Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Paul Snyder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 838 KiB  
Review
Merging Neuroscience and Engineering Through Regenerative Peripheral Nerve Interfaces
by Melanie J. Wang, Theodore A. Kung, Alison K. Snyder-Warwick and Paul S. Cederna
Prosthesis 2025, 7(4), 97; https://doi.org/10.3390/prosthesis7040097 - 6 Aug 2025
Abstract
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering [...] Read more.
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering advancement in neuroengineering that combines surgical techniques with biocompatible materials to create an interface for individuals with limb loss. RPNIs are surgically constructed from autologous muscle grafts that are neurotized by the residual peripheral nerves of an individual with limb loss. RPNIs amplify neural signals and demonstrate long term stability. In this narrative review, the terms “Regenerative Peripheral Nerve Interface (RPNI)” and “RPNI surgery” are used interchangeably to refer to the same surgical and biological construct. This narrative review specifically focuses on RPNIs as a targeted approach to enhance prosthetic control through surgically created nerve–muscle interfaces. This area of research offers a promising solution to overcome the limitations of existing prosthetic control systems and could help improve the quality of life for people suffering from limb loss. It allows for multi-channel control and bidirectional communication, while enhancing the functionality of prosthetics through improved sensory feedback. RPNI surgery holds significant promise for improving the quality of life for individuals with limb loss by providing a more intuitive and responsive prosthetic experience. Full article
Show Figures

Figure 1

22 pages, 2256 KiB  
Article
Air Traffic Trends and UAV Safety: Leveraging Automatic Dependent Surveillance–Broadcast Data for Predictive Risk Mitigation
by Prasad Pothana, Paul Snyder, Sreejith Vidhyadharan, Michael Ullrich and Jack Thornby
Aerospace 2025, 12(4), 284; https://doi.org/10.3390/aerospace12040284 - 28 Mar 2025
Viewed by 803
Abstract
With the significant potential of Unmanned Aircraft Vehicles (UAVs) extending throughout various fields and industries, their proliferation raises concerns regarding potential risks within the national airspace system (NAS). To enhance the safe and efficient integration of UAVs into airport environments, this paper presents [...] Read more.
With the significant potential of Unmanned Aircraft Vehicles (UAVs) extending throughout various fields and industries, their proliferation raises concerns regarding potential risks within the national airspace system (NAS). To enhance the safe and efficient integration of UAVs into airport environments, this paper presents an analysis of temporal statistical patterns in flight traffic, the predictive modeling of future traffic trends using machine learning, and the identification of optimal time windows for UAV operations within airports. The framework was developed using historical Automatic Dependent Surveillance–Broadcast (ADS-B) data obtained from the OpenSky Network. Historical flight data from Class B, C, and D airports in California are processed, and statistical analysis is carried out to identify temporal variations in flight traffic, including daily, weekly, and seasonal trends. A recurrent neural network (RNN) model incorporating Long Short-Term Memory (LSTM) architecture is developed to forecast future flight counts based on historical patterns, achieving mean absolute error (MAE) values of 4.52, 2.13, and 0.87 for Class B, C, and D airports, respectively. The statistical analysis findings highlight distinct traffic patterns across airport classes, emphasizing the practicality of utilizing ADS-B data for UAV flight scheduling to minimize conflicts with manned aircraft. Additionally, the study explores the influence of external factors, including weather conditions and dataset limitations on prediction accuracy. By integrating machine learning with real-time ADS-B data, this research provides a framework for optimizing UAV operations, supporting airspace management and improving regulatory compliance for safe UAV integration into controlled airspace. Full article
(This article belongs to the Special Issue Research and Applications of Low-Altitude Urban Traffic System)
Show Figures

