Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Mohammad Zounemat-Kermani ORCID = 0000-0002-1421-8671

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4564 KiB  
Article
Harnessing Deep Learning and Snow Cover Data for Enhanced Runoff Prediction in Snow-Dominated Watersheds
by Rana Muhammad Adnan, Wang Mo, Ozgur Kisi, Salim Heddam, Ahmed Mohammed Sami Al-Janabi and Mohammad Zounemat-Kermani
Atmosphere 2024, 15(12), 1407; https://doi.org/10.3390/atmos15121407 - 22 Nov 2024
Cited by 9 | Viewed by 1511
Abstract
Predicting streamflow is essential for managing water resources, especially in basins and watersheds where snowmelt plays a major role in river discharge. This study evaluates the advanced deep learning models for accurate monthly and peak streamflow forecasting in the Gilgit River Basin. The [...] Read more.
Predicting streamflow is essential for managing water resources, especially in basins and watersheds where snowmelt plays a major role in river discharge. This study evaluates the advanced deep learning models for accurate monthly and peak streamflow forecasting in the Gilgit River Basin. The models utilized were LSTM, BiLSTM, GRU, CNN, and their hybrid combinations (CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU). Our research measured the model’s accuracy through root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), and the coefficient of determination (R2). The findings indicated that the hybrid models, especially CNN-BiGRU and CNN-BiLSTM, achieved much better performance than traditional models like LSTM and GRU. For instance, CNN-BiGRU achieved the lowest RMSE (71.6 in training and 95.7 in testing) and the highest R2 (0.962 in training and 0.929 in testing). A novel aspect of this research was the integration of MODIS-derived snow-covered area (SCA) data, which enhanced model accuracy substantially. When SCA data were included, the CNN-BiLSTM model’s RMSE improved from 83.6 to 71.6 during training and from 108.6 to 95.7 during testing. In peak streamflow prediction, CNN-BiGRU outperformed other models with the lowest absolute error (108.4), followed by CNN-BiLSTM (144.1). This study’s results reinforce the notion that combining CNN’s spatial feature extraction capabilities with the temporal dependencies captured by LSTM or GRU significantly enhances model accuracy. The demonstrated improvements in prediction accuracy, especially for extreme events, highlight the potential for these models to support more informed decision-making in flood risk management and water allocation. Full article
Show Figures

Figure 1

18 pages, 4579 KiB  
Article
Estimation of Reference Evapotranspiration in Semi-Arid Region with Limited Climatic Inputs Using Metaheuristic Regression Methods
by Saad Sh. Sammen, Ozgur Kisi, Ahmed Mohammed Sami Al-Janabi, Ahmed Elbeltagi and Mohammad Zounemat-Kermani
Water 2023, 15(19), 3449; https://doi.org/10.3390/w15193449 - 30 Sep 2023
Cited by 5 | Viewed by 1678
Abstract
Different regression-based machine learning techniques, including support vector machine (SVM), random forest (RF), Bagged trees algorithm (BaT), and Boosting trees algorithm (BoT) were adopted for modeling daily reference evapotranspiration (ET0) in a semi-arid region (Hemren catchment basin in Iraq). An assessment [...] Read more.
Different regression-based machine learning techniques, including support vector machine (SVM), random forest (RF), Bagged trees algorithm (BaT), and Boosting trees algorithm (BoT) were adopted for modeling daily reference evapotranspiration (ET0) in a semi-arid region (Hemren catchment basin in Iraq). An assessment of the methods with various input combinations of climatic parameters, including solar radiation (SR), wind speed (WS), relative humidity (RH), and maximum and minimum air temperatures (Tmax and Tmin), indicated that the RF method, especially with Tmax, Tmin, Tmean, and SR inputs, provided the best accuracy in estimating daily ET0 in all stations, while the SVM had the worst accuracy. This work will help water users, developers, and decision makers in water resource planning and management to achieve sustainability. Full article
Show Figures

