Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Authors = Mohammed Muqtader Ahmed ORCID = 0000-0001-6911-0652

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3664 KiB  
Article
Formulation and Evaluation of Polymeric Spherical Agglomerates-Based Porous Orodispersible Tablets of Cilnidipine
by Yahya Alhamhoom, Sanjana S. Prakash, Avichal Kumar, Shivakumar Hagalavadi Nanjappa, Mohamed Rahamathulla, Megha S. Kamath, Syeda Ayesha Farhana, Mohammed Muqtader Ahmed and Thippeswamy Boreddy-Shivanandappa
Pharmaceutics 2025, 17(2), 170; https://doi.org/10.3390/pharmaceutics17020170 - 28 Jan 2025
Viewed by 1670
Abstract
Background/Objectives: Cilnidipine (CIL) is a calcium channel blocker that exhibits low bioavailability (~13%) due to poor aqueous solubility and extensive pre-systemic gut wall metabolism. The current study aimed to enhance the oral bioavailability of CIL by formulation of polymeric spherical agglomerates (CILSAs)-based orodispersible [...] Read more.
Background/Objectives: Cilnidipine (CIL) is a calcium channel blocker that exhibits low bioavailability (~13%) due to poor aqueous solubility and extensive pre-systemic gut wall metabolism. The current study aimed to enhance the oral bioavailability of CIL by formulation of polymeric spherical agglomerates (CILSAs)-based orodispersible tablets (ODTs). Methods: Eight different batches of CILSAs were prepared by a crystallo-co-agglomeration technique using different proportions of hydrophilic polymers like hydroxy propyl methyl cellulose E50, polyvinyl pyrrolidone K30, or polyethylene glycol (PEG) 6000 as carriers. Fourier transform infrared spectroscopy (FTIR) of CILSAs proved the chemical integrity of CIL in SAs, while scanning electron microscopy revealed the spherical shape of CILSAs. Results: Differential scanning calorimetry and powder X-ray diffraction studies confirmed that CIL was rendered more amorphous in CILSAs. CILSAs displayed good flow behavior, high percentage yield, and high drug loads. The batch F4 composed of PEG 6000 emerged as the optimized batch as it displayed high percentage dissolution efficiency (57.01 ± 0.01%), which was significantly greater (p < 0.001) compared to CIL (26.27 ± 0.06%). The optimized formulation of CILSAs was directly compressed into ODTs that were rendered porous by vacuum drying. The optimized formulation of porous ODTs (T3) displayed low friability (0.28 ± 0.03%), short disintegration time (6.26 ± 0.29 s), and quicker dissolution (94.16 ± 1.41% in 60 min) as compared to marketed tablet Cildipin® 10 mg (85 ± 2.3%). Conclusions: Thus, porous ODTs of CILSAs can rapidly release the drug, bypass gut metabolism, enhance oral bioavailability, and improve CIL’s therapeutic effectiveness for angina and hypertension. Full article
Show Figures

Figure 1

16 pages, 1914 KiB  
Article
Molecular Docking and Antihypertensive Activity of Eupalitin 3-O-β-D-galactopyranoside Isolated from Boerhavia diffusa Linn
by Ilyas Uoorakkottil, Rashid Koottangodan, Kamal Y. Thajudheen, Saad Ali Alsheri and Mohammed Muqtader Ahmed
Pharmaceutics 2024, 16(12), 1628; https://doi.org/10.3390/pharmaceutics16121628 - 23 Dec 2024
Cited by 1 | Viewed by 986
Abstract
Background: Angiotensin-converting enzyme (ACE) is a key regulator of blood pressure, and ACE inhibition is an essential part of the treatment of hypertension. We used a molecular docking approach to find the interaction of ACE with an active flavonoid isolated from Boerhavia diffusa [...] Read more.
Background: Angiotensin-converting enzyme (ACE) is a key regulator of blood pressure, and ACE inhibition is an essential part of the treatment of hypertension. We used a molecular docking approach to find the interaction of ACE with an active flavonoid isolated from Boerhavia diffusa Linn, eupalitin 3-O-β-D-galactopyranoside, which leads to potential antihypertensive effects in methyl predenisolone-induced hypertensive rats. Additionally, the pharmacokinetic parameters of this compound are assessed. Methods:eupalitin-3-O-β-D-galactopyranoside was isolated from leaves of Boerhavia diffusa by sedimentation method. The compound was characterized by UPLC-MSMS, NMR, and UV spectroscopy to confirm the identity of the compound. Hypertension was induced in rats with methyl predenisolone (5 mg/kg/day) for 14 days. Systolic and diastolic blood pressure effects of eupalitin 3-O-β-D-galactopyranoside were assessed using a tail-cuff method. The blood plasma data for oral administration were used to determine various pharmacokinetic parameters from the bioavailability and serum concentration. Results: In methyl predenisolone-induced hypertensive rats, both systolic and diastolic blood pressures were significantly lower than that of the vehicle with treatment from eupalitin 3-O-β-D-galactopyranoside (p < 0.01). Conclusions: The pharmacokinetic process showed the moderate bioavailability of the compound; eupalitin 3-O-β-D-galactopyranoside induces powerful antihypertensive activity in methyl predenisolone-induced hypertensive rats, implying potential clinical application as a new therapeutic drug for hypertension. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals)
Show Figures

