Fog-Harvesting Properties of Dryopteris marginata: Role of Interscalar Microchannels in Water-Channeling
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Replication of Dryopteris marginata
2.3. Scanning Electron Microscopy
2.4. Water-Channeling Experiments
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Word Health Organization. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Sharma, V.; Kumar, S.; Reddy, K.L.; Bahuguna, A.; Krishnan, V. Bioinspired functional surfaces for technological applications. J. Mol. Eng. Mater. 2016, 4, 1640006. [Google Scholar] [CrossRef]
- Klemm, O.; Schemenauer, R.S.; Lummerich, A.; Cereceda, P.; Marzol, V.; Corell, D.; van Heerden, J.; Reinhard, D.; Gherezghiher, T.; Olivier, J. Fog as a fresh-water resource: Overview and perspectives. Ambio 2012, 41, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Maestre-Valero, J.; Martinez-Alvarez, V.; Baille, A.; Martín-Górriz, B.; Gallego-Elvira, B. Comparative analysis of two polyethylene foil materials for dew harvesting in a semi-arid climate. J. Hydrol. 2011, 410, 84–91. [Google Scholar] [CrossRef]
- Seo, D.; Lee, J.; Lee, C.; Nam, Y. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Sci. Rep. 2016, 6, 24276. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Moon, M.-W.; Lim, H.; Kim, W.-D.; Kim, H.-Y. Water harvest via dewing. Langmuir 2012, 28, 10183–10191. [Google Scholar] [CrossRef] [PubMed]
- Malik, F.; Clement, R.; Gethin, D.; Krawszik, W.; Parker, A. Nature’s moisture harvesters: A comparative review. Bioinspir. Biomim. 2014, 9, 031002. [Google Scholar] [CrossRef] [PubMed]
- Ebner, M.; Miranda, T.; Roth-Nebelsick, A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass). J. Arid Environ. 2011, 75, 524–531. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, M.; Kumar, S.; Krishnan, V. Investigations on the fog harvesting mechanism of Bermuda grass (Cynodon dactylon). Flora 2016, 224, 59–65. [Google Scholar] [CrossRef]
- Martorell, C.; Ezcurra, E. The narrow-leaf syndrome: A functional and evolutionary approach to the form of fog-harvesting rosette plants. Oecologia 2007, 151, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2011, 2, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Bai, H.; Huang, Z.; Tian, X.; Nie, F.-Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, J.; Chen, Z.; Lai, Y. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications. Small 2017, 13, 1602992. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.; Ellerbrok, D.; Barthlott, W.; Koch, K. Fog collecting biomimetic surfaces: Influence of microstructure and wettability. Bioinspir. Biomim. 2015, 10, 016004. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; He, Y.; Yang, S.; Ben, S.; Cao, M.; Li, K.; Liu, K.; Jiang, L. Magnetically induced fog harvesting via flexible conical arrays. Adv. Funct. Mater. 2015, 25, 5967–5971. [Google Scholar] [CrossRef]
- Ghosh, A.; Beaini, S.; Zhang, B.J.; Ganguly, R.; Megaridis, C.M. Enhancing dropwise condensation through bioinspired wettability patterning. Langmuir 2014, 30, 13103–13115. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, J.H.; Park, C.W.; Lee, C.Y.; Kim, K.; Tahk, D.; Kwak, M.K. Continuous fabrication of bio-inspired water collecting surface via roll-type photolithography. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 119–124. [Google Scholar] [CrossRef]
- White, B.; Sarkar, A.; Kietzig, A.-M. Fog-harvesting inspired by the Stenocara beetle—An analysis of drop collection and removal from biomimetic samples with wetting contrast. Appl. Surf. Sci. 2013, 284, 826–836. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Hedhili, M.N.; Yang, X.; Wang, P. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces. J. Mater. Chem. A 2015, 3, 2844–2852. [Google Scholar] [CrossRef]