Figure 1

17 pages, 7308 KiB  
Article
Molecular and Clinical Features of Pancreatic Acinar Cell Carcinoma: A Single-Institution Case Series
by Ashwathy Balachandran Pillai, Mahmoud Yousef, Abdelrahman Yousef, Kristin D. Alfaro-Munoz, Brandon G. Smaglo, Jason Willis, Robert A. Wolff, Shubham Pant, Mark W. Hurd, Anirban Maitra, Huamin Wang, Matthew Harold G. Katz, Laura R. Prakash, Ching-Wei D. Tzeng, Rebecca Snyder, Luca F. Castelnovo, Anthony Chen, Andrey Kravets, Kseniia Kudriavtseva, Artem Tarasov, Kirill Kryukov, Haoqiang Ying, John Paul Shen and Dan Zhaoadd Show full author list remove Hide full author list
Cancers 2024, 16(19), 3421; https://doi.org/10.3390/cancers16193421 - 9 Oct 2024
Viewed by 2777
Abstract
Objectives: Acinar cell carcinoma (ACC) accounts for about 1% of pancreatic cancers. The molecular and clinical features of ACC are less characterized than those of pancreatic ductal adenocarcinoma. Methods: We retrospectively evaluated the clinical and molecular features of ACC patients who underwent [...] Read more.
Objectives: Acinar cell carcinoma (ACC) accounts for about 1% of pancreatic cancers. The molecular and clinical features of ACC are less characterized than those of pancreatic ductal adenocarcinoma. Methods: We retrospectively evaluated the clinical and molecular features of ACC patients who underwent germline and/or somatic molecular testing at The University of Texas MD Anderson Cancer Center from 2008 to 2022 and two cases from 2023–2024 who underwent RNA and TME analysis by Boston Gene. Patient information was extracted from our institutional database with the approval of the Institutional Review Board. Results: We identified 16 patients with available molecular testing results. Fourteen patients had metastatic disease, one had borderline resectable disease, and one had localized resectable disease at diagnosis. Fifteen patients were wild type for KRAS (one patient had unknown KRAS status). Somatic/germline mutations of DNA damage repair genes (BRCA1/2, PALB2, and ATM) were present in 5 of 12 patients tested for these genes. One patient was found to have RET fusion and responded favorably to selpercatinib for over 42 months. The median overall survival (OS) was 24 months for patients with metastatic disease. One of the additional two cases who underwent BostonGene testing was found to have NTRK1 fusion. RNA and TME analysis by Boston Gene of the two cases reported immune desert features and relatively lower RNA levels of CEACAM5, CD47, CD74, and MMP1 and higher RNA levels of CDH6 compared with PDAC. Full article
(This article belongs to the Special Issue Proteomic and Genomic Profiling of Pancreatic Cancer)
Show Figures

Figure 1

16 pages, 2674 KiB  
Article
Response of the Glutathione (GSH) Antioxidant Defense System to Oxidative Injury in Necrotizing Enterocolitis
by Alena Golubkova, Tyler Leiva, Katherine Snyder, Camille Schlegel, Sarah M. Bonvicino, Martin-Paul Agbaga, Richard S. Brush, Jason M. Hansen, Peter F. Vitiello and Catherine J. Hunter
Antioxidants 2023, 12(7), 1385; https://doi.org/10.3390/antiox12071385 - 5 Jul 2023
Cited by 16 | Viewed by 2851
Abstract
Necrotizing enterocolitis (NEC) is a neonatal intestinal disease associated with oxidative stress. The targets of peroxidation and the role of the innate intestinal epithelial antioxidant defense system are ill-defined. We hypothesized that oxidative stress in NEC correlates with oxidized GSH redox potentials, lipid [...] Read more.
Necrotizing enterocolitis (NEC) is a neonatal intestinal disease associated with oxidative stress. The targets of peroxidation and the role of the innate intestinal epithelial antioxidant defense system are ill-defined. We hypothesized that oxidative stress in NEC correlates with oxidized GSH redox potentials, lipid peroxidation, and a dysfunctional antioxidant system. Methods: Intestinal samples from infants +/− NEC were generated into enteroids and incubated with lipopolysaccharide (LPS) and hypoxia to induce experimental NEC. HPLC assayed GSH redox potentials. Lipid peroxidation was measured by flow cytometry. Immunoblotting measured glutathione peroxidase 4 (Gpx4) expression. Results: GSH redox potentials were more oxidized in NEC intestinal tissue and enteroids as compared to controls. Lipid radicals in NEC-induced enteroids were significantly increased. Human intestinal tissue with active NEC and treated enteroid cultures revealed decreased levels of Gpx4. Conclusions: The ability of neonatal intestine to mitigate radical accumulation plays a role in its capacity to overcome oxidative stress. Accumulation of lipid radicals is confirmed after treatment of enteroids with NEC-triggering stimuli. Decreased Gpx4 diminishes a cell’s ability to effectively neutralize lipid radicals. When lipid peroxidation overwhelms antioxidant machinery, cellular death ensues. Identification of the mechanisms behind GSH-dependent enzyme dysfunction in NEC may provide insights into strategies for reversing radical damage. Full article
(This article belongs to the Special Issue Reactive Oxygen Species (ROS) in Gastrointestinal Diseases)
Show Figures