Figure 1

18 pages, 3919 KiB  
Article
Sublingual Fast-Dissolving Thin Films of Loratadine: Characterization, In Vitro and Ex Vivo Evaluation
by Yahya Alhamhoom, Ashitha Kakarlapudi Said, Avichal Kumar, Shivakumar Hagalavadi Nanjappa, Divya Wali, Mohamed Rahamathulla, Syeda Ayesha Farhana, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Polymers 2024, 16(20), 2919; https://doi.org/10.3390/polym16202919 - 17 Oct 2024
Cited by 4 | Viewed by 3478
Abstract
Loratadine (LOR) is a second-generation antihistamine that exhibits a low and variable oral bioavailability (10–40%) and delayed onset owing to poor solubility and an extensive first-pass effect. Therefore, in light of the clinical need, the main goal of the present study was to [...] Read more.
Loratadine (LOR) is a second-generation antihistamine that exhibits a low and variable oral bioavailability (10–40%) and delayed onset owing to poor solubility and an extensive first-pass effect. Therefore, in light of the clinical need, the main goal of the present study was to develop sublingual fast-dissolving thin films of LOR–citric acid co-amorphous systems (LOR-CAs) with the aim of eliciting a faster onset and improving the bioavailability. We formulated sublingual fast-dissolving thin films of LOR by a film-casting technique using hydrophilic polymers like hydroxypropyl methylcellulose (HPMC E15), polyvinyl pyrrolidone K30 (PVP K30), and hydroxypropyl cellulose EL (HPC-EF) and citric acid as a pH modulator, while glycerin served as a plasticizer. The sublingual fast-dissolving thin films were characterized by FTIR, SEM, DSC, and XRD and evaluated for in vitro dissolution and ex vivo mucoadhesion. The best formulation (F1) developed using HPMC E15 as a polymer, glycerin as a plasticizer, and citric acid as a pH modulator was found to be the optimized formulation as it was smooth, clear, flexible, and displayed good mucoadhesion (11.27 ± 0.418 gm/cm2) and uniform thickness (0.25 ± 0.02 mm). The formulation F1 was found to display a significantly shorter DT (30.30 ± 0.6 s) and rapid release of LOR (92.10 ± 2.3% in 60 min) compared to other formulations (ANOVA, p < 0.001). The results indicated that the prepared sublingual films are likely to elicit a faster therapeutic effect, avoid first-pass metabolism, and improve the bioavailability. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

23 pages, 10530 KiB  
Article
Formulation and Evaluation of pH-Modulated Amorphous Solid Dispersion-Based Orodispersible Tablets of Cefdinir
by Yahya Alhamhoom, Thanusha Kumaraswamy, Avichal Kumar, Shivakumar Hagalavadi Nanjappa, Sanjana S. Prakash, Mohamed Rahamathulla, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Pharmaceutics 2024, 16(7), 866; https://doi.org/10.3390/pharmaceutics16070866 - 27 Jun 2024
Cited by 2 | Viewed by 2063
Abstract
Cefdinir (CEF) is a semi-synthetic third-generation broad-spectrum oral cephalosporin that exhibits poor solubility at lower pH values. Considering this, pH-modulated CEF solid dispersions (ASDs) were produced by solvent evaporation method employing various hydrophilic carriers and alkalizers. Among different carriers, ASDs produced using PEG [...] Read more.
Cefdinir (CEF) is a semi-synthetic third-generation broad-spectrum oral cephalosporin that exhibits poor solubility at lower pH values. Considering this, pH-modulated CEF solid dispersions (ASDs) were produced by solvent evaporation method employing various hydrophilic carriers and alkalizers. Among different carriers, ASDs produced using PEG 6000 with meglumine as alkalizer were found to significantly increase (p < 0.005) the drug solubility (4.50 ± 0.32 mg/mL) in pH 1.2. Fourier transform infrared spectrophotometry confirmed chemical integrity of CEF while differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) indicated CEF was reduced to an amorphous state in ASD8. Antimicrobial assay performed by well diffusion method against Staphylococcus aureus (MTCC96) and Escherichia coli (MTCC118) demonstrated significantly superior (p < 0.001) efficacy of CEFSD compared to CEF. The porous orodispersible tablets (ODTs) of ASD8 (batch F5) were developed by incorporating ammonium bicarbonate as a subliming agent by direct compression, followed by vacuum drying displayed quick disintegration (27.11 ± 1.96 s) that met compendial norms and near-complete dissolution (93.85 ± 1.27%) in 30 min. The ODTs of ASD8 appear to be a promising platform to mitigate the pH-dependent solubility and dissolution issues associated with CEF in challenging physiological pH conditions prevalent in stomach. Thus, ODTs of ASD8 are likely to effectively manage various infections and avoid development of drug-resistant strains, thereby improving the curing rates. Full article
Show Figures

