppala
Nanomaterials 2021, 11(12), 3290; https://doi.org/10.3390/nano11123290 - 3 Dec 2021
Cited by 27 | Viewed by 3976
Abstract
The biological synthesis of nanoparticles is emerging as a potential method for nanoparticle synthesis due to its non-toxicity and simplicity. In the present study, a bacterium resistant to heavy metals was isolated from a metal-contaminated site and we aimed to report the synthesis [...] Read more.
The biological synthesis of nanoparticles is emerging as a potential method for nanoparticle synthesis due to its non-toxicity and simplicity. In the present study, a bacterium resistant to heavy metals was isolated from a metal-contaminated site and we aimed to report the synthesis of Fe3O4 nanoparticles via co-precipitation using bacterial exopolysaccharides (EPS) derived from Enterococcus faecalis_RMSN6 strains. A three-variable Box–Behnken design was used for determining the optimal conditions of the Fe3O4 NPs synthesis process. The synthesized Fe3O4 NPs were thoroughly characterized through multiple analytical techniques such as XRD, UV-Visible spectroscopy, FTIR spectroscopy and finally SEM analysis to understand the surface morphology. Fe3O4 NPs were then probed for the Cr(VI) ion adsorption studies. The important parameters such as optimization of initial concentration of Cr(VI) ions, effects of contact time, pH of the solution and contact time on quantity of Cr(VI) adsorbed were studied in detail. The maximum adsorption capacity of the nanoparticles was found to be 98.03 mg/g. The nanoparticles could retain up to 73% of their efficiency of chromium removal for up to 5 cycles. Additionally, prepared Fe3O4 NPs in the concentration were subjected to cytotoxicity studies using an MTT assay. The investigations using Fe3O4 NPs displayed a substantial dose-dependent effect on the A594 cells. The research elucidates that the Fe3O4 NPs synthesized from EPS of E. faecalis_RMSN6 can be used for the removal of heavy metal contaminants from wastewater. Full article
(This article belongs to the Special Issue Innovative and Eco-Friendly Nanomaterials)
Show Figures

Graphical abstract

13 pages, 6198 KiB  
Article
Fog-Harvesting Properties of Dryopteris marginata: Role of Interscalar Microchannels in Water-Channeling
by Vipul Sharma, Ramachandran Balaji and Venkata Krishnan
Biomimetics 2018, 3(2), 7; https://doi.org/10.3390/biomimetics3020007 - 12 Apr 2018
Cited by 28 | Viewed by 9393
Abstract
Several flora and fauna species found in arid areas have adapted themselves to collect water by developing unique structures and to intake the collected moisture. Apart from the capture of the moisture and fog on the surface, water transport and collection both play [...] Read more.
Several flora and fauna species found in arid areas have adapted themselves to collect water by developing unique structures and to intake the collected moisture. Apart from the capture of the moisture and fog on the surface, water transport and collection both play an important part in fog-harvesting systems as it prevents the loss of captured water through evaporation and makes the surface available for the capture of water again. Here, we report the remarkable fog collection and water-channeling properties of Dryopteris marginata. The surface of D. marginata has developed an integrated system of multiscale channels so that the water spreads quickly and is transported via these channels very efficiently. These integrated multiscale channels have also been replicated using a facile soft lithography technique to prepare biomimetic surfaces and it has been proved that it is the surface architecture that plays a role in the water transport rather than the material’s properties (waxes present on the surface of the leaves). Based on our studies, we infer that the microlevel hierarchy of the structures make the surface hydrophilic and the multiscale channels allow the efficient passage and transport of water. The understanding of the efficient and well-directed water transport and collection in D. marginata is expected to provide valuable insights to design efficient surfaces for fog-harvesting applications. Full article
(This article belongs to the Special Issue Bioinspired Microfluidics)
Show Figures

Graphical abstract

Back to TopTop