Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Muriel Barberi-Heyob

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2787 KiB  
Article
New Crystal Form of Human Neuropilin-1 b1 Fragment with Six Electrostatic Mutations Complexed with KDKPPR Peptide Ligand
by Ibrahima Goudiaby, Thérèse E. Malliavin, Eva Mocchetti, Sandrine Mathiot, Samir Acherar, Céline Frochot, Muriel Barberi-Heyob, Benoît Guillot, Frédérique Favier, Claude Didierjean and Christian Jelsch
Molecules 2023, 28(14), 5603; https://doi.org/10.3390/molecules28145603 - 24 Jul 2023
Cited by 3 | Viewed by 2053
Abstract
Neuropilin 1 (NRP1), a cell-surface co-receptor of a number of growth factors and other signaling molecules, has long been the focus of attention due to its association with the development and the progression of several types of cancer. For example, the KDKPPR peptide [...] Read more.
Neuropilin 1 (NRP1), a cell-surface co-receptor of a number of growth factors and other signaling molecules, has long been the focus of attention due to its association with the development and the progression of several types of cancer. For example, the KDKPPR peptide has recently been combined with a photosensitizer and a contrast agent to bind NRP1 for the detection and treatment by photodynamic therapy of glioblastoma, an aggressive brain cancer. The main therapeutic target is a pocket of the fragment b1 of NRP1 (NRP1-b1), in which vascular endothelial growth factors (VEGFs) bind. In the crystal packing of native human NRP1-b1, the VEGF-binding site is obstructed by a crystallographic symmetry neighbor protein, which prevents the binding of ligands. Six charged amino acids located at the protein surface were mutated to allow the protein to form a new crystal packing. The structure of the mutated fragment b1 complexed with the KDKPPR peptide was determined by X-ray crystallography. The variant crystallized in a new crystal form with the VEGF-binding cleft exposed to the solvent and, as expected, filled by the C-terminal moiety of the peptide. The atomic interactions were analyzed using new approaches based on a multipolar electron density model. Among other things, these methods indicated the role played by Asp320 and Glu348 in the electrostatic steering of the ligand in its binding site. Molecular dynamics simulations were carried out to further analyze the peptide binding and motion of the wild-type and mutant proteins. The simulations revealed that specific loops interacting with the peptide exhibited mobility in both the unbound and bound forms. Full article
Show Figures

Figure 1

22 pages, 4918 KiB  
Article
Targeting Glioblastoma-Associated Macrophages for Photodynamic Therapy Using AGuIX®-Design Nanoparticles
by Lucie Lerouge, Mickaël Gries, Alicia Chateau, Joël Daouk, François Lux, Paul Rocchi, Jessica Cedervall, Anna-Karin Olsson, Olivier Tillement, Céline Frochot, Samir Acherar, Noémie Thomas and Muriel Barberi-Heyob
Pharmaceutics 2023, 15(3), 997; https://doi.org/10.3390/pharmaceutics15030997 - 20 Mar 2023
Cited by 11 | Viewed by 3587
Abstract
Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight [...] Read more.
Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight a relationship between NRP-1 and M2 macrophage infiltration. In order to induce a photodynamic effect, multifunctional AGuIX®-design nanoparticles were used in combination with a magnetic resonance imaging (MRI) contrast agent, as well as a porphyrin as the photosensitizer molecule and KDKPPR peptide ligand for targeting the NRP-1 receptor. The main objective of this study was to characterize the impact of macrophage NRP-1 protein expression on the uptake of functionalized AGuIX®-design nanoparticles in vitro and to describe the influence of GBM cell secretome post-PDT on the polarization of macrophages into M1 or M2 phenotypes. By using THP-1 human monocytes, successful polarization into the macrophage phenotypes was argued via specific morphological traits, discriminant nucleocytoplasmic ratio values, and different adhesion abilities based on real-time cell impedance measurements. In addition, macrophage polarization was confirmed via the transcript-level expression of TNFα, CXCL10, CD-80, CD-163, CD-206, and CCL22 markers. In relation to NRP-1 protein over-expression, we demonstrated a three-fold increase in functionalized nanoparticle uptake for the M2 macrophages compared to the M1 phenotype. The secretome of the post-PDT GBM cells led to nearly a three-fold increase in the over-expression of TNFα transcripts, confirming the polarization to the M1 phenotype. The in vivo relationship between post-PDT efficiency and the inflammatory effects points to the extensive involvement of macrophages in the tumor zone. Full article
Show Figures