Figure 1

23 pages, 2188 KiB  
Article
Dopamine D1 Agonists: First Potential Treatment for Late-Stage Parkinson’s Disease
by Mechelle M. Lewis, Lauren J. Van Scoy, Sol De Jesus, Jonathan G. Hakun, Paul J. Eslinger, Julio Fernandez-Mendoza, Lan Kong, Yang Yang, Bethany L. Snyder, Natalia Loktionova, Sridhar Duvvuri, David L. Gray, Xuemei Huang and Richard B. Mailman
Biomolecules 2023, 13(5), 829; https://doi.org/10.3390/biom13050829 - 12 May 2023
Cited by 8 | Viewed by 4467
Abstract
Current pharmacotherapy has limited efficacy and/or intolerable side effects in late-stage Parkinson’s disease (LsPD) patients whose daily life depends primarily on caregivers and palliative care. Clinical metrics inadequately gauge efficacy in LsPD patients. We explored if a D1/5 dopamine agonist would have [...] Read more.
Current pharmacotherapy has limited efficacy and/or intolerable side effects in late-stage Parkinson’s disease (LsPD) patients whose daily life depends primarily on caregivers and palliative care. Clinical metrics inadequately gauge efficacy in LsPD patients. We explored if a D1/5 dopamine agonist would have efficacy in LsPD using a double-blind placebo-controlled crossover phase Ia/b study comparing the D1/5 agonist PF-06412562 to levodopa/carbidopa in six LsPD patients. Caregiver assessment was the primary efficacy measure because caregivers were with patients throughout the study, and standard clinical metrics inadequately gauge efficacy in LsPD. Assessments included standard quantitative scales of motor function (MDS-UPDRS-III), alertness (Glasgow Coma and Stanford Sleepiness Scales), and cognition (Severe Impairment and Frontal Assessment Batteries) at baseline (Day 1) and thrice daily during drug testing (Days 2–3). Clinicians and caregivers completed the clinical impression of change questionnaires, and caregivers participated in a qualitative exit interview. Blinded triangulation of quantitative and qualitative data was used to integrate findings. Neither traditional scales nor clinician impression of change detected consistent differences between treatments in the five participants who completed the study. Conversely, the overall caregiver data strongly favored PF-06412562 over levodopa in four of five patients. The most meaningful improvements converged on motor, alertness, and functional engagement. These data suggest for the first time that there can be useful pharmacological intervention in LsPD patients using D1/5 agonists and also that caregiver perspectives with mixed method analyses may overcome limitations using methods common in early-stage patients. The results encourage future clinical studies and understanding of the most efficacious signaling properties of a D1 agonist for this population. Full article
Show Figures

Figure 1

26 pages, 2293 KiB  
Article
Stakeholders’ Perspectives on Generative Voluntary Safety Reporting Culture (GVSRC) in the Gulf of Mexico (GOM) Oil and Gas (O&G) Sector Using the Offshore Safety Action Program (OSAP)
by Daniel Kwasi Adjekum, Nana Yaw Owusu-Amponsah, Samuel Asante Afari, Zachary Waller, Vamegh Rasouli, Gary Ullrich, Paul Snyder and Neal Corbin
Safety 2023, 9(2), 26; https://doi.org/10.3390/safety9020026 - 24 Apr 2023
Viewed by 2884
Abstract
To fill a gap in understanding of the Generative Voluntary Safety Reporting Culture (GVSRC) in the Gulf of Mexico (GOM) Oil and Gas (O&G) sector, perspectives of stakeholders based on their experiences were explored using attributes of a proposed Offshore Safety Action Program [...] Read more.
To fill a gap in understanding of the Generative Voluntary Safety Reporting Culture (GVSRC) in the Gulf of Mexico (GOM) Oil and Gas (O&G) sector, perspectives of stakeholders based on their experiences were explored using attributes of a proposed Offshore Safety Action Program (OSAP) modeled after the Aviation Safety Action Program (ASAP). A phenomenological approach encompassing semi-structured interviews (n = 18) and five focus-group sessions (n = 18) was used to collect data from a cross-section of top management, supervisors, regulatory representatives, and subject-matter experts (SME). Four themes emerged from a Thematic Analysis: (1) Voluntary safety reporting culture, (2) Voluntary safety reporting bottlenecks, (3) Universality, and (4) Organizational review of safety events. Most respondents strongly supported the OSAP because it ensures a formalized adjudication of voluntary safety reports by an Event Review Committee (ERC) with representation from employees, management, and regulators. Most respondents supported the non-punitive and confidential attributes of the OSAP as a means to enhance GVSRC. However, there were varying perspectives on defining intentional disregard for safety under the OSAP. Due to the enumerated challenges of cost, respondents agreed that organizations use a scalable process commensurate with the complexity of their operations when adopting the OSAP. A veritable framework for data-driven corrective actions, organizational learning, and enhanced GVSRC in the offshore sector is a potential policy implication of adopting the OSAP. Full article
Show Figures

Figure 1

10 pages, 1985 KiB  
Article
Mutant Huntingtin Derails Cysteine Metabolism in Huntington’s Disease at Both Transcriptional and Post-Translational Levels
by Bindu D. Paul, Juan I. Sbodio and Solomon H. Snyder
Antioxidants 2022, 11(8), 1470; https://doi.org/10.3390/antiox11081470 - 27 Jul 2022
Cited by 8 | Viewed by 2447
Abstract
Cysteine is a semi-essential amino acid that not only plays an essential role as a component of protein synthesis, but also in the generation of numerous sulfur-containing molecules such as the antioxidant glutathione and coenzyme A. We previously showed that the metabolism of [...] Read more.
Cysteine is a semi-essential amino acid that not only plays an essential role as a component of protein synthesis, but also in the generation of numerous sulfur-containing molecules such as the antioxidant glutathione and coenzyme A. We previously showed that the metabolism of cysteine is dysregulated in Huntington’s disease (HD), a neurodegenerative disorder triggered by the expansion of polyglutamine repeats in the protein huntingtin. In this study, we showed that cysteine metabolism is compromised at multiple levels in HD, both transcriptional and post-translational. Accordingly, restoring cysteine homeostasis may be beneficial in HD. Full article
(This article belongs to the Special Issue Oxidative Stress in Neurons)
Show Figures

Figure 1

23 pages, 2092 KiB  
Review
Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins
by Paul C. Turner and Jessica A. Snyder
Toxins 2021, 13(5), 314; https://doi.org/10.3390/toxins13050314 - 28 Apr 2021
Cited by 33 | Viewed by 4037
Abstract
Mycotoxins are toxic secondary fungal metabolites that frequently contaminate cereal crops globally, presenting exposure hazards to humans and livestock in many settings. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates for epidemiological studies, making validated [...] Read more.
Mycotoxins are toxic secondary fungal metabolites that frequently contaminate cereal crops globally, presenting exposure hazards to humans and livestock in many settings. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates for epidemiological studies, making validated exposure biomarkers better tools for informing epidemiological investigations. While biomarkers of exposure have served important roles for understanding the public health impact of mycotoxins such as aflatoxins (AF), the science of biomarkers must continue advancing to allow for better understanding of mycotoxins’ roles in the etiology of disease and the effectiveness of mitigation strategies. This review will discuss mycotoxin biomarker development approaches over several decades for four toxins of significant public health concerns, AFs, fumonisins (FB), deoxynivalenol (DON), and ochratoxin A (OTA). This review will also highlight some knowledge gaps, key needs and potential pitfalls in mycotoxin biomarker interpretation. Full article
(This article belongs to the Special Issue Biomonitoring of Mycotoxins)
Show Figures

Figure 1

12 pages, 568 KiB  
Commentary
An Emerging Syndemic of Smoking and Cardiopulmonary Diseases in People Living with HIV in Africa
by Emmanuel Peprah, Mari Armstrong-Hough, Stephanie H. Cook, Barbara Mukasa, Jacquelyn Y. Taylor, Huichun Xu, Linda Chang, Joyce Gyamfi, Nessa Ryan, Temitope Ojo, Anya Snyder, Juliet Iwelunmor, Oliver Ezechi, Conrad Iyegbe, Paul O’Reilly and Andre Pascal Kengne
Int. J. Environ. Res. Public Health 2021, 18(6), 3111; https://doi.org/10.3390/ijerph18063111 - 18 Mar 2021
Cited by 11 | Viewed by 4370
Abstract
Background: African countries have the highest number of people living with HIV (PWH). The continent is home to 12% of the global population, but accounts for 71% of PWH globally. Antiretroviral therapy has played an important role in the reduction of the morbidity [...] Read more.
Background: African countries have the highest number of people living with HIV (PWH). The continent is home to 12% of the global population, but accounts for 71% of PWH globally. Antiretroviral therapy has played an important role in the reduction of the morbidity and mortality rates for HIV, which necessitates increased surveillance of the threats from pernicious risks to which PWH who live longer remain exposed. This includes cardiopulmonary comorbidities, which pose significant public health and economic challenges. A significant contributor to the cardiopulmonary comorbidities is tobacco smoking. Indeed, globally, PWH have a 2–4-fold higher utilization of tobacco compared to the general population, leading to endothelial dysfunction and atherogenesis that result in cardiopulmonary diseases, such as chronic obstructive pulmonary disease and coronary artery disease. In the context of PWH, we discuss (1) the current trends in cigarette smoking and (2) the lack of geographically relevant data on the cardiopulmonary conditions associated with smoking; we then review (3) the current evidence on chronic inflammation induced by smoking and the potential pathways for cardiopulmonary disease and (4) the multifactorial nature of the syndemic of smoking, HIV, and cardiopulmonary diseases. This commentary calls for a major, multi-setting cohort study using a syndemics framework to assess cardiopulmonary disease outcomes among PWH who smoke. Conclusion: We call for a parallel program of implementation research to promote the adoption of evidence-based interventions, which could improve health outcomes for PWH with cardiopulmonary diseases and address the health inequities experienced by PWH in African countries. Full article
(This article belongs to the Special Issue Global Economic Burden of HIV/AIDS)
Show Figures