Figure 1

24 pages, 2009 KiB  
Article
Modeling Significant Wave Heights for Multiple Time Horizons Using Metaheuristic Regression Methods
by Rana Muhammad Adnan Ikram, Xinyi Cao, Kulwinder Singh Parmar, Ozgur Kisi, Shamsuddin Shahid and Mohammad Zounemat-Kermani
Mathematics 2023, 11(14), 3141; https://doi.org/10.3390/math11143141 - 16 Jul 2023
Cited by 6 | Viewed by 1813
Abstract
The study examines the applicability of six metaheuristic regression techniques—M5 model tree (M5RT), multivariate adaptive regression spline (MARS), principal component regression (PCR), random forest (RF), partial least square regression (PLSR) and Gaussian process regression (GPR)—for predicting short-term significant wave heights from one hour [...] Read more.
The study examines the applicability of six metaheuristic regression techniques—M5 model tree (M5RT), multivariate adaptive regression spline (MARS), principal component regression (PCR), random forest (RF), partial least square regression (PLSR) and Gaussian process regression (GPR)—for predicting short-term significant wave heights from one hour to one day ahead. Hourly data from two stations, Townsville and Brisbane Buoys, Queensland, Australia, and historical values were used as model inputs for the predictions. The methods were assessed based on root mean square error, mean absolute error, determination coefficient and new graphical inspection methods (e.g., Taylor and violin charts). On the basis of root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) statistics, it was observed that GPR provided the best accuracy in predicting short-term single-time-step and multi-time-step significant wave heights. On the basis of mean RMSE, GPR improved the accuracy of M5RT, MARS, PCR, RF and PLSR by 16.63, 8.03, 10.34, 3.25 and 7.78% (first station) and by 14.04, 8.35, 13.34, 3.87 and 8.30% (second station) for the test stage. Full article
Show Figures

Figure 1

18 pages, 7532 KiB  
Article
Water Quality Prediction of the Yamuna River in India Using Hybrid Neuro-Fuzzy Models
by Ozgur Kisi, Kulwinder Singh Parmar, Amin Mahdavi-Meymand, Rana Muhammad Adnan, Shamsuddin Shahid and Mohammad Zounemat-Kermani
Water 2023, 15(6), 1095; https://doi.org/10.3390/w15061095 - 13 Mar 2023
Cited by 16 | Viewed by 5860
Abstract
The potential of four different neuro-fuzzy embedded meta-heuristic algorithms, particle swarm optimization, genetic algorithm, harmony search, and teaching–learning-based optimization algorithm, was investigated in this study in estimating the water quality of the Yamuna River in Delhi, India. A cross-validation approach was employed by [...] Read more.
The potential of four different neuro-fuzzy embedded meta-heuristic algorithms, particle swarm optimization, genetic algorithm, harmony search, and teaching–learning-based optimization algorithm, was investigated in this study in estimating the water quality of the Yamuna River in Delhi, India. A cross-validation approach was employed by splitting data into three equal parts, where the models were evaluated using each part. The main aim of this study was to find an accurate prediction model for estimating the water quality of the Yamuna River. It is worth noting that the hybrid neuro-fuzzy and LSSVM methods have not been previously compared for this issue. Monthly water quality parameters, total kjeldahl nitrogen, free ammonia, total coliform, water temperature, potential of hydrogen, and fecal coliform were considered as inputs to model chemical oxygen demand (COD). The performance of hybrid neuro-fuzzy models in predicting COD was compared with classical neuro-fuzzy and least square support vector machine (LSSVM) methods. The results showed higher accuracy in COD prediction when free ammonia, total kjeldahl nitrogen, and water temperature were used as inputs. Hybrid neuro-fuzzy models improved the root mean square error of the classical neuro-fuzzy model and LSSVM by 12% and 4%, respectively. The neuro-fuzzy models optimized with harmony search provided the best accuracy with the lowest root mean square error (13.659) and mean absolute error (11.272), while the particle swarm optimization and teaching–learning-based optimization showed the highest computational speed (21 and 24 min) compared to the other models. Full article
Show Figures