Figure 1

16 pages, 2323 KiB  
Article
Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy
by Perrine Schneller, Charlotte Collet, Quentin Been, Paul Rocchi, François Lux, Olivier Tillement, Muriel Barberi-Heyob, Hervé Schohn and Joël Daouk
Pharmaceuticals 2023, 16(2), 143; https://doi.org/10.3390/ph16020143 - 18 Jan 2023
Cited by 5 | Viewed by 2756
Abstract
Cerenkov-induced photodynamic therapy (CR-PDT) with the use of Gallium-68 (68Ga) as an unsealed radioactive source has been proposed as an alternative strategy to X-ray-induced photodynamic therapy (X-PDT). This new strategy still aims to produce a photodynamic effect with the use of [...] Read more.
Cerenkov-induced photodynamic therapy (CR-PDT) with the use of Gallium-68 (68Ga) as an unsealed radioactive source has been proposed as an alternative strategy to X-ray-induced photodynamic therapy (X-PDT). This new strategy still aims to produce a photodynamic effect with the use of nanoparticles, namely, AGuIX. Recently, we replaced Gd from the AGuIX@ platform with Terbium (Tb) as a nanoscintillator and added 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenylporphyrin (P1) as a photosensitizer (referred to as AGuIX@Tb-P1). Although Cerenkov luminescence from 68Ga positrons is involved in nanoscintillator and photosensitizer activation, the cytotoxic effect obtained by PDT remains controversial. Herein, we tested whether free 68Ga could substitute X-rays of X-PDT to obtain a cytotoxic phototherapeutic effect. Results were compared with those obtained with AGuIX@Gd-P1 nanoparticles. We showed, by Monte Carlo simulations, the contribution of Tb scintillation in P1 activation by an energy transfer between Tb and P1 after Cerenkov radiation, compared to the Gd-based nanoparticles. We confirmed the involvement of the type II PDT reaction during 68Ga-mediated Cerenkov luminescence, id est, the transfer of photon to AGuIX@Tb-P1 which, in turn, generated P1-mediated singlet oxygen. The effect of 68Ga on cell survival was studied by clonogenic assays using human glioblastoma U-251 MG cells. Exposure of pre-treated cells with AGuIX@Tb-P1 to 68Ga resulted in the decrease in cell clone formation, unlike AGuIX@Gd-P1. We conclude that CR-PDT could be an alternative of X-PDT. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Figure 1

14 pages, 4463 KiB  
Article
AB186 Inhibits Migration of Triple-Negative Breast Cancer Cells and Interacts with α-Tubulin
by Marine Geoffroy, Marine Lemesle, Alexandra Kleinclauss, Sabine Mazerbourg, Levy Batista, Muriel Barberi-Heyob, Thierry Bastogne, Wilfrid Boireau, Alain Rouleau, Dorian Dupommier, Michel Boisbrun, Corinne Comoy, Stéphane Flament, Isabelle Grillier-Vuissoz and Sandra Kuntz
Int. J. Mol. Sci. 2022, 23(12), 6859; https://doi.org/10.3390/ijms23126859 - 20 Jun 2022
Cited by 4 | Viewed by 3068
Abstract
Breast cancer is one of the leading causes of cancer-related death among females worldwide. A major challenge is to develop innovative therapy in order to treat breast cancer subtypes resistant to current treatment. In the present study, we examined the effects of two [...] Read more.
Breast cancer is one of the leading causes of cancer-related death among females worldwide. A major challenge is to develop innovative therapy in order to treat breast cancer subtypes resistant to current treatment. In the present study, we examined the effects of two Troglitazone derivatives Δ2-TGZ and AB186. Previous studies showed that both compounds induce apoptosis, nevertheless AB186 was a more potent agent. The kinetic of cellular events was investigated by real-time cell analysis system (RTCA) in MCF-7 (hormone dependent) and MDA-MB-231 (triple negative) breast cancer (TNBC) cells, followed by cell morphology analysis by immuno-localization. Both compounds induced a rapid modification of both impedance-based signals and cellular morphology. This process was associated with an inhibition of cell migration measured by wound healing and transwell assays in TNBC MDA-MB-231 and Hs578T cells. In order to identify cytoplasmic targets of AB186, we performed surface plasmon resonance (SPR) and pull-down analyses. Subsequently, 6 cytoskeleton components were identified as potential targets. We further validated α-tubulin as one of the direct targets of AB186. In conclusion, our results suggested that AB186 could be promising to develop novel therapeutic strategies to treat aggressive forms of breast cancer such as TNBC. Full article
(This article belongs to the Special Issue New Drugs for Breast Cancer Treatment)
Show Figures