- Dong, H.; Wang, N.; Wang, L.; Bai, H.; Wu, J.; Zheng, Y.; Zhao, Y.; Jiang, L. Bioinspired electrospun knotted microfibers for fog harvesting. ChemPhysChem 2012, 13, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Puri, H.S.; Widen, C.J.; Widen, H.K. Phloroglucinol derivatives in Dryopteris marginata. Planta Med. 1978, 33, 177–179. [Google Scholar] [CrossRef]
- Sharma, V.; Bahuguna, A.; Krishnan, V. Bioinspired dip catalysts for Suzuki-Miyaura cross-coupling reactions: Effect of scaffold architecture on the performance of the catalyst. Adv. Mater. Interfaces 2017, 4, 1700604. [Google Scholar] [CrossRef]
- Ensikat, H.; Barthlott, W. Liquid substitution: A versatile procedure for SEM specimen preparation of biological materials without drying or coating. J. Microsc. 1993, 172, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Lin, Y.; Zhang, M.; Shi, W.; Zheng, Y. High-efficiency fog collector: Water unidirectional transport on heterogeneous rough conical wires. ACS Nano 2016, 10, 10681–10688. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Du, H.; Dong, X.; Wang, C.; Duan, J.-A.; He, J. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale 2017, 9, 14620–14626. [Google Scholar] [CrossRef] [PubMed]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Thickett, S.C.; Neto, C.; Harris, A.T. Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater. 2011, 23, 3718–3722. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wang, L.; Ju, J.; Sun, R.; Zheng, Y.; Jiang, L. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv. Mater. 2014, 26, 5025–5030. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, M.; Heng, X.; Oza, M.; Luo, C. Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloids Surf. A Physicochem. Eng. Asp. 2016, 508, 218–229. [Google Scholar] [CrossRef]
Substrate | Static Contact Angle | Receding Contact Angle | Advancing Contact Angle | Contact Angle Hysteresis |
---|---|---|---|---|
D. marginata leaf surface | 39° | 29° | 44° | 15° |
Replica of D. marginata | 45° | 28° | 49° | 21° |
Flat epoxy surface (non-structured) | 92° | 90° | 95° | 5° |
Control polyethylene sheet | 97° | 95° | 101° | 6° |
Bioinspired Surface | Material Used | Fog Collection (g cm−2 h−1) | Ref. |
---|---|---|---|
Micropatterned superhydrophobic surface fabricated using inkjet printing | Polystyrene | ≈0.06 | [21] |
Micropatterned bioinspired surfaces fabricated using photolithography | Polyurethane | ≈1.69 | [19] |
Microstructured surfaces and mesh | Epoxy and Polyolefin | ≈0.18 | [16] |
Biomimetic coatings on surfaces | Polystyrene | ≈3.40 | [30] |
Bioinspired hybrid micro-/nanopatterned surface | Polytetrafluoroethylene | ≈0.2 | [28] |
Bioinspired surfaces with star-shaped wettability patterns | Heptadecafluorodecyl-trimethoxysilane/TiO2 | ≈2.78 | [31] |
Heterogeneous rough conical wires | Cu wires | ≈0.6 | [27] |
Bioinspired micropatterned surfaces fabricated using photolithography | Hexamethyldisiloxane/Si | ≈1.12 | [6] |
Natural hierarchical surfaces | Natural wax/cellulose | ≈0.96 | [9] |
Modified Raschel mesh | Steel mesh with superhydrophobic coating | ≈3.40 | [32] |
D. marginata-based patterned surfaces | Natural leaf/epoxy polymer | ≈0.72–1.1 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, V.; Balaji, R.; Krishnan, V. Fog-Harvesting Properties of Dryopteris marginata: Role of Interscalar Microchannels in Water-Channeling. Biomimetics 2018, 3, 7. https://doi.org/10.3390/biomimetics3020007
Sharma V, Balaji R, Krishnan V. Fog-Harvesting Properties of Dryopteris marginata: Role of Interscalar Microchannels in Water-Channeling. Biomimetics. 2018; 3(2):7. https://doi.org/10.3390/biomimetics3020007
Chicago/Turabian StyleSharma, Vipul, Ramachandran Balaji, and Venkata Krishnan. 2018. "Fog-Harvesting Properties of Dryopteris marginata: Role of Interscalar Microchannels in Water-Channeling" Biomimetics 3, no. 2: 7. https://doi.org/10.3390/biomimetics3020007
APA StyleSharma, V., Balaji, R., & Krishnan, V. (2018). Fog-Harvesting Properties of Dryopteris marginata: Role of Interscalar Microchannels in Water-Channeling. Biomimetics, 3(2), 7. https://doi.org/10.3390/biomimetics3020007