Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Ram Swaroop Meena ORCID = 0000-0002-7119-8646

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 294 KiB  
Article
Biological and Chemical Vicissitudes in Soil Rhizosphere Arbitrated under Different Tillage, Residues Recycling and Oilseed Brassica-Based Cropping Systems
by Ram Swaroop Jat, Har Vir Singh, Mohan Lal Dotaniya, Ram Lal Choudhary, Mukesh Kumar Meena and Pramod Kumar Rai
Sustainability 2024, 16(5), 2027; https://doi.org/10.3390/su16052027 - 29 Feb 2024
Cited by 3 | Viewed by 1601
Abstract
In this study, the impacts of long-term soil and crop management practices on crop productivity and soil health in oilseed brassica-based production systems were examined. Different tillage, crop residue recycling and cropping systems (fallow–mustard, cluster bean–mustard, green gram–mustard, maize–mustard, pearl millet–mustard and sesame–mustard) [...] Read more.
In this study, the impacts of long-term soil and crop management practices on crop productivity and soil health in oilseed brassica-based production systems were examined. Different tillage, crop residue recycling and cropping systems (fallow–mustard, cluster bean–mustard, green gram–mustard, maize–mustard, pearl millet–mustard and sesame–mustard) were studied for 5 years at two soil depths (0–15 and 15–30 cm) in a split-plot design with three replications. No-till permanent beds with crop residue (PB + R) noticeably improved soil organic carbon (SOC), microbial biomass carbon (MBC), enzymes (dehydrogenase (DHA) and alkaline phosphatase (AlP)), nitrogen fractions (available and total nitrate) and available phosphorus and potassium content in both soil layers compared to conventional tillage without crop residues. However, the plough soil layer (0–15 cm) showed higher concentrations of soil carbon, enzymes, N fractions and available P than in the subsoil (15–30 cm). The dynamic soil biological and chemical properties also varied with the crop stage, and higher MBC at 30 days, SOC and enzymatic activities at 60 days, and N fractions and available P and K during the harvesting of mustard crop were recorded. Green gram–mustard rotation showed higher values in terms of biological and chemical parameters. Thus, the legume-based mustard crop rotation following no-till permanent beds and residue recycling was found to be holistic in terms of improving soil health and nutrient cycling. Full article
(This article belongs to the Section Sustainable Agriculture)
11 pages, 1729 KiB  
Article
Seed Dormancy Dynamics and Germination Characteristics of Malva parviflora L.
by Rakesh Dawar, Vishwanath Rohidas Yalamalle, Ram Swaroop Bana, Ramanjit Kaur, Yashbir Singh Shivay, Anil K. Choudhary, Teekam Singh, Samrath Lal Meena, Dunna Vijay, H. P. Vijayakumar, Vipin Kumar and Achchhelal Yadav
Agriculture 2024, 14(2), 266; https://doi.org/10.3390/agriculture14020266 - 7 Feb 2024
Cited by 3 | Viewed by 2878
Abstract
Little mallow (Malva parviflora L.) is a notorious weed that causes substantial yield losses in winter crops. For effective weed management and seed testing, a deeper understanding of seed dormancy, germination behavior, and dormancy-breaking methods is necessary. Experiments were conducted to determine [...] Read more.
Little mallow (Malva parviflora L.) is a notorious weed that causes substantial yield losses in winter crops. For effective weed management and seed testing, a deeper understanding of seed dormancy, germination behavior, and dormancy-breaking methods is necessary. Experiments were conducted to determine the effect of seed treatments, i.e., mechanical scarification, acid scarification, hot water treatment, and different germinating temperatures, i.e., 15 °C, 20 °C, or alternating 15–20 °C (16/8 h), on the seed dormancy in M.parviflora. A large proportion of M. parviflora seeds were physically dormant, with just 10.90% germination. Seed treatments had a significant influence on seed germination, seedling dry weight, vigor index, and water absorption (p ≤ 0.01). Among the various treatments, mechanical scarification enhanced germination by 32%, the vigor index by 487% and water uptake by 34%, and decreased percent hard seeds by 34%. Among the various germination temperatures, alternating 15–20 °C temperatures (16/8 h) gave the most significant result for germination and the lowest percent hard seeds. The findings of this study will serve as a valuable reference for seed testing and the development of suitable weed control strategies for M. parviflora. Full article
Show Figures