Figure 1

27 pages, 3389 KiB  
Article
Water Temperature Prediction Using Improved Deep Learning Methods through Reptile Search Algorithm and Weighted Mean of Vectors Optimizer
by Rana Muhammad Adnan Ikram, Reham R. Mostafa, Zhihuan Chen, Kulwinder Singh Parmar, Ozgur Kisi and Mohammad Zounemat-Kermani
J. Mar. Sci. Eng. 2023, 11(2), 259; https://doi.org/10.3390/jmse11020259 - 23 Jan 2023
Cited by 86 | Viewed by 5436
Abstract
Precise estimation of water temperature plays a key role in environmental impact assessment, aquatic ecosystems’ management and water resources planning and management. In the current study, convolutional neural networks (CNN) and long short-term memory (LSTM) network-based deep learning models were examined to estimate [...] Read more.
Precise estimation of water temperature plays a key role in environmental impact assessment, aquatic ecosystems’ management and water resources planning and management. In the current study, convolutional neural networks (CNN) and long short-term memory (LSTM) network-based deep learning models were examined to estimate daily water temperatures of the Bailong River in China. Two novel optimization algorithms, namely the reptile search algorithm (RSA) and weighted mean of vectors optimizer (INFO), were integrated with both deep learning models to enhance their prediction performance. To evaluate the prediction accuracy of the implemented models, four statistical indicators, i.e., the root mean square errors (RMSE), mean absolute errors, determination coefficient and Nash–Sutcliffe efficiency were utilized on the basis of different input combinations involving air temperature, streamflow, precipitation, sediment flows and day of the year (DOY) parameters. It was found that the LSTM-INFO model with DOY input outperformed the other competing models by considerably reducing the errors of RMSE and MAE in predicting daily water temperature. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 2181 KiB  
Article
Advanced Hybrid Metaheuristic Machine Learning Models Application for Reference Crop Evapotranspiration Prediction
by Rana Muhammad Adnan Ikram, Reham R. Mostafa, Zhihuan Chen, Abu Reza Md. Towfiqul Islam, Ozgur Kisi, Alban Kuriqi and Mohammad Zounemat-Kermani
Agronomy 2023, 13(1), 98; https://doi.org/10.3390/agronomy13010098 - 28 Dec 2022
Cited by 34 | Viewed by 3534
Abstract
Hybrid metaheuristic algorithm (MA), an advanced tool in the artificial intelligence field, provides precise reference evapotranspiration (ETo) prediction that is highly important for water resource availability and hydrological studies. However, hybrid MAs are quite scarcely used to predict ETo in the existing literature. [...] Read more.
Hybrid metaheuristic algorithm (MA), an advanced tool in the artificial intelligence field, provides precise reference evapotranspiration (ETo) prediction that is highly important for water resource availability and hydrological studies. However, hybrid MAs are quite scarcely used to predict ETo in the existing literature. To this end, the prediction abilities of two support vector regression (SVR) models coupled with three types of MAs including particle swarm optimization (PSO), grey wolf optimization (GWO), and gravitational search algorithm (GSA) were studied and compared with single SVR and SVR-PSO in predicting monthly ETo using meteorological variables as inputs. Data obtained from Rajshahi, Bogra, and Rangpur stations in the humid region, northwestern Bangladesh, was used for this purpose as a case study. The prediction precision of the proposed models was trained and tested using nine input combinations and assessed using root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE). The tested results revealed that the SVR-PSOGWO model outperformed the other applied soft computing models in predicting ETo in all input combinations, followed by the SVR-PSOGSA, SVR-PSO, and SVR. It was found that SVR-PSOGWO decreases the RMSE of SVR, SVR-PSO, and SVR-PSOGSA by 23%, 27%, 14%, 21%, 19%, and 5% in Rangpur and Bogra stations during the testing stage. The RMSE of the SVR, SVR-PSO, and SVR-PSOGSA reduced by 32%, 20%, and 3%, respectively, employing the SVR-PSOGWO for the Rajshahi Station. The proposed hybrid machine learning model has been recommended as a potential tool for monthly ETo prediction in a humid region and similar climatic regions worldwide. Full article
(This article belongs to the Special Issue Modernization and Optimization of Irrigation Systems)
Show Figures

Figure 1

23 pages, 3516 KiB  
Article
Hybridized Adaptive Neuro-Fuzzy Inference System with Metaheuristic Algorithms for Modeling Monthly Pan Evaporation
by Rana Muhammad Adnan Ikram, Abolfazl Jaafari, Sami Ghordoyee Milan, Ozgur Kisi, Salim Heddam and Mohammad Zounemat-Kermani
Water 2022, 14(21), 3549; https://doi.org/10.3390/w14213549 - 4 Nov 2022
Cited by 22 | Viewed by 2706
Abstract
Precise estimation of pan evaporation is necessary to manage available water resources. In this study, the capability of three hybridized models for modeling monthly pan evaporation (Epan) at three stations in the Dongting lake basin, China, were investigated. Each model consisted of an [...] Read more.
Precise estimation of pan evaporation is necessary to manage available water resources. In this study, the capability of three hybridized models for modeling monthly pan evaporation (Epan) at three stations in the Dongting lake basin, China, were investigated. Each model consisted of an adaptive neuro-fuzzy inference system (ANFIS) integrated with a metaheuristic optimization algorithm; i.e., particle swarm optimization (PSO), whale optimization algorithm (WOA), and Harris hawks optimization (HHO). The modeling data were acquired for the period between 1962 and 2001 (480 months) and were grouped into several combinations and incorporated into the hybridized models. The performance of the models was assessed using the root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe Efficiency (NSE), coefficient of determination (R2), Taylor diagram, and Violin plot. The results showed that maximum temperature was the most influential variable for evaporation estimation compared to the other input variables. The effect of periodicity input was investigated, demonstrating the efficacy of this variable in improving the models’ predictive accuracy. