Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Authors = P. Machado

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2998 KiB  
Article
Synthesis of Novel Tetra-Substituted Pyrazole Derivatives Using Microwave Irradiation and Their Anti-Leukemic Activity Against Jurkat Cells
by Felipe P. Machado, Maria Clara Campos, Juliana Echevarria-Lima, Diego P. Sangi, Carlos Serpa, Otávio Augusto Chaves and Aurea Echevarria
Molecules 2025, 30(13), 2880; https://doi.org/10.3390/molecules30132880 - 7 Jul 2025
Viewed by 566
Abstract
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in [...] Read more.
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in agreement with some of the principles of green chemistry. The proposed structures were determined using various spectroscopic techniques, including infrared spectroscopy and hydrogen and carbon-13 nuclear magnetic resonance. Furthermore, the compounds underwent in-silico evaluations using CLC-Pred and AdmetSAR software to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. This was combined with molecular docking calculations for four main cancer-related targets for pyrazole core, to facilitate screening for subsequent biological assessments. Based on the data generated from these analyses, it was identified two pyrazoles (11 and 18) likely to exhibit anti-tumor activity, while also demonstrating low toxicity levels. Upon selection, these two pyrazoles were subjected to toxicity assessments using the Artemia salina method and evaluated for their effects on the viability of Jurkat cancer cells with a potency of 45.05 and 14.85 µM to 11 and 18, respectively, and with a potency of above 100 µM for the non-carcinogenic cells HEK 293. Overall, the findings from these studies indicate pyrazole derivatives as potential anti-tumor candidates. Full article
Show Figures

Figure 1

25 pages, 3666 KiB  
Article
Validation of Core and Whole-Genome Multi-Locus Sequence Typing Schemes for Shiga-Toxin-Producing E. coli (STEC) Outbreak Detection in a National Surveillance Network, PulseNet 2.0, USA
by Molly M. Leeper, Morgan N. Schroeder, Taylor Griswold, Mohit Thakur, Krittika Krishnan, Lee S. Katz, Kelley B. Hise, Grant M. Williams, Steven G. Stroika, Sung B. Im, Rebecca L. Lindsey, Peyton A. Smith, Jasmine Huffman, Alyssa Kelley, Sara Cleland, Alan J. Collins, Shruti Gautam, Eishita Tyagi, Subin Park, João A. Carriço, Miguel P. Machado, Hannes Pouseele, Dolf Michielsen and Heather A. Carletonadd Show full author list remove Hide full author list
Microorganisms 2025, 13(6), 1310; https://doi.org/10.3390/microorganisms13061310 - 4 Jun 2025
Viewed by 1333
Abstract
Shiga-toxin-producing E. coli (STEC) is a leading causing of bacterial foodborne and zoonotic illnesses in the USA. Whole-genome sequencing (WGS) is a powerful tool used in public health and microbiology for the detection, surveillance, and outbreak investigation of STEC. In this study, we [...] Read more.
Shiga-toxin-producing E. coli (STEC) is a leading causing of bacterial foodborne and zoonotic illnesses in the USA. Whole-genome sequencing (WGS) is a powerful tool used in public health and microbiology for the detection, surveillance, and outbreak investigation of STEC. In this study, we applied three WGS-based subtyping methods, high quality single-nucleotide polymorphism (hqSNP) analysis, whole genome multi-locus sequence typing using chromosome-associated loci [wgMLST (chrom)], and core genome multi-locus sequence typing (cgMLST), to isolate sequences from 11 STEC outbreaks. For each outbreak, we evaluated the concordance between subtyping methods using pairwise genomic differences (number of SNPs or alleles), linear regression models, and tanglegrams. Pairwise genomic differences were highly concordant between methods for all but one outbreak, which was associated with international travel. The slopes of the regressions for hqSNP vs. allele differences were 0.432 (cgMLST) and 0.966 wgMLST (chrom); the slope was 1.914 for cgMLST vs. wgMLST (chrom) differences. Tanglegrams comprised of outbreak and sporadic sequences showed moderate clustering concordance between methods, where Baker’s Gamma Indices (BGIs) ranged between 0.35 and 0.99 and Cophenetic Correlation Coefficients (CCCs) were ≥0.88 across all outbreaks. The K-means analysis using the Silhouette method showed the clear separation of outbreak groups with average silhouette widths ≥0.87 across all methods. This study validates the use of cgMLST for the national surveillance of STEC illness clusters using the PulseNet 2.0 system and demonstrates that hqSNP or wgMLST can be used for further resolution. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

22 pages, 2468 KiB  
Article
Reinforcing Cotton Recycled Fibers for the Production of High-Quality Textile Structures
by Tiago Azevedo, Ana Catarina Silva, Gonçalo Machado, Diego Chaves, Ana Isabel Ribeiro, Raul Fangueiro and Diana P. Ferreira
Polymers 2025, 17(10), 1392; https://doi.org/10.3390/polym17101392 - 19 May 2025
Viewed by 755
Abstract
The textile industry is under increasing pressure to adopt sustainable practices due to the significant environmental impacts associated with fiber production, including high energy consumption, water usage, and substantial greenhouse gas emissions. The recycling of textile waste, particularly cotton, is a promising solution [...] Read more.
The textile industry is under increasing pressure to adopt sustainable practices due to the significant environmental impacts associated with fiber production, including high energy consumption, water usage, and substantial greenhouse gas emissions. The recycling of textile waste, particularly cotton, is a promising solution that has the potential to reduce landfill waste and decrease the demand for virgin fibers. However, mechanically recycled cotton fibers frequently demonstrate diminished mechanical properties compared to virgin fibers, which limits their potential for high-quality textile applications. This study explores the use of cross-linking agents (citric acid (CA) and sodium hypophosphite (SHP)), polymers (polyethylene glycol (PEG), chitosan (CH), carboxymethyl cellulose (CMC) and starch (ST)), and silicas (anionic (SA) and cationic (SC)) to enhance the mechanical properties of recycled cotton fibers. The treatments were then subjected to a hierarchical ranking, with the effectiveness of each treatment determined by its impact on enhancing fiber tenacity. The findings of this research indicate that the most effective treatment was starck (ST_50), which resulted in an enhancement of tenacity from 14.63 cN/tex to 15.34 cN/tex (+4.9%), closely followed by CA-SHP_110/110, which also reached 15.34 cN/tex (+4.6%). Other notable improvements were observed with CMC_50 (15.23 cN/tex), PEG_50 (14.91 cN/tex), and CA_50 (14.89 cN/tex), all in comparison to the control. In terms of yarn quality, the CA-SHP_110/110 treatment yielded the most substantial reductions in yarn irregularities, including thin places, thick places, and neps with decreases of 36%, 10%, and 7%, respectively. Furthermore, CA_50 exhibited moderate enhancements in yarn regularity, thin places (−12%), thick places (−6.1%), and neps (−8.9%). The results of this study demonstrate that combining CA with SHP, particularly when preceded by the heating of the solution before the addition of the fibers, results in a substantial enhancement of the structural integrity, strength, and overall quality of recycled cotton fibers. This approach offers a viable pathway for the improvement of the performance of recycled cotton, thereby facilitating its wider utilization in high-quality textile products. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

11 pages, 627 KiB  
Systematic Review
Endoscopic Sinus Surgery in Frontal Sinus Inverted Papilloma: A Systematic Review
by Maxime Fieux, Valentin Favier, Andre Sousa Machado, Mikail Nourredine, Caroline Giroudon, Florent Carsuzaa, Paresh P. Naik and the yo-IFOS Group
J. Pers. Med. 2025, 15(5), 183; https://doi.org/10.3390/jpm15050183 - 2 May 2025
Viewed by 915
Abstract
Background: Frontal sinus inverted papilloma (IP) is a particularly rare form of IP and its management is challenging, with a high rate of recurrence. Objectives: Our aim was to evaluate the recurrence rate of frontal sinus IP after surgery and compare [...] Read more.
Background: Frontal sinus inverted papilloma (IP) is a particularly rare form of IP and its management is challenging, with a high rate of recurrence. Objectives: Our aim was to evaluate the recurrence rate of frontal sinus IP after surgery and compare this rate according to the surgical modality (purely endoscopic sinus surgery vs. a combined/open approach). Design: A systematic review without meta-analysis conducted by a working group of the Young Otolaryngologists of the International Federation of Otorhinolaryngological Societies (yo-IFOS). Data Sources and Methods: A systematic analysis of the literature was performed and reported following the criteria laid down in the SWiM guidelines. The review was registered on Prospero, a dedicated software was used for screening (Covidence), and R (v.4.2.2) was used for statistical analysis. Eligible articles were studies reporting at least five cases of frontal sinus IP surgically treated. Results: A total of 2925 studies were identified based on the MeSH equation, and 39 studies were included (n = 642 patients). Among the studies included, the recurrence rate was 18.4% (118/642) with a mean time to recurrence of 25.6 (±11.7) months. The difference between surgical modalities was not statistically significant in terms of recurrence rate (14.7% vs. 16.5%; p = 0.675). Conclusions: The recurrence rate of frontal sinus IP is not different between surgical modalities. However, it does not reduce the need for a tailored therapeutic strategy, as other factors also need to be considered (time to recurrence, complications, quality of life) when choosing the most appropriate approach. Full article
(This article belongs to the Special Issue Personalized Medicine for Otolaryngology (ENT))
Show Figures

Figure 1

16 pages, 4956 KiB  
Article
New Strategy for Upcycling Marine Plastic Waste Through the Development of a Diamine-Functionalized Poly(ethylene terephthalate) Compatibilizer
by Pedro V. Rodrigues, Sibele P. Cestari, Vasco Cruz, M. Cidália R. Castro and Ana Vera Machado
Recycling 2025, 10(3), 82; https://doi.org/10.3390/recycling10030082 - 1 May 2025
Cited by 1 | Viewed by 659
Abstract
A compatibilizer for low-density polyethylene (LDPE)/poly(ethylene terephthalate) (PET) blends was developed. This compatibilizer consists of amine-functionalized PET, which is blended with maleated polyethylene to form a copolymer. The goal is to use this compatibilizer in the future for recycling plastic waste from the [...] Read more.
A compatibilizer for low-density polyethylene (LDPE)/poly(ethylene terephthalate) (PET) blends was developed. This compatibilizer consists of amine-functionalized PET, which is blended with maleated polyethylene to form a copolymer. The goal is to use this compatibilizer in the future for recycling plastic waste from the marine environment. Fourier-transform infrared spectroscopy confirmed the successful incorporation of amine groups into PET chains through the addition of p-phenylenediamine in a molten state. An increase in diamine content allowed for the visualization of three bands where PET reacted with the diamine. Differential scanning calorimetry suggested that the polyester chains were grafted onto the maleated polyethylene backbone, with crystallinity increasing up to 2.5% diamine content. Scanning electron microscopy (SEM) images showed that the LDPE/PET blend resulted in a continuous polyethylene matrix with a dispersed polyester phase. The blend compatibilized with modified maleated polyethylene, and functionalized PET exhibited an improved interface. Oscillatory rheology and dynamic mechanical analysis indicated that the developed compatibilizer positively impacted the mechanical properties of the compatibilized LDPE/PET blends. This new approach enables the creation of innovative strategies for enhancing the properties of pre-existing polyolefin/polyester recycled blends. Full article
Show Figures

Figure 1

14 pages, 16915 KiB  
Article
Performance Assessment of Change Detection Based on Robust PCA for Wavelength Resolution SAR Images Using Nonidentical Flight Passes
by Lucas P. Ramos, Viet T. Vu, Mats I. Pettersson, Patrik Dammert, Leonardo T. Duarte and Renato Machado
Sensors 2025, 25(8), 2506; https://doi.org/10.3390/s25082506 - 16 Apr 2025
Viewed by 479
Abstract
One of the main challenges in Synthetic Aperture Radar (SAR) change detection involves using SAR images from different flight passes. Depending on the flight pass, objects have different specular reflections since the radar cross-sections of these objects can be totally different between passes. [...] Read more.
One of the main challenges in Synthetic Aperture Radar (SAR) change detection involves using SAR images from different flight passes. Depending on the flight pass, objects have different specular reflections since the radar cross-sections of these objects can be totally different between passes. Then, it is common knowledge that the flight passes must be close to identical for conventional SAR change detection. Wavelength-resolution SAR refers to a SAR system with a spatial resolution approximately equal to the wavelength. This high relative resolution helps to stabilize the ground clutter in the SAR images. Consequently, the restricted requirement about identical flight passes for SAR change detection can be relaxed, and SAR change detection becomes possible with nonidentical passes. This paper shows that robust principal component analysis (RPCA) is efficient for change detection even using wavelength-resolution SAR images acquired with very different flight passes. It presents several SAR change detection experimental results using flight pass differences up to 95°. For slightly different passes, e.g., 5°, our method reached a false alarm rate (FAR) of approximately one false alarm per square kilometer for a probability of detection (PD) above 90%. In a particular setting, it achieves a PD of 97.5% for a FAR of 0.917 false alarms per square kilometer, even using SAR images acquired with nonidentical passes. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

15 pages, 356 KiB  
Article
Powdered Calendula officinalis Petals Incorporated into Fresh Pasta: Nutritional and Chemical Evaluation Before and After Processing
by Ana F. Vinha, Thiago F. Soares, Marlene Machado, Anabela S. G. Costa, Rita C. Alves and Maria Beatriz P. P. Oliveira
Appl. Sci. 2025, 15(5), 2771; https://doi.org/10.3390/app15052771 - 4 Mar 2025
Cited by 1 | Viewed by 959
Abstract
The sustainability of the agri-food chain is part of the current agenda through the investigation of alternative sources of ingredients and/or enriched foods. Following the current consumer trends for healthy foods with underlying sustainable principles, this work aimed to develop fortified fresh pasta [...] Read more.
The sustainability of the agri-food chain is part of the current agenda through the investigation of alternative sources of ingredients and/or enriched foods. Following the current consumer trends for healthy foods with underlying sustainable principles, this work aimed to develop fortified fresh pasta incorporating powdered calendula petals. A chemical assessment was performed to determine the effect of incorporating calendula petals (5%) on the sensory characteristics (color, flavor, appearance), phytochemical content, and antioxidant activity of fresh and cooked pasta. The incorporation of calendula petals remarkably increased ash (64%), fat (24%), and crude protein (18%). Similarly, there was a considerable increase in total phenolics, total flavonoids, and anthocyanins. As expected, antioxidant activity increased significantly with the addition of calendula in pasta (88%). The sensorial evaluation revealed that pasta with 5% calendula powder was as accepted as the control by the sensory panel. Cooking affected the nutritional and chemical constituents of the pasta. These findings suggest that powdered calendula petals can be employed as a functional food ingredient due to the large increase in protein and minerals, bioactive chemicals, and antioxidant activity, which remains after the integration procedure in typical fresh pasta. Full article
Show Figures

Graphical abstract

27 pages, 4808 KiB  
Article
Automatic Correction System for Learning Activities in Remote-Access Laboratories in the Mechatronics Area
by Guido S. Machado, Thiago R. M. Salgado, Florindo A. C. Ayres, Iury V. Bessa, Renan L. P. Medeiros and Vicente F. Lucena
Appl. Sci. 2025, 15(5), 2574; https://doi.org/10.3390/app15052574 - 27 Feb 2025
Viewed by 897
Abstract
In recent years, the educational field has evolved rapidly owing to the integration of several technologies, especially experiments in remote laboratories in the engineering area. Therefore, this article addresses the development of an innovation system for automatically correcting experiments in remote laboratories in [...] Read more.
In recent years, the educational field has evolved rapidly owing to the integration of several technologies, especially experiments in remote laboratories in the engineering area. Therefore, this article addresses the development of an innovation system for automatically correcting experiments in remote laboratories in mechatronics using digital twins, convolutional neural networks (CNNs), and generative artificial intelligence technologies. This system was designed to overcome the limitations of physical laboratories and teacher’s availability and assist in learning, enabling automatic acquisitions at any time. The digital twin captures data from the teacher’s and student’s experiments, allowing accurate comparisons to identify successes and errors. The application of CNNs serves to validate the results of the experiments through image analysis, whereas generative AI helps to identify patterns. The system was evaluated in a didactic plant, effectively correcting experiments with digital inputs and outputs. In addition, it provides students with detailed feedback on their performance, including specific errors and suggestions for improvement. With a three-layer architecture, i.e., experiments, didactics, and management, the system efficiently processes data from teachers and students, contributing to correcting experiments and optimizing teaching in remote environments. Full article
(This article belongs to the Special Issue Applications of Digital Technology and AI in Educational Settings)
Show Figures

Figure 1

29 pages, 6143 KiB  
Article
Sustainable Utilization of Coffee Pulp, a By-Product of Coffee Production: Effects on Metabolic Syndrome in Fructose-Fed Rats
by Nelson Andrade, Ilda Rodrigues, Francisca Carmo, Gabriela Campanher, Isabella Bracchi, Joanne Lopes, Emília Patrício, João T. Guimarães, Juliana A. Barreto-Peixoto, Anabela S. G. Costa, Liliana Espírito Santo, Marlene Machado, Thiago F. Soares, Susana Machado, Maria Beatriz P. P. Oliveira, Rita C. Alves, Fátima Martel and Cláudia Silva
Antioxidants 2025, 14(3), 266; https://doi.org/10.3390/antiox14030266 - 25 Feb 2025
Cited by 1 | Viewed by 960
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that include insulin resistance, impaired glucose tolerance, dyslipidemia, hypertension, and abdominal obesity. Coffee production generates large quantities of waste products, which pose a serious threat to the environment. However, coffee by-products, such as coffee [...] Read more.
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that include insulin resistance, impaired glucose tolerance, dyslipidemia, hypertension, and abdominal obesity. Coffee production generates large quantities of waste products, which pose a serious threat to the environment. However, coffee by-products, such as coffee pulp (CP), possess an undeniable wealth of bioactive components. Based on this, we investigated whether a 10-week dietary intervention with 250 mg/kg/d of CP could prevent or ameliorate MetS in high-fructose-fed rats. Consumption of CP by rats fed a high-fructose diet reduced body weight gain, lowered systolic blood pressure (SBP), fasting plasma glucose and insulin levels, and improved insulin resistance compared to rats fed a high-fructose diet alone. At the hepatic level, CP attenuated the increase in lipid storage, reduced lipid peroxidation, and improved glutathione levels when combined with a high-fructose diet. CP also affected the expression of key genes related to glucose and lipid metabolism in hepatic and adipose tissues, in rats fed a fructose-rich diet. This study demonstrates that CP ameliorates several consequences of high-fructose-induced MetS in the rat (weight gain, hypertension, glucose intolerance, insulin resistance, changes in liver, and adipose tissue function). Hence, our data provide evidence that CP consumption in the context of a high-fructose diet can be used to improve MetS management. Full article
Show Figures

Figure 1

17 pages, 5847 KiB  
Article
Essential Oil from Curcuma Longa Leaves: Using Nanotechnology to Make a Promising Eco-Friendly Bio-Based Pesticide from Medicinal Plant Waste
by Bianca Flexa-Ribeiro, Manoel D. N. Garcia, Ana Carolina de J. Silva, José Carlos T. Carvalho, Leandro Rocha, Silvia Maria M. Faustino, Caio P. Fernandes, Hellen F. da Silva, Francisco P. Machado, Lorane Izabel da S. Hage-Melim, Raimundo Nonato P. Souto, Gisele da S. Botas and Rodrigo A. S. Cruz
Molecules 2025, 30(5), 1023; https://doi.org/10.3390/molecules30051023 - 23 Feb 2025
Viewed by 1233
Abstract
Nano-emulsions of essential oils (EO) and their chemical constituents are promising raw materials for the ecological control of Tribolium castaneum. Curcuma longa L. is a plant known for the properties of its rhizome, which is used in food, health, and hygiene products. [...] Read more.
Nano-emulsions of essential oils (EO) and their chemical constituents are promising raw materials for the ecological control of Tribolium castaneum. Curcuma longa L. is a plant known for the properties of its rhizome, which is used in food, health, and hygiene products. Although its leaves are considered by-products with no commercial value, they produce an essential oil rich in bioactive monoterpenoids. This study aims to evaluate the repellency of nano-emulsions containing the EO from leaves of C. longa or its three main chemical constituents against T. castaneum. The representative mixture of EO extracted in four different months showed p-cymene (26.0%), 1,8-cineole (15.1%), and terpinolene (15.5%) as major compounds. Nano-emulsions of EO (HLB 16.7), terpinolene (HLB 15.0), 1,8-cineole (HLB15.0), and p-cymene (HLB 15.0) were repellent at concentrations of 11 μg/cm2 (EO, terpinolene, and p-cymene) and 1.1 μg/cm2 (1,8-cineole). The EO nano-emulsion droplet size increased linearly over time, remaining below 300 nm for 35 days. The EO nano-emulsion proved to be a green alternative to synthetic pesticides, as it was safe against the bioindicator Chlorella vulgaris. Furthermore, its main constituents were able to inhibit in silico the enzyme telomerase of T. castaneum, which is an enzyme essential for life. This study provides ideas for the utilization of EO from leaves of C. longa as raw material for new environmentally friendly plant-derived nanobiopesticides. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 2nd Edition)
Show Figures

Figure 1

22 pages, 4824 KiB  
Article
Potential Involvement of Protein Phosphatase PPP2CA on Protein Synthesis and Cell Cycle During SARS-CoV-2 Infection: A Meta-Analysis Investigation
by Luca P. Otvos, Giulia I. M. Garrito, Gabriel E. Jara, Paulo S. Lopes-de-Oliveira and Luciana E. S. F. Machado
Kinases Phosphatases 2025, 3(1), 4; https://doi.org/10.3390/kinasesphosphatases3010004 - 18 Feb 2025
Viewed by 1319
Abstract
Coronavirus disease 2019 is a multi-systemic syndrome that caused a pandemic. Proteomic studies have shown changes in protein expression and interaction involved in signaling pathways related to SARS-CoV-2 infections. Protein phosphatases play a crucial role in regulating cell signaling. In this study, we [...] Read more.
Coronavirus disease 2019 is a multi-systemic syndrome that caused a pandemic. Proteomic studies have shown changes in protein expression and interaction involved in signaling pathways related to SARS-CoV-2 infections. Protein phosphatases play a crucial role in regulating cell signaling. In this study, we assessed the potential involvement of protein phosphatases and their associated signaling pathways during SARS-CoV-2 infection by conducting a meta-analysis of proteome databases from COVID-19 patients. We identified both direct and indirect interactions between human protein phosphatases and viral proteins, as well as the expression levels and phosphorylation status of intermediate proteins. Our analyses revealed that PPP2CA and PTEN are key phosphatases involved in cell cycle and apoptosis regulation during SARS-CoV-2 infection. We also highlighted the direct involvement of PPP2CA in the cell division throughout its interaction with CDC20 protein (cell division cycle protein 20 homolog). This evidence strongly suggests that both proteins play critical roles during SARS-CoV-2 infection and represent potential targets for COVID-19 treatment. Full article
Show Figures

Figure 1

12 pages, 406 KiB  
Article
The Mediating Role of Self-Criticism in the Relationship Between Coaches’ Leadership Styles and Disordered Eating in Athletes
by Carol Coelho, Diane Oliveira, Catarina Branco, António Rui Gomes, Eva Conceição, Paulo P. P. Machado and Sónia Gonçalves
Nutrients 2025, 17(3), 427; https://doi.org/10.3390/nu17030427 - 24 Jan 2025
Cited by 1 | Viewed by 1493
Abstract
Background/Objectives: Athletes are particularly vulnerable to developing eating disorders, which can negatively impact both health and athletic performance. The coach–athlete relationship plays a central role in athletes’ development and well-being. However, little is known about how coaches’ leadership styles relate to athletes’ self-criticism [...] Read more.
Background/Objectives: Athletes are particularly vulnerable to developing eating disorders, which can negatively impact both health and athletic performance. The coach–athlete relationship plays a central role in athletes’ development and well-being. However, little is known about how coaches’ leadership styles relate to athletes’ self-criticism and disordered eating. Therefore, this study aimed to assess the relationship between athletes’ perceptions of their coach’s leadership style and their own self-criticism and disordered eating. Methods: A total of 150 athletes from team ball sports, aged 18 to 43 years (M = 25.0, SD = 6.0), completed self-report measures. Results: 27.3% of the participants were at heightened risk of developing eating disorders, and 38.7% lacked access to nutritional or psychological support within their clubs. Significant positive associations were found between coaches’ negative feedback style and athletes’ self-criticism and disordered eating, and between passive management style and athletes’ self-criticism and disordered eating. Moreover, athletes’ self-criticism fully mediated the relationship between these leadership styles and athletes’ disordered eating. Additionally, coaches’ vision, inspiration, and individualization styles were related to decreased self-criticism in athletes. Conclusions: Coaches’ leadership styles are significantly related to athletes’ psychological and nutritional health. This research has important implications for promoting healthier practices in sports settings. Full article
(This article belongs to the Special Issue Nutritional Intervention in Mental Health)
Show Figures

Figure 1

17 pages, 1911 KiB  
Article
Metrologically Interpretable Soft-Sensing Technique for Non-Invasive Liquid Flow Estimation from Vibration Data
by Gabriel Thaler, João P. Z. Machado, Rodolfo C. C. Flesch and Antonio L. S. Pacheco
Metrology 2025, 5(1), 6; https://doi.org/10.3390/metrology5010006 - 15 Jan 2025
Viewed by 1031
Abstract
This paper proposes a metrologically interpretable soft sensing method for estimating the liquid flow rates in hydraulic systems from non-invasive vibration frequency power band data. Despite considerable interest in non-invasive flow estimation, state-of-the-art methods provide little to no metrological capabilities. In this work, [...] Read more.
This paper proposes a metrologically interpretable soft sensing method for estimating the liquid flow rates in hydraulic systems from non-invasive vibration frequency power band data. Despite considerable interest in non-invasive flow estimation, state-of-the-art methods provide little to no metrological capabilities. In this work, a dedicated test rig was developed to automatically acquire vibration and flow rate data from a centrifugal pump, in a flow rate range between 0.05 × 10−5m3/s and 9.11 × 10−5m3/s. The vibration data were processed into power bands, which were subsequently used to optimize and train a multilayer perceptron neural network for flow soft sensing. The trained model was compared with models with different vibration processing methods from literature. The power band processing model resulted in a root mean squared error 75.4% smaller than the second-best model in cross-validation, and 51.5% smaller with test data. The uncertainty of the proposed regression model was estimated using a combination of ensemble learning and Monte Carlo simulations, and combined with the reference flow sensor uncertainty to obtain the total combined uncertainty of the soft sensor, found to be between 3.9 × 10−6m3/s and 6.1 × 10−6m3/s throughout the measured flow range. The reference flow sensor accuracy was found to be the largest individual contribution for the final uncertainty, closely followed by the regression model uncertainty. Full article
(This article belongs to the Collection Measurement Uncertainty)
Show Figures

Figure 1

15 pages, 4565 KiB  
Article
Morphometric Investigation of a Species Complex in Mimosa Section Batocaulon Series Cordistipulae (Leguminosae, Caesalpinioideae)
by Janaína G. A. Nascimento, Luciano P. Queiroz, Marlon C. Machado and Cássio van den Berg
Plants 2025, 14(2), 194; https://doi.org/10.3390/plants14020194 - 12 Jan 2025
Viewed by 944
Abstract
Mimosa series Cordistipulae was created by Barneby in 1991, embracing species diagnosed by their small subshrubby habit and the presence of gland-tipped setae and trimerous flowers. Most species are endemic to Northeastern Brazil, and some possess characters deemed diagnostic which nonetheless overlap, making [...] Read more.
Mimosa series Cordistipulae was created by Barneby in 1991, embracing species diagnosed by their small subshrubby habit and the presence of gland-tipped setae and trimerous flowers. Most species are endemic to Northeastern Brazil, and some possess characters deemed diagnostic which nonetheless overlap, making species identification difficult. Our study aimed to test species circumscriptions and sets of characters that could be applied to unequivocally distinguish the species. Twelve populations (225 individuals) were collected at nine localities, encompassing the Brazilian vegetation types Caatinga, Campos Rupestres and Restinga. Linear measurements of 38 floral and vegetative characters were measured and analyzed using Canonical Variate Analysis and cluster analysis. The first two canonical axes explained 41.4% and 18.9% of the variation and separated two populations of the group recently described as a new species. Vegetative characters are more informative for species delimitation than flower characters, and most groups are distinguished primarily by the number of pinnae pairs, number of leaflets per pinna and length of the leaf rachis. The species displaying the highest morphological similarity are M. misera, M. leptantha and M. minarum. The traditional morphometric approach was capable of objectively dealing with a type of variation that would be difficult to interpret by purely examining herbarium specimens. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

20 pages, 12122 KiB  
Article
Microstructural and Mechanical Characterization of Nb-Doped MoS2 Coatings Deposited on H13 Tool Steel Using Nb-Based Interlayers
by Miguel R. Danelon, Newton K. Fukumasu, Angelo A. Carvalho, Ronnie R. Rego, Izabel F. Machado, Roberto M. Souza and André P. Tschiptschin
Coatings 2025, 15(1), 57; https://doi.org/10.3390/coatings15010057 - 6 Jan 2025
Cited by 1 | Viewed by 1326
Abstract
Molybdenum disulfide is a 2D material with excellent lubricant properties, resulting from weak van der Waals forces between lattice layers and shear-induced crystal orientation. The low forces needed to shear the MoS2 crystal layers grant the tribological system low coefficients of friction [...] Read more.
Molybdenum disulfide is a 2D material with excellent lubricant properties, resulting from weak van der Waals forces between lattice layers and shear-induced crystal orientation. The low forces needed to shear the MoS2 crystal layers grant the tribological system low coefficients of friction (COF). However, film oxidation harms its efficacy in humid atmospheres, leading to an increased COF and poor surface adhesion, making its use preferable in dry or vacuum conditions. To overcome these challenges, doping MoS2 with elements such as Nb, Ti, C, and N emerges as a promising solution. Nevertheless, the adhesion of these coatings to a steel substrate presents challenges and strategies involving the reduction in residual stresses and increased chemical affinity to the substrate by using niobium-based materials as interlayers. In this study, Nb-doped MoS2 films were deposited on H13 steel and silicon wafers using the pulsed direct current balanced magnetron sputtering technique. Different niobium-based interlayers (pure Nb and NbN) were deposited to evaluate the adhesion properties of Nb-doped MoS2 coatings. Unlubricated scratch tests, conducted at room temperature and relative humidity under a progressive load, were performed to analyze the COF and adhesion of the coating. Instrumented indentation tests were conducted to assess the hardness and elastic modulus of the coatings. The microstructure of the coatings was obtained by Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), and Transmission Electron Microscopy (TEM), with Energy-Dispersive X-Ray Spectroscopy (EDS). Results indicated that niobium doping on MoS2 coatings changes the structure from crystalline to amorphous. Additionally, the Nb concentration of the Nb:MoS2 coating changed the mechanical properties, leading to different cohesive failures by different loads during the scratch tests. Results have also indicated that an NbN interlayer optimally promoted the adhesion of the film. This result is justified by the increase in hardness led by higher Nb concentrations, enhancing the load-bearing capacity of the coating. It is concluded that niobium-based materials can be used to enhance the adhesion properties of Nb-doped MoS2 films and improve their tribological performance. Full article
(This article belongs to the Special Issue Friction, Wear, Lubrication and Mechanics of Surfaces and Interfaces)
Show Figures

Figure 1

Back to TopTop