Figure 1

19 pages, 2363 KiB  
Article
Sustainable Intensification of Rice Fallows with Oilseeds and Pulses: Effects on Soil Aggregation, Organic Carbon Dynamics, and Crop Productivity in Eastern Indo-Gangetic Plains
by Kirti Saurabh, Rakesh Kumar, Janki Sharan Mishra, Anil Kumar Singh, Surajit Mondal, Ram Swaroop Meena, Jaipal Singh Choudhary, Ashis Kumar Biswas, Manoj Kumar, Himadri Shekhar Roy, Nongmaithem Raju Singh, Sushil Kumar Yadav, Ashutosh Upadhyaya, Hansraj Hans, Pawan Jeet, Prem Kumar Sundaram and Rohan Kumar Raman
Sustainability 2022, 14(17), 11056; https://doi.org/10.3390/su141711056 - 5 Sep 2022
Cited by 7 | Viewed by 2925
Abstract
Climate-smart agriculture (CSA) practices are becoming increasingly important due to their better adaptability to harsh climatic conditions (in general) and the unpredictability of monsoons in India (in particular). Conventional rice cultivation (e.g., PTR) involves intensive tilling followed by intensive puddling in standing water [...] Read more.
Climate-smart agriculture (CSA) practices are becoming increasingly important due to their better adaptability to harsh climatic conditions (in general) and the unpredictability of monsoons in India (in particular). Conventional rice cultivation (e.g., PTR) involves intensive tilling followed by intensive puddling in standing water that destroys the soil aggregation and depletes carbon pools. Therefore, alternative crop establishment methods need to be devised for the sustainability of system productivity, and the suitabilities of potential oilseeds and pulses need to be tested for cropping intensification in rice-fallow regions. Hence, an ongoing experiment (implemented in 2016) was evaluated to identify the appropriate CSA management practices in restoring soil C and physical health under diversified cropping systems in the rice-fallow system of eastern India. Six tillage and crop establishment methods along with residue management were kept as the main plots [zero-till-direct-seeded rice (ZTDSR), conventional-till-DSR (CT-DSR), puddled transplanted rice (PTR), ZTDSR with rice residue retentions (ZTDSRR+), CTDSR with rice residue retention (CTDSRR+), PTR with rice residue retention (PTRR+)] while five winter/post-rainy crops (oilseeds and pulses) were raised in a subplot. In the ZTDSRR+ production system, soil macro-aggregate (%), macro-aggregate-associated C, MWD, and GMD of aggregates increased by 60.1, 71.3, 42.1, and 17.1%, respectively, in comparison to conventional tillage practices (PTR). The carbon management index (CMI) was 58% more in the ZTDSRR+ production system compared to PTR. Among the winter crops, chickpeas recorded higher values of soil structural indices and C content. In the PTR production system, system productivity, in terms of rice equivalent yield, was comparable to ZTDSRR+. ZT with residue retention in rice followed by post-rainy/winter pulses led to higher C content and structural stability of the soil. Thus, CSA management practices can improve the crop productivity as well as soil health of rice-fallow production systems of eastern India and comparable agroecotypes of South Asia. Full article
Show Figures

Figure 1

23 pages, 8986 KiB  
Article
Diversity in the Rice–Wheat System with Genetically Modified Zinc and Iron-Enriched Varieties to Achieve Nutritional Security
by Gourisankar Pradhan and Ram Swaroop Meena
Sustainability 2022, 14(15), 9334; https://doi.org/10.3390/su14159334 - 29 Jul 2022
Cited by 29 | Viewed by 2237
Abstract
The rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system (RWCS) feeds more than 6 billion people in South Asia and across the world. In developing countries, almost 2 billion individuals are suffering from Zn and Fe micronutrient deficiency. This study [...] Read more.
The rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system (RWCS) feeds more than 6 billion people in South Asia and across the world. In developing countries, almost 2 billion individuals are suffering from Zn and Fe micronutrient deficiency. This study aimed to adopt genetically enriched varieties of rice and wheat to manage the Zn and Fe deficiency with organic and inorganic fertilization in the food system. The experiment was designed for two years (2018–2019) under the split-plot design and was replicated three times. The results of the study indicate that the highest grain yield of wheat and rice was increased by 67.09 and 58.41 and 44.10 and 33.21% more NPKFeZn in the applied treatments compared to the control treatment during both years, respectively. The treatment carpet waste and Trichoderma viride was performed for higher yields (grain, straw, and biological) as compared to the rest of the treatment. In the main-plot, with application of NPKFeZn, higher Fe and Zn ranges of 54.27 and 52.91 and 35.71 and 34.29 parts per million (ppm), respectively, were recorded during both years. Similarly, the residual effects of NPKFeZn treatment in rice Fe and Zn concentration were recorded at 44.17 and 41.22 and 27.55 and 24.19 ppm during both years, respectively. It was found that there was 49.18 and 42.12 and 25.28 and 19.94% more Fe and Zn content, respectively, in grain as compared to the traditional varieties range of 33 and 14 ppm for Fe and Zn, respectively. Ina sub-plot, for the wheat in carpet waste and Trichoderma viride treatment, the Fe and Zn contents were recorded as 55.21 and 54.62 and 37.05 and 35.53 ppm for the two years, respectively. In the traditional varieties of wheat, the range of Fe and Zn contents was 30 and 32 ppm, respectively. In the sub-plot of succeeding rice in carpet waste and Trichoderma viride treatment contents of Fe and Zn of 43.27 and 40.43 and 26.67 and 23.37 ppm were recorded during both years, respectively. On the basis of the interaction effect, the maximum total Fe and Zn uptake by wheat of 0.84 and 0.50 kg ha−1, respectively, were recorded in the N3 × B1C3 treatments. Likewise, the maximum total Fe and Zn uptakes by rice of 0.62 and 0.39 kg ha−1, respectively, were recorded with the interaction effect of N3 × B1C3 treatments. The hypothesis of the experiment was to manage malnutrition in society by diversifying genetically modified rice–wheat varieties in the RWCS. This research might assist in increasing nutritional security. Full article
Show Figures

Figure 1

27 pages, 1850 KiB  
Review
Current Status and Potential of Biofortification to Enhance Crop Nutritional Quality: An Overview
by Seema Sheoran, Sandeep Kumar, Vinita Ramtekey, Priyajoy Kar, Ram Swaroop Meena and Chetan Kumar Jangir
Sustainability 2022, 14(6), 3301; https://doi.org/10.3390/su14063301 - 11 Mar 2022
Cited by 79 | Viewed by 11856
Abstract
Around 2 billion people are suffering from chronic malnutrition or “hidden hunger”, which is the result of many diseases and disorders, including cognitive degeneration, stunting growth, and mortality. Thus, biofortification of staple food crops enriched with micronutrients is a more sustainable option for [...] Read more.
Around 2 billion people are suffering from chronic malnutrition or “hidden hunger”, which is the result of many diseases and disorders, including cognitive degeneration, stunting growth, and mortality. Thus, biofortification of staple food crops enriched with micronutrients is a more sustainable option for providing nutritional supplements and managing malnutrition in a society. Since 2001, when the concept of biofortification came to light, different research activities have been carried out, like the development of target populations, breeding or genetic engineering, and the release of biofortified cultivars, in addition to conducting nutritional efficacy trials and delivery plan development. Although, being a cost-effective intervention, it still faces many challenges, like easy accessibility of biofortified cultivars, stakeholders’ acceptance, and the availability of biofortified germplasm in the public domain, which varies from region to region. Hence, this review is focused on the recent potential, efforts made to crop biofortification, impacts analysis on human health, cost-effectiveness, and future perspectives to further strengthen biofortification programs. Through regular interventions of sustainable techniques and methodologies, biofortification holds huge potential to solve the malnutrition problem through regular interventions of nutrient-enriched staple food options for billions of people globally. Full article
Show Figures

Figure 1

20 pages, 321 KiB  
Article
Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik.
by Sandeep Kumar, Surendra Kumar Sharma, Sanjay Kumar Thakral, Krishan Kumar Bhardwaj, Manoj Kumar Jhariya, Ram Swaroop Meena, Chetan Kumar Jangir, Sandeep Bedwal, Ram Dhan Jat, Ahmed Gaber, Ahmed A. Atta and Akbar Hossain
Sustainability 2022, 14(3), 1284; https://doi.org/10.3390/su14031284 - 24 Jan 2022
Cited by 52 | Viewed by 4169
Abstract
Enhancing nutrient use efficiencies (NUEs) is an important factor in achieving the long-term sustainability of a production system. Our two-year experiment was aimed at accessing the NUEs of the integration of macro- and micronutrient fertilization responses of three lentil (Lens culinaris) [...] Read more.
Enhancing nutrient use efficiencies (NUEs) is an important factor in achieving the long-term sustainability of a production system. Our two-year experiment was aimed at accessing the NUEs of the integration of macro- and micronutrient fertilization responses of three lentil (Lens culinaris) cultivars. Three cultivars were planted in the main plots, and ten nutrient combinations were used in the sub-plots: N1, control; N2, 100% recommended dose of fertilizers (RDF) (20:40—N:P2O5); N3, vermicompost (VC) at 2 t ha−1; N4, 50% recommended dose of nitrogen (RDN) + 100% recommended dose of phosphorus (RDP) + VC at 1 t ha−1; N5, RDF + 0.5% ZnSO4; N6, RDF + 0.5% FeSO4; N7, RDF + 0.5% ZnSO4 + 0.5% FeSO4; N8, 50% RDN + 100% RDP + VC at 1 t ha−1 + 0.5% ZnSO4; N9, 50% RDN + 100% RDP + VC at 1 t ha−1 + 0.5% FeSO4; and N10, 50% RDN + 100% RDP + VC at 1 t ha−1 + 0.5% ZnSO4 + 0.5% FeSO4. The results show that the cultivar HM-1 (1.59–1.61 Mg ha−1) recorded a significantly higher seed yield than cultivars Sapna (1.31–1.33 Mg ha−1) and Garima (both 1.30 Mg ha−1), while the cultivar Sapna had significantly more stover yield (1.86–1.90 Mg ha−1) than cultivar HM-1 (1.68–1.73 Mg ha−1). Cultivar HM-1 was more efficient in terms of partial factor productivity for N (77.5–78.5 kg kg−1), P (48.2–48.7 kg kg−1), K (143.6–145.5 kg kg−1), Zn (1336–1352 kg kg−1), and Fe (417–421 kg kg−1) than Sapna and Garima. Application of 50% N + 100% P + VC at 1.0 t ha−1 + 0.5% ZnSO4 + 0.5% FeSO4 resulted in higher seed yield (1.63–1.65 Mg ha−1) and agronomic efficiency for N (26.3–28.8 kg kg−1), P (12.42–13.63 kg kg−1), and K (52.3–57.4 kg kg−1) over other tested practices in both years. Hence, it could be concluded that considering the integrated nutrient management paradigm including 10 kg N ha−1 coupled with 40 kg P2O5 ha−1 through synthetic fertilizers, vermicomposting 1.0 t ha−1 as an organic source and foliar spray of 0.5% each of ZnSO4 and FeSO4 (N10) produced a 56.8% higher seed yield than the control, in addition to improving nutrient dynamics and NUEs for N, P, K, Zn, and Fe. Therefore, integrated fertilization coupled with cultivar selection could help to achieve the long-term food and nutritional sustainability targeted by the Sustainable Development Goals (SDGs). Full article
(This article belongs to the Special Issue Soil Health Restoration and Environmental Management)
16 pages, 905 KiB  
Article
Potassium and Water-Deficient Conditions Influence the Growth, Yield and Quality of Ratoon Sugarcane (Saccharum officinarum L.) in a Semi-Arid Agroecosystem
by Rajan Bhatt, Jagdish Singh, Alison M. Laing, Ram Swaroop Meena, Walaa F. Alsanie, Ahmed Gaber and Akbar Hossain
Agronomy 2021, 11(11), 2257; https://doi.org/10.3390/agronomy11112257 - 8 Nov 2021
Cited by 20 | Viewed by 3611
Abstract
Groundwater and soil potassium deficiencies are present in northern India. Sugarcane is a vital crop in the Indian Punjab; it is grown on approximately 91,000 hectares with an average yield of 80 tonnes ha−1 and a sugar recovery rate of 9.59%. The [...] Read more.
Groundwater and soil potassium deficiencies are present in northern India. Sugarcane is a vital crop in the Indian Punjab; it is grown on approximately 91,000 hectares with an average yield of 80 tonnes ha−1 and a sugar recovery rate of 9.59%. The role of potassium (K) fertilizer under both sufficient and deficient irrigation in ratoon sugarcane crops is not well documented. We conducted a split-plot ratoon cane experiment during 2020–2021 at the Gurdaspur Regional Research Station of Punjab Agricultural University, India, on K-deficient soils. Main treatments were fully irrigated (I1) and water stressed (I0) conditions, with sub-treatments reflecting K fertilizer application rates of 0 (M1), 67 (M2), 133 (M3), and 200 (M4) kg K ha−1. The ratoon sugarcane performance was assessed in terms of growth, productivity, sugar quality and incidence of key insect pests. At harvest, trends in the growth and yield parameters in I1 were improved over the I0 treatment, with cane height (+12.2%), diameter (+3.3%), number of internodes (+5.4%), biomass yield (+7.6%) and cane yield (+5.9%) all higher, although little significant difference was observed between treatments. Ratoon cane yield under irrigation was 57.1 tonnes ha−1; in water-stressed conditions, it was 54.7 tonnes ha−1. In terms of sugarcane quality parameters, measured 12 months after harvesting the initial seed crop, values of Brix (+3.6%), pol (+3.9%), commercial cane sugar percentage (+4.0%) and extractable sugar percentage (+2.8%) were all higher in the irrigated treatments than the water-stressed plot. Irrigated treatments also had a significantly lower incidence of two key insect pests: top borer (Scirpophaga excerptalis) was reduced by 18.5% and stalk borer (Chilo auricilius) by 21.7%. The M3 and M4 treatments resulted in the highest cane yield and lowest incidence of insect pests compared to other K-fertilizer treatments. Economic return on K-fertilizer application increased with increasing fertilizer dosage. Under the potassium-deficient water-stressed conditions of the region of north India, a fertilizer application rate of 133 kg K ha−1 is recommended to improve ratoon sugarcane growth, yield, and quality parameters and economic returns for sugarcane farmers. Full article
(This article belongs to the Special Issue Cropping Systems and Agronomic Management Practices of Field Crops)
Show Figures

Figure 1

21 pages, 2495 KiB  
Review
Impact of Agrochemicals on Soil Microbiota and Management: A Review
by Ram Swaroop Meena, Sandeep Kumar, Rahul Datta, Rattan Lal, Vinod Vijayakumar, Martin Brtnicky, Mahaveer Prasad Sharma, Gulab Singh Yadav, Manoj Kumar Jhariya, Chetan Kumar Jangir, Shamina Imran Pathan, Tereza Dokulilova, Vaclav Pecina and Theodore Danso Marfo
Land 2020, 9(2), 34; https://doi.org/10.3390/land9020034 - 23 Jan 2020
Cited by 511 | Viewed by 41532
Abstract
The World Health Organization (WHO) states that in developing nations, there are three million cases of agrochemical poisoning. The prolonged intensive and indiscriminate use of agrochemicals adversely affected the soil biodiversity, agricultural sustainability, and food safety, bringing in long-term harmful effects on nutritional [...] Read more.
The World Health Organization (WHO) states that in developing nations, there are three million cases of agrochemical poisoning. The prolonged intensive and indiscriminate use of agrochemicals adversely affected the soil biodiversity, agricultural sustainability, and food safety, bringing in long-term harmful effects on nutritional security, human and animal health. Most of the agrochemicals negatively affect soil microbial functions and biochemical processes. The alteration in diversity and composition of the beneficial microbial community can be unfavorable to plant growth and development either by reducing nutrient availability or by increasing disease incidence. Currently, there is a need for qualitative, innovative, and demand-driven research in soil science, especially in developing countries for facilitating of high-quality eco-friendly research by creating a conducive and trustworthy work atmosphere, thereby rewarding productivity and merits. Hence, we reviewed (1) the impact of various agrochemicals on the soil microbial diversity and environment; (2) the importance of smallholder farmers for sustainable crop protection and enhancement solutions, and (3) management strategies that serve the scientific community, policymakers, and land managers in integrating soil enhancement and sustainability practices in smallholder farming households. The current review provides an improved understanding of agricultural soil management for food and nutritional security. Full article
(This article belongs to the Special Issue Restoring Degraded Lands to Attain UN-SDGs)
Show Figures

Graphical abstract

17 pages, 956 KiB  
Article
Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza sativa L.)–Rice System in North Eastern Region of India
by Gulab Singh Yadav, Rahul Datta, Shamina Imran Pathan, Rattan Lal, Ram Swaroop Meena, Subhash Babu, Anup Das, S. N. Bhowmik, Mrinmoy Datta, Poulami Saha and Pawan Kumar Mishra
Sustainability 2017, 9(10), 1816; https://doi.org/10.3390/su9101816 - 12 Oct 2017
Cited by 57 | Viewed by 7833
Abstract
Over centuries and even today, traditional farming practices are well performed without any ecological degradation. However, management practice such as conservative tillage combined with nutrient and residue could increase the crop production as well as soil fertility. A three-year replicated study was conducted [...] Read more.
Over centuries and even today, traditional farming practices are well performed without any ecological degradation. However, management practice such as conservative tillage combined with nutrient and residue could increase the crop production as well as soil fertility. A three-year replicated study was conducted to assess the effects of agronomic modification of traditional farming practices on productivity and sustainability of rice (wet season)–rice (dry season) system (RRS). The replacement of farmers practice (T2) with conservation effective tillage (no-till (NT)) and integrated nutrient management (INM) practice along with 30% residue retention (T5) enhanced the straw, root and biomass yield of both wet season rice (WR), dry season rice (DR) and system as a whole over T2. Treatment T5 recorded significantly lower soil bulk density (ρb) and higher pH than the T2 after three years of the experiment. Further, treatment T5 increased total soil organic carbon (2.8%), total soil organic carbon stock (2.8%), carbon sequestration rate (336.5 kg ha−1 year−1), cumulative carbon stock (142.9%) and carbon retention efficiency (141.0%) over T2 of 0–20 cm depth after three year. The soil microbial biomass carbon concentration was significantly the highest under T5. Similarly, the dehydrogenase activity was the maximum under T5. Adoption of conservation tillage and nutrient management practice involving NT and INM along with residue retention can enhance the system productivity, and C and N sequestration in paddy soils is thereby contributing to the sustainability of the RRS. Full article
(This article belongs to the Special Issue Carbon Input into Agricultural Soils)
Show Figures

Figure 1

9 pages, 1379 KiB  
Article
Amino Acid: Its Dual Role as Nutrient and Scavenger of Free Radicals in Soil
by Rahul Datta, Divyashri Baraniya, Yong-Feng Wang, Aditi Kelkar, Ram Swaroop Meena, Gulab Singh Yadav, Maria Teresa Ceccherini and Pavel Formanek
Sustainability 2017, 9(8), 1402; https://doi.org/10.3390/su9081402 - 9 Aug 2017
Cited by 47 | Viewed by 7040
Abstract
Ascorbic acid is a bacteriostatic agent; one of the many ways by which ascorbic acid hampers bacterial growth is by the production of hydrogen peroxide, which further converts into hydroxyl free radicals. Certain amino acids can counteract the inhibitory effect of hydroxyl free [...] Read more.
Ascorbic acid is a bacteriostatic agent; one of the many ways by which ascorbic acid hampers bacterial growth is by the production of hydrogen peroxide, which further converts into hydroxyl free radicals. Certain amino acids can counteract the inhibitory effect of hydroxyl free radicals by checking their oxidizing effect. Though ascorbic acid is bacteriostatic in nature, it facilitates prokaryotic respiration by decarboxylation. This study was carried out to understand how microbes from different horizons of the forest soil respond to the addition of a bacteriostatic agent (ascorbic acid) and growth promoting agent (amino acids), with respect to the soil respiration. We observed that the addition of either ascorbic acid or a combination of it with amino acid consistently results in increased soil respiration, and this increase is different for different soil types depending on soil composition and origin. Furthermore, we also found that beta alanine-induced maximum respiration in basic soils and L-glutamic in acidic soils. This study is significant because it can be used to explain how a strong reducing sugar, i.e., ascorbic acid, affects the soil respiration mediated via soil microbes. To the best of our knowledge, it is the first report that demonstrates the effect of bacteriostatic and the growth promoting agent together on microbe-mediated soil respiration. Full article
(This article belongs to the Special Issue Soil Science in Conservation Agricultural Systems)
Show Figures

Figure 1

18 pages, 1536 KiB  
Review
Enzymatic Degradation of Lignin in Soil: A Review
by Rahul Datta, Aditi Kelkar, Divyashri Baraniya, Ali Molaei, Amitava Moulick, Ram Swaroop Meena and Pavel Formanek
Sustainability 2017, 9(7), 1163; https://doi.org/10.3390/su9071163 - 3 Jul 2017
Cited by 316 | Viewed by 19776
Abstract
Lignin is a major component of soil organic matter and also a rich source of carbon dioxide in soils. However, because of its complex structure and recalcitrant nature, lignin degradation is a major challenge. Efforts have been made from time to time to [...] Read more.
Lignin is a major component of soil organic matter and also a rich source of carbon dioxide in soils. However, because of its complex structure and recalcitrant nature, lignin degradation is a major challenge. Efforts have been made from time to time to understand the lignin polymeric structure better and develop simpler, economical, and bio-friendly methods of degradation. Certain enzymes from specialized bacteria and fungi have been identified by researchers that can metabolize lignin and enable utilization of lignin-derived carbon sources. In this review, we attempt to provide an overview of the complexity of lignin’s polymeric structure, its distribution in forest soils, and its chemical nature. Herein, we focus on lignin biodegradation by various microorganism, fungi and bacteria present in plant biomass and soils that are capable of producing ligninolytic enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). The relevant and recent reports have been included in this review. Full article
(This article belongs to the Special Issue Soil Science in Conservation Agricultural Systems)
Show Figures

Figure 1

Back to TopTop