Figure 1

26 pages, 10614 KiB  
Article
Box-Behnken Design-Based Optimization and Evaluation of Lipid-Based Nano Drug Delivery System for Brain Targeting of Bromocriptine
by Asha Spandana K M, Mohit Angolkar, Mohamed Rahamathulla, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana, Thippeswamy Boreddy Shivanandappa, Sharanya Paramshetti, Riyaz Ali M. Osmani and Jawahar Natarajan
Pharmaceuticals 2024, 17(6), 720; https://doi.org/10.3390/ph17060720 - 2 Jun 2024
Cited by 10 | Viewed by 2549
Abstract
Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson’s disease (PD). The utilization of lipid nanoparticles can be a promising [...] Read more.
Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson’s disease (PD). The utilization of lipid nanoparticles can be a promising approach to overcome the limitations of BCR bioavailability. The aim of the research work was to develop and evaluate bromocriptine-loaded solid lipid nanoparticles (BCR-SLN) and bromocriptine-loaded nanostructured lipid carriers (BCR-NLC) employing the Box-Behnken design (BBD). BCR-SLNs and BCR-NLCs were developed using the high-pressure homogenization method. The prepared nanoparticles were characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE). In vitro drug release, cytotoxicity studies, in vivo plasma pharmacokinetic, and brain distribution studies evaluated the optimized lipid nanoparticles. The optimized BCR-SLN had a PS of 219.21 ± 1.3 nm, PDI of 0.22 ± 0.02, and EE of 72.2 ± 0.5. The PS, PDI, and EE of optimized BCR-NLC formulation were found to be 182.87 ± 2.2, 0.16 ± 0.004, and 83.57 ± 1.8, respectively. The in vitro release profile of BCR-SLN and BCR-NLC showed a biphasic pattern, immediate release, and then trailed due to the sustained release. Furthermore, a pharmacokinetic study indicated that both the optimized BCR-SLN and BCR-NLC formulations improve the plasma and brain bioavailability of the drug compared to the BCR solution. Based on the research findings, it can be concluded that the BCR-loaded lipid nanoparticles could be a promising carrier by enhancing the BBB penetration of the drug and helping in the improvement of the bioavailability and therapeutic efficacy of BCR in the management of PD. Full article
(This article belongs to the Special Issue Self-Assembled Nanoparticles: An Emerging Delivery Platform for Drugs)
Show Figures

Figure 1

24 pages, 6748 KiB  
Article
Simvastatin-Encapsulated Topical Liposomal Gel for Augmented Wound Healing: Optimization Using the Box-Behnken Model, Evaluations, and In Vivo Studies
by Mohamed Rahamathulla, Rahul Pokale, Yousef Al-ebini, Riyaz Ali M. Osmani, Kamal Y. Thajudeen, Ravi Gundawar, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana and Thippeswamy Boreddy Shivanandappa
Pharmaceuticals 2024, 17(6), 697; https://doi.org/10.3390/ph17060697 - 28 May 2024
Cited by 6 | Viewed by 2450
Abstract
Statins function beyond regulating cholesterol and, when administered systemically, can promote wound healing. However, studies have yet to explore the topical use of statins for wound healing. The present study demonstrated the topical administration of SIM and aimed to formulate, evaluate, and optimize [...] Read more.
Statins function beyond regulating cholesterol and, when administered systemically, can promote wound healing. However, studies have yet to explore the topical use of statins for wound healing. The present study demonstrated the topical administration of SIM and aimed to formulate, evaluate, and optimize Simvastatin (SIM)-encapsulated liposome gel carrier systems to facilitate successful topical wound healing. Liposomes containing SIM were formulated and optimized via a response surface methodology (RSM) using the thin-film hydration method. The effects of formulation variables, including the 1,2-dioleoyloxy-3-trimethylammoniumpropan (DOTAP) concentration, Span 80 concentration, and cholesterol concentration, on zeta potential (mV), entrapment efficacy (%), and particle size (nm) were studied. The optimized liposome formulation (F-07) exhibited a zeta potential value of 16.56 ± 2.51 mV, revealing robust stability and a high SIM encapsulation efficiency of 95.6 ± 4.2%, whereas its particle size of 190.3 ± 3.3 nm confirmed its stability and structural integrity. The optimized liposome gel demonstrated pseudoplastic flow behavior. This property is advantageous in topical drug delivery systems because of its ease of application, improved spreadability, and enhanced penetration, demonstrating prolonged SIM release. The assessment of the wound healing efficacy of the optimized liposomal gel formulation demonstrated a substantial decrease in wound size in mice on the sixteenth day post-wounding. These findings suggest that the use of liposomal gels is a potential drug delivery strategy for incorporating SIM, thereby augmenting its effectiveness in promoting wound healing. Full article
Show Figures