Figure 1

22 pages, 3875 KiB  
Article
Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography
by Albert Moussaron, Valérie Jouan-Hureaux, Charlotte Collet, Julien Pierson, Noémie Thomas, Laurence Choulier, Nicolas Veran, Matthieu Doyen, Philippe Arnoux, Fatiha Maskali, Dominique Dumas, Samir Acherar, Muriel Barberi-Heyob and Céline Frochot
Molecules 2021, 26(23), 7273; https://doi.org/10.3390/molecules26237273 - 30 Nov 2021
Cited by 10 | Viewed by 3384
Abstract
Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the [...] Read more.
Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the diagnostic tools constitute an obstacle. Molecular imaging, such as Positron Emission Tomography (PET), is a promising technique but remains limited in the search for cerebral localizations, given the commercially available radiotracers. Indeed, the [18F]FDG PET remains constrained by the physiological fixation of the cerebral cortex, which hinders the visualization of cerebral metastases. Tumor angiogenesis is recognized as a crucial phenomenon in the progression of malignant tumors and is correlated with overexpression of the neuropilin-1 (NRP-1) receptor. Here, we describe the synthesis and the photophysical properties of the new gallium-68 radiolabeled peptide to target NRP-1. The KDKPPR peptide was coupled with gallium-68 anchored into a bifunctional NODAGA chelating agent, as well as Cy5 for fluorescence detection. The Cy5 absorbance spectra did not change, whereas the molar extinction coefficient (ε) decreased drastically. An enhancement of the fluorescence quantum yield (φF) could be observed due to the better water solubility of Cy5. [68Ga]Ga-NODAGA-K(Cy5)DKPPR was radiosynthesized efficiently, presented hydrophilic properties (log D = −1.86), and had high in vitro stability (>120 min). The molecular affinity and the cytotoxicity of this new chelated radiotracer were evaluated in vitro on endothelial cells (HUVEC) and MDA-MB-231 cancer cells (hormone-independent and triple-negative line) and in vivo on a brain model of metastasis in a nude rat using the MDA-MB-231 cell line. No in vitro toxicity has been observed. The in vivo preliminary experiments showed promising results, with a high contrast between the healthy brain and metastatic foci for [68Ga]Ga-NODAGA-K(Cy5)DKPPR. Full article
Show Figures

Figure 1

21 pages, 3281 KiB  
Article
Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy
by Joël Daouk, Mathilde Iltis, Batoul Dhaini, Denise Béchet, Philippe Arnoux, Paul Rocchi, Alain Delconte, Benoît Habermeyer, François Lux, Céline Frochot, Olivier Tillement, Muriel Barberi-Heyob and Hervé Schohn
Pharmaceuticals 2021, 14(5), 396; https://doi.org/10.3390/ph14050396 - 22 Apr 2021
Cited by 10 | Viewed by 3813
Abstract
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a [...] Read more.
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of the nanoparticles was studied using human glioblastoma U-251 MG cells and was compared to treatment with AGuIX@ nanoparticles doped with Gadolinium (Gd) and P1 (AGuIX@Gd-P1). We demonstrated that the AGuIX@Tb-P1 design was consistent with X-ray photon energy transfer from Terbium to P1. Both nanoparticles had similar dark cytotoxicity and they were absorbed in a similar rate within the cells. Pre-treated cells exposure to X-rays was related to reactive species production. Using clonogenic assays, establishment of survival curves allowed discrimination of the impact of radiation treatment from X-ray-induced photodynamic effect. We showed that cell growth arrest was increased (35%-increase) when cells were treated with AGuIX@Tb-P1 compared to the nanoparticle doped with Gd. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2021)
Show Figures