Figure 1

20 pages, 3579 KiB  
Article
Saccharomyces cerevisiae and Candida albicans Yeast Cells Labeled with Fe(III) Complexes as MRI Probes
by Akanksha Patel, Didar Asik, Eric M. Snyder, Joseph A. Spernyak, Paul J. Cullen and Janet R. Morrow
Magnetochemistry 2020, 6(3), 41; https://doi.org/10.3390/magnetochemistry6030041 - 4 Sep 2020
Viewed by 5352
Abstract
The development of MRI probes is of interest for labeling antibiotic-resistant fungal infections based on yeast. Our work showed that yeast cells can be labeled with high-spin Fe(III) complexes to produce enhanced T2 water proton relaxation. These Fe(III)-based macrocyclic complexes contained a [...] Read more.
The development of MRI probes is of interest for labeling antibiotic-resistant fungal infections based on yeast. Our work showed that yeast cells can be labeled with high-spin Fe(III) complexes to produce enhanced T2 water proton relaxation. These Fe(III)-based macrocyclic complexes contained a 1,4,7-triazacyclononane framework, two pendant alcohol groups, and either a non-coordinating ancillary group and a bound water molecule or a third coordinating pendant. The Fe(III) complexes that had an open coordination site associated strongly with Saccharomyces cerevisiae upon incubation, as shown by screening using Z-spectra analysis. The incubation of one Fe(III) complex with either Saccharomyces cerevisiae or Candida albicans yeast led to an interaction with the β-glucan-based cell wall, as shown by the ready retrieval of the complex by the bidentate chelator called maltol. Other conditions, such as a heat shock treatment of the complexes, produced Fe(III) complex uptake that could not be reversed by the addition of maltol. Appending a fluorescence dye to Fe(TOB) led to uptake through secretory pathways, as shown by confocal fluorescence microscopy and by the incomplete retrieval of the Fe(III) complex by the maltol treatment. Yeast cells that were labeled with these Fe(III) complexes displayed enhanced water proton T2 relaxation, both for S. cerevisiae and for yeast and hyphal forms of C. albicans. Full article
(This article belongs to the Special Issue Transition-Metal Contrast Agents for MRI)
Show Figures

Graphical abstract

20 pages, 2427 KiB  
Article
BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain—Implications for Neurodegeneration
by Chiara Lanzillotta, Ilaria Zuliani, Chirag Vasavda, Solomon H. Snyder, Bindu D. Paul, Marzia Perluigi, Fabio Di Domenico and Eugenio Barone
Antioxidants 2020, 9(8), 671; https://doi.org/10.3390/antiox9080671 - 27 Jul 2020
Cited by 21 | Viewed by 4987
Abstract
Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of [...] Read more.
Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A−/−) and wild-type (WT) mice. Our results show that BVR-A deficiency leads to the accumulation of oxidatively-damaged proteins along with mTOR hyper-activation in the cortex. This process starts in juvenile mice and persists with aging. mTOR hyper-activation is associated with the impairment of autophagy as highlighted by reduced levels of Beclin-1, LC3β, LC3II/I ratio, Atg5–Atg12 complex and Atg7 in the cortex of BVR-A−/− mice. Furthermore, we have identified the dysregulation of AMP-activated protein kinase (AMPK) as a critical event driving mTOR hyper-activation in the absence of BVR-A. Overall, our results suggest that BVR-A is a new player in the regulation of autophagy, which may be targeted to arrive at novel therapeutics for diseases involving impaired autophagy. Full article
(This article belongs to the Special Issue Oxidative Stress and Neurodegenerative Disorders)
Show Figures

Graphical abstract

49 pages, 4846 KiB  
Review
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies
by Andrew R. Blaustein, Jenny Urbina, Paul W. Snyder, Emily Reynolds, Trang Dang, Jason T. Hoverman, Barbara Han, Deanna H. Olson, Catherine Searle and Natalie M. Hambalek
Diversity 2018, 10(3), 81; https://doi.org/10.3390/d10030081 - 4 Aug 2018
Cited by 61 | Viewed by 15551
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are [...] Read more.
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease. Full article
(This article belongs to the Special Issue Conservation and Ecology of Amphibians)
Show Figures

Figure 1

Back to TopTop