Graphical abstract

22 pages, 4126 KiB  
Article
Enhanced Apigenin Dissolution and Effectiveness Using Glycyrrhizin Spray-Dried Solid Dispersions Filled in 3D-Printed Tablets
by Asma B. Omer, Farhat Fatima, Mohammed Muqtader Ahmed, Mohammed F. Aldawsari, Ahmed Alalaiwe, Md. Khalid Anwer and Abdul Aleem Mohammed
Biomedicines 2023, 11(12), 3341; https://doi.org/10.3390/biomedicines11123341 - 18 Dec 2023
Cited by 4 | Viewed by 1820
Abstract
This study aimed to prepare glycyrrhizin–apigenin spray-dried solid dispersions and develop PVA filament-based 3D printlets to enhance the dissolution and therapeutic effects of apigenin (APN); three formulations (APN1–APN3) were proportioned from 1:1 to 1:3. A physicochemical analysis was conducted, which revealed process yields [...] Read more.
This study aimed to prepare glycyrrhizin–apigenin spray-dried solid dispersions and develop PVA filament-based 3D printlets to enhance the dissolution and therapeutic effects of apigenin (APN); three formulations (APN1–APN3) were proportioned from 1:1 to 1:3. A physicochemical analysis was conducted, which revealed process yields of 80.5–91% and APN content within 98.0–102.0%. FTIR spectroscopy confirmed the structural preservation of APN, while Powder-XRD analysis and Differential Scanning Calorimetry indicated its transformation from a crystalline to an amorphous form. APN2 exhibited improved flow properties, a lower Angle of Repose, and Carr’s Index, enhancing compressibility, with the Hausner Ratio confirming favorable flow properties for pharmaceutical applications. In vitro dissolution studies demonstrated superior performance with APN2, releasing up to 94.65% of the drug and revealing controlled release mechanisms with a lower mean dissolution time of 71.80 min and a higher dissolution efficiency of 19.2% compared to the marketed APN formulation. This signified enhanced dissolution and improved therapeutic onset. APN2 exhibited enhanced antioxidant activity; superior cytotoxicity against colon cancer cells (HCT-116), with a lower IC50 than APN pure; and increased antimicrobial activity. A stability study confirmed the consistency of APN2 after 90 days, as per ICH, with an f2 value of 70.59 for both test and reference formulations, ensuring reliable pharmaceutical development. This research underscores the potential of glycyrrhizin–apigenin solid dispersions for pharmaceutical and therapeutic applications, particularly highlighting the superior physicochemical properties, dissolution behavior, biological activities, and stability of APN2, while the development of a 3D printlet shell offers promise for enhanced drug delivery and therapeutic outcomes in colon cancer treatment, displaying advanced formulation and processing techniques. Full article
Show Figures

Figure 1

16 pages, 5118 KiB  
Article
Development and Evaluation of Solid Dispersion-Based Sublingual Films of Nisoldipine
by Yahya Alhamhoom, Abhay Sharma, Shivakumar Hagalavadi Nanjappa, Avichal Kumar, Anas Alshishani, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana and Mohamed Rahamathulla
Pharmaceuticals 2023, 16(11), 1589; https://doi.org/10.3390/ph16111589 - 9 Nov 2023
Cited by 5 | Viewed by 2777
Abstract
Nisoldipine (NIS) is a calcium channel blocker that exhibits poor bioavailability (~5%) due to low aqueous solubility and presystemic metabolism in the gut wall. In this context, the present work aimed to develop NIS solid dispersion (NISSD)-based sublingual films using solvent casting technique [...] Read more.
Nisoldipine (NIS) is a calcium channel blocker that exhibits poor bioavailability (~5%) due to low aqueous solubility and presystemic metabolism in the gut wall. In this context, the present work aimed to develop NIS solid dispersion (NISSD)-based sublingual films using solvent casting technique to improve the dissolution. Phase solubility studies indicated that Soluplus® was the most effective carrier for improving the aqueous solubility of NIS. NISSDs were initially developed using the solvent evaporation method. Fourier transform infrared spectrometric studies were found to display the characteristic vibrational bands related to C=O stretching and N-H deformation in NISSDs, proving the chemical integrity of the drug in NISSDs. Subsequently, bioadhesive sublingual films of NISSDs were formulated using solvent casting method, using hydroxypropyl methyl cellulose (HPMC) E5, E15, and hydroxy ethyl cellulose (HEC EF) as hydrophilic polymers and polyethylene glycol 400 (PEG 400) as plasticizer. The incorporation of NISSDs was found to produce clear films that displayed uniform content. The sublingual film of NISSDs composed of HPMC E5 (2% w/v), was found to display the least thickness (0.29 ± 0.02 mm), the highest folding endurance (168.66 ± 4.50 times), and good bioadhesion strength (12.73 ± 0.503 g/cm2). This film was found to rapidly disintegrate (28.66 ± 3.05 sec) and display near-complete drug release (94.24 ± 1.22) in 30 min. Incorporating NISSDs into rapidly bioadhesive sublingual films considerably improves drug dissolution. Overall, these research outcomes underscored the potential of rapidly dissolving bioadhesive sublingual films to evade gut metabolism and resolve the bioavailability issues associated with oral administration of NIS. Full article
Show Figures

Figure 1

14 pages, 3038 KiB  
Article
Development of Gefitinib-Loaded Solid Lipid Nanoparticles for the Treatment of Breast Cancer: Physicochemical Evaluation, Stability, and Anticancer Activity in Breast Cancer (MCF-7) Cells
by Ibrahim A. Aljuffali, Md. Khalid Anwer, Mohammed Muqtader Ahmed, Ahmed Alalaiwe, Mohammed F. Aldawsari, Farhat Fatima and Shahid Jamil
Pharmaceuticals 2023, 16(11), 1549; https://doi.org/10.3390/ph16111549 - 2 Nov 2023
Cited by 5 | Viewed by 2521
Abstract
In the current study, the toxic effects of gefitinib-loaded solid lipid nanoparticles (GFT-loaded SLNs) upon human breast cancer cell lines (MCF-7) were investigated. GFT-loaded SLNs were prepared through a single emulsification–evaporation technique using glyceryl tristearate (Dynasan™ 114) along with lipoid® 90H (lipid [...] Read more.
In the current study, the toxic effects of gefitinib-loaded solid lipid nanoparticles (GFT-loaded SLNs) upon human breast cancer cell lines (MCF-7) were investigated. GFT-loaded SLNs were prepared through a single emulsification–evaporation technique using glyceryl tristearate (Dynasan™ 114) along with lipoid® 90H (lipid surfactant) and Kolliphore® 188 (water-soluble surfactant). Four formulae were developed by varying the weight of the lipoid™ 90H (100–250 mg), and the GFT-loaded SLN (F4) formulation was optimized in terms of particle size (472 ± 7.5 nm), PDI (0.249), ZP (−15.2 ± 2.3), and EE (83.18 ± 4.7%). The optimized formulation was further subjected for in vitro release, stability studies, and MTT assay against MCF-7 cell lines. GFT from SLNs exhibited sustained release of the drug for 48 h, and release kinetics followed the Korsmeyer–Peppas model, which indicates the mechanism of drug release by swelling and/or erosion from a lipid matrix. When pure GFT and GFT–SLNs were exposed to MCF-7 cells, the activities of p53 (3.4 and 3.7 times), caspase-3 (5.61 and 7.7 times), and caspase-9 (1.48 and 1.69 times) were enhanced, respectively, over those in control cells. The results suggest that GFT-loaded SLNs (F4) may represent a promising therapeutic alternative for breast cancer. Full article
(This article belongs to the Special Issue Current Insights on Lipid-Based Nanosystems 2023)
Show Figures

Graphical abstract

23 pages, 6009 KiB  
Article
Subconjunctival Delivery of Sorafenib-Tosylate-Loaded Cubosomes for Facilitated Diabetic Retinopathy Treatment: Formulation Development, Evaluation, Pharmacokinetic and Pharmacodynamic (PKPD) Studies
by Sharadha Madhusudhan, Naresh Vishal Gupta, Mohamed Rahamathulla, Saravana Babu Chidambaram, Riyaz Ali M. Osmani, Mohammed Ghazwani, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana, Mohammed Y. Sarhan and Ahmed Hediyal Tousif
Pharmaceutics 2023, 15(10), 2419; https://doi.org/10.3390/pharmaceutics15102419 - 4 Oct 2023
Cited by 7 | Viewed by 2505
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with vascular endothelial growth factor (VEGF) overexpression. Therapeutic delivery to the retina is a challenging phenomenon due to ocular biological barriers. Sorafenib tosylate (ST) is a lipophilic drug with low molecular weight, making it ineffective [...] Read more.
Diabetic retinopathy (DR) is a microvascular complication associated with vascular endothelial growth factor (VEGF) overexpression. Therapeutic delivery to the retina is a challenging phenomenon due to ocular biological barriers. Sorafenib tosylate (ST) is a lipophilic drug with low molecular weight, making it ineffective at bypassing the blood–retinal barrier (BRB) to reach the target site. Cubosomes are potential nanocarriers for encapsulating and releasing such drugs in a sustained manner. The present research aimed to compare the effects of sorafenib-tosylate-loaded cubosome nanocarriers (ST-CUBs) and a sorafenib tosylate suspension (ST-Suspension) via subconjunctival route in an experimental DR model. In this research, ST-CUBs were prepared using the melt dispersion emulsification technique. The distribution of prepared nanoparticles into the posterior eye segments was studied with confocal microscopy. The ST-CUBs were introduced into rats’ left eye via subconjunctival injection (SCJ) and compared with ST-Suspension to estimate the single-dose pharmacokinetic profile. Streptozotocin (STZ)-induced diabetic albino rats were treated with ST-CUBs and ST-Suspension through the SCJ route once a week for 28 days to measure the inhibitory effect of ST on the diabetic retina using histopathology and immunohistochemistry (IHC) examinations. Confocal microscopy and pharmacokinetic studies showed an improved concentration of ST from ST-CUBs in the retina. In the DR model, ST-CUB treatment using the SCJ route exhibited decreased expression levels of VEGF, pro-inflammatory cytokines, and adhesion molecules compared to ST-Suspension. From the noted research findings, it was concluded that the CUBs potentially enhanced the ST bioavailability. The study outcomes established that the developed nanocarriers were ideal for delivering the ST-CUBs via the SCJ route to target the retina for facilitated DR management. Full article
(This article belongs to the Special Issue Advancements in Biopolymeric Materials for Biomedical Applications)
Show Figures

Figure 1

18 pages, 5200 KiB  
Article
Synergistic Antihyperglycemic and Antihyperlipidemic Effect of Polyherbal and Allopolyherbal Formulation
by Yahya Alhamhoom, Syed Sagheer Ahmed, Rupesh Kumar M., MD. Salahuddin, Bharathi D. R., Mohammed Muqtader Ahmed, Syeda Ayesha Farhana and Mohamed Rahamathulla
Pharmaceuticals 2023, 16(10), 1368; https://doi.org/10.3390/ph16101368 - 27 Sep 2023
Cited by 5 | Viewed by 2588
Abstract
Polyherbal formulation (PHF) enhances therapeutic efficacy and minimizes side effects by reducing individual herb dosages. Allopolyherbal formulation (APHF) combines polyherbal extracts with allopathic medication, effectively reducing the latter’s required dose and mitigating associated adverse effects. The current study intends to assess the anti-diabetic [...] Read more.
Polyherbal formulation (PHF) enhances therapeutic efficacy and minimizes side effects by reducing individual herb dosages. Allopolyherbal formulation (APHF) combines polyherbal extracts with allopathic medication, effectively reducing the latter’s required dose and mitigating associated adverse effects. The current study intends to assess the anti-diabetic effects of PHF and APHF in-vivo. Dried raw powders of Cassia auriculata leaf, Centella asiatica leaf, and Zingiber officinale rhizome were extracted by cold maceration process using 70% ethanol. These extracts were combined in three different ratios to make PHF. PHF was subjected to qualitative and quantitative phytochemical investigations. APHF has been prepared by combining a potent ratio of PHF with metformin in three different ratios. The compatibility of APHF has been confirmed by differential scanning calorimetry (DSC). In vivo activity was also evaluated in streptozotocin-induced diabetic albino rats. PHF (3 different ratios at a dose of 200–400 mg/kg b.w), APHF (combination of PHF and metformin in 3 different ratios, 200 + 22.5, 200 + 45, and 200 + 67.5 mg/kg b.w), and metformin (90 mg/kg b.w) were administered to albino rats for 21 consecutive days. Blood glucose levels were estimated on the 1st, 7th, 14th, and 21st days of treatment. On the 21st day, blood was collected by cardiac puncture for biochemical analysis. The liver and pancreas were isolated and subjected to histopathological analysis. PHF and APHF showed significant anti-diabetic and antihyperlipidemic efficacy. In comparison to PHF, APHF had the most promising action. The current study demonstrated that PHF and APHF are safe and efficacious drugs in the treatment of diabetes mellitus as they help to replace or lower the dose of metformin, thereby decreasing the risks of metformin. Full article
Show Figures

Figure 1

16 pages, 2171 KiB  
Article
Fused Deposition Modelling 3D-Printed Gastro-Retentive Floating Device for Propranolol Hcl Tablets
by Abdulsalam A. Alqahtani, Abdul Aleem Mohammed, Farhat Fatima and Mohammed Muqtader Ahmed
Polymers 2023, 15(17), 3554; https://doi.org/10.3390/polym15173554 - 26 Aug 2023
Cited by 16 | Viewed by 2633
Abstract
Three-dimensional printing has revolutionized drug manufacturing and has provided a solution to the limitations associated with the conventional manufacturing method by designing complex drug delivery systems with customized drug release profiles for personalized therapies. The present investigation aims to design a gastric floating [...] Read more.
Three-dimensional printing has revolutionized drug manufacturing and has provided a solution to the limitations associated with the conventional manufacturing method by designing complex drug delivery systems with customized drug release profiles for personalized therapies. The present investigation aims to design a gastric floating tablet with prolonged gastric floating time and sustained drug release profile. In the present study, a gastro retentive floating device (GRFD) was designed and fabricated using a fused deposition modelling (FDM)-based 3D printing technique. This device acts as a multifunctional dosage form exhibiting prolonged gastric retention time and sustained drug release profile with improved oral bioavailability in the upper gastrointestinal tract. Commercial polyvinyl alcohol (PVA) and polylactic acid (PLA) filaments were used to design GRFD, which was comprised of dual compartments. The outer sealed compartment acts as an air-filled chamber that imparts buoyancy to the device and the inner compartment is filled with a commercial propranolol hydrochloride immediate-release tablet. The device is designed as a round-shaped shell with a central opening of varying size (1 mm, 2 mm, 3 mm, and 4 mm), which acts as a drug release window. Scanning electron microscope (SEM) images were used to determine morphological characterization. The in vitro buoyancy and drug release were evaluated using the USP type II dissolution apparatus. All the designed GRFDs exhibit good floating ability and sustained drug release profiles. GRFDs fabricated using PLA filament show maximum buoyancy (>24 h) and sustained drug release for up to 10 h. The floating ability and drug release from the developed devices were governed by the drug release window opening size and the filament material affinity towards the gastric fluid. The designed GRFDs show great prospects in modifying the drug release characteristics and could be applied to any conventional immediate-release product. Full article
(This article belongs to the Special Issue High-Performance 3D Printing Polymers)
Show Figures

Graphical abstract

14 pages, 2850 KiB  
Article
Implications of Pharmacokinetic Potentials of Pioglitazone Enantiomers in Rat Plasma Mediated through Glucose Uptake Assay
by Tatineni Spandana, Veera Venkata Nishanth Goli, Mohamed Rahamathulla, Sirajunisa Talath, Riyaz Ali M. Osmani, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana, Shalam Mohamed Hussain and Bannimath Gurupadayya
Molecules 2023, 28(13), 4911; https://doi.org/10.3390/molecules28134911 - 22 Jun 2023
Cited by 1 | Viewed by 2532
Abstract
Pioglitazone, a PPAR-gamma activator used to diagnose hyperglycemia, was studied for its stereoselective deposition and active enantiomers in female albino Wistar rats. In accordance with USFDA recommendations, a bioanalytical technique was employed to assess the segregation of pioglitazone enantiomers in rat plasma with [...] Read more.
Pioglitazone, a PPAR-gamma activator used to diagnose hyperglycemia, was studied for its stereoselective deposition and active enantiomers in female albino Wistar rats. In accordance with USFDA recommendations, a bioanalytical technique was employed to assess the segregation of pioglitazone enantiomers in rat plasma with glimepiride as an internal standard. A Phenomenox i-Amylose-3 column (150 mm × 4.6 mm) of 5 µm was used for high-performance liquid chromatography (HPLC) with a mobile phase of 10 mM ammonium acetate buffer in Millipore water and acetonitrile in 60:40 (v/v) admixture with column temperature 35 °C, wavelength 265 nm, and flow rate 0.6 mL/min, respectively. Pioglitazone-S, Pioglitazone-R, and the internal standard had retention times of 3.1, 7.4, and 1.7 min, respectively. The study found that within-run and between-run precision ranged from 0.1606–0.9889% for Pioglitazone-R and from 0.2080–0.7919% for Pioglitazone-S, while the accuracy ranged from 99.86 to 100.36% for Pioglitazone-R and 99.84 to 99.94% for Pioglitazone-S. In addition, a non-radioactive glucose uptake assay was employed to examine the enantiomers in 3T3-L1 cell lines by flow cytometry. Significant differences were demonstrated in Cmax, AUClast (h*μg/mL), AUCINF obs (h*μg/mL), and AUC%Extrap obs (%) of Pioglitazone-R and S in female albino Wistar rats, suggesting enantioselectivity of pioglitazone. Full article
(This article belongs to the Special Issue New Advances in Drug Metabolism and Pharmacokinetics)
Show Figures

Figure 1

17 pages, 2522 KiB  
Article
Novel Rhinological Application of Polylactic Acid—An In Vitro Study
by M. P. Gowrav, K. G. Siree, T. M. Amulya, M. B. Bharathi, Mohammed Ghazwani, Ali Alamri, Abdulatef Y. Alalkami, T. M. Pramod Kumar, Mohammed Muqtader Ahmed and Mohamed Rahamathulla
Polymers 2023, 15(11), 2521; https://doi.org/10.3390/polym15112521 - 30 May 2023
Cited by 4 | Viewed by 1692
Abstract
A novel approach to the treatment of sinusitis is the use of nasal stents. The stent is loaded with a corticosteroid, which prevents complications in the wound-healing process. The design is such that it will prevent the sinus from closing again. The stent [...] Read more.
A novel approach to the treatment of sinusitis is the use of nasal stents. The stent is loaded with a corticosteroid, which prevents complications in the wound-healing process. The design is such that it will prevent the sinus from closing again. The stent is 3D printed using a fused deposition modeling printer, which enhances the customization. The polymer utilized for the purpose of 3D printing is polylactic acid (PLA). The compatibility between the drugs and polymers is confirmed by FT-IR and DSC. The drug is loaded onto the polymer by soaking the stent in the drug’s solvent, known as the solvent casting method. Using this method, approximately 68% of drug loading is found to be achieved onto the PLA filaments, and a total of 72.8% of drug loading is obtained in terms of the 3D-printed stent. Drug loading is confirmed by the morphological characteristics of the stent by SEM, where the loaded drug is clearly visible as white specks on the surface of the stent. Drug release characterization is conducted by dissolution studies, which also confirm drug loading. The dissolution studies show that the release of drugs from the stent is constant and not erratic. Biodegradation studies were conducted after increasing the rate of degradation of PLA by soaking it in PBS for a predetermined duration of time. The mechanical properties of the stent, such as stress factor and maximum displacement, are discussed. The stent has a hairpin-like mechanism for opening inside the nasal cavity. Full article
(This article belongs to the Special Issue 3D Printing Polymer: Processing and Fabrication)
Show Figures

Figure 1

17 pages, 8209 KiB  
Article
Eluxadoline-Loaded Eudragit Nanoparticles for Irritable Bowel Syndrome with Diarrhea: Formulation, Optimization Using Box–Behnken Design, and Anti-Diarrheal Activity
by Md. Khalid Anwer, Mohammed Muqtader Ahmed, Mohammed F. Aldawsari, Muzaffar Iqbal, Gamal A. Soliman and Ibrahim A. Aljuffali
Pharmaceutics 2023, 15(5), 1460; https://doi.org/10.3390/pharmaceutics15051460 - 10 May 2023
Cited by 7 | Viewed by 2864
Abstract
Eluxadoline (ELD), a recently approved drug, exhibits potential therapeutic effects in the management and treatment of IBS-D. However, its applications have been limited due to poor aqueous solubility, leading to a low dissolution rate and oral bioavailability. The current study’s goals are to [...] Read more.
Eluxadoline (ELD), a recently approved drug, exhibits potential therapeutic effects in the management and treatment of IBS-D. However, its applications have been limited due to poor aqueous solubility, leading to a low dissolution rate and oral bioavailability. The current study’s goals are to prepare ELD-loaded eudragit (EG) nanoparticles (ENPs) and to investigate the anti-diarrheal activity on rats. The prepared ELD-loaded EG-NPs (ENP1-ENP14) were optimized with the help of Box–Behnken Design Expert software. The developed formulation (ENP2) was optimized based on the particle size (286 ± 3.67 nm), PDI (0.263 ± 0.01), and zeta potential (31.8 ± 3.18 mV). The optimized formulation (ENP2) exhibited a sustained release behavior with maximum drug release and followed the Higuchi model. The chronic restraint stress (CRS) was successfully used to develop the IBS-D rat model, which led to increased defecation frequency. The in vivo studies revealed a significant reduction in defecation frequency and disease activity index by ENP2 compared with pure ELD. Thus, the results demonstrated that the developed eudragit-based polymeric nanoparticles can act as a potential approach for the effective delivery of eluxadoline through oral administration for irritable bowel syndrome diarrhea treatment. Full article
Show Figures

Figure 1

Back to TopTop