Figure 1

13 pages, 2093 KiB  
Review
Can Cerenkov Light Really Induce an Effective Photodynamic Therapy?
by Joël Daouk, Batoul Dhaini, Jérôme Petit, Céline Frochot, Muriel Barberi-Heyob and Hervé Schohn
Radiation 2021, 1(1), 5-17; https://doi.org/10.3390/radiation1010002 - 24 Nov 2020
Cited by 17 | Viewed by 4838
Abstract
Photodynamic therapy (PDT) is a promising therapeutic strategy for cancers where surgery and radiotherapy cannot be effective. PDT relies on the photoactivation of photosensitizers, most of the time by lasers to produced reactive oxygen species and notably singlet oxygen. The major drawback of [...] Read more.
Photodynamic therapy (PDT) is a promising therapeutic strategy for cancers where surgery and radiotherapy cannot be effective. PDT relies on the photoactivation of photosensitizers, most of the time by lasers to produced reactive oxygen species and notably singlet oxygen. The major drawback of this strategy is the weak light penetration in the tissues. To overcome this issue, recent studies proposed to generate visible light in situ with radioactive isotopes emitting charged particles able to produce Cerenkov radiation. In vitro and preclinical results are appealing, but the existence of a true, lethal phototherapeutic effect is still controversial. In this article, we have reviewed previous original works dealing with Cerenkov-induced PDT (CR-PDT). Moreover, we propose a simple analytical equation resolution to demonstrate that Cerenkov light can potentially generate a photo-therapeutic effect, although most of the Cerenkov photons are emitted in the UV-B and UV-C domains. We suggest that CR-PDT and direct UV-tissue interaction act synergistically to yield the therapeutic effect observed in the literature. Moreover, adding a nanoscintillator in the photosensitizer vicinity would increase the PDT efficacy, as it will convert Cerenkov UV photons to light absorbed by the photosensitizer. Full article
(This article belongs to the Special Issue Biomedical Applications of Nanoscintillators)
Show Figures

Figure 1

11 pages, 1208 KiB  
Article
Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin on MCF-7 Breast Cancer Cells
by Mahmoud Hasan, Kamil Elkhoury, Nabila Belhaj, Cyril Kahn, Ali Tamayol, Muriel Barberi-Heyob, Elmira Arab-Tehrany and Michel Linder
Mar. Drugs 2020, 18(4), 217; https://doi.org/10.3390/md18040217 - 17 Apr 2020
Cited by 74 | Viewed by 5941
Abstract
Current anticancer drugs exhibit limited efficacy and initiate severe side effects. As such, identifying bioactive anticancer agents that can surpass these limitations is a necessity. One such agent, curcumin, is a polyphenolic compound derived from turmeric, and has been widely investigated for its [...] Read more.
Current anticancer drugs exhibit limited efficacy and initiate severe side effects. As such, identifying bioactive anticancer agents that can surpass these limitations is a necessity. One such agent, curcumin, is a polyphenolic compound derived from turmeric, and has been widely investigated for its potential anti-inflammatory and anticancer effects over the last 40 years. However, the poor bioavailability of curcumin, caused by its low absorption, limits its clinical use. In order to solve this issue, in this study, curcumin was encapsulated in chitosan-coated nanoliposomes derived from three natural lecithin sources. Liposomal formulations were all in the nanometric scale (around 120 nm) and negatively charged (around −40 mV). Among the three lecithins, salmon lecithin presented the highest growth-inhibitory effect on MCF-7 cells (two times lower growth than the control group for 12 µM of curcumin and four times lower for 20 µM of curcumin). The soya and rapeseed lecithins showed a similar growth-inhibitory effect on the tumor cells. Moreover, coating nanoliposomes with chitosan enabled a higher loading efficiency of curcumin (88% for coated liposomes compared to 65% for the non-coated liposomes) and a stronger growth-inhibitory effect on MCF-7 breast cancer cells. Full article
(This article belongs to the Special Issue Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies)
Show Figures

Figure 1

22 pages, 1044 KiB  
Article
New Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1 for Anti-Vascular Targeted Photodynamic Therapy
by Ezatul Ezleen Kamarulzaman, Amirah Mohd Gazzali, Samir Acherar, Céline Frochot, Muriel Barberi-Heyob, Cédric Boura, Patrick Chaimbault, Estelle Sibille, Habibah A. Wahab and Régis Vanderesse
Int. J. Mol. Sci. 2015, 16(10), 24059-24080; https://doi.org/10.3390/ijms161024059 - 12 Oct 2015
Cited by 32 | Viewed by 7781
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve [...] Read more.
Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide–PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent. Full article
(This article belongs to the Special Issue Advances in Photodynamic Therapy)
Show Figures

Graphical abstract

Back to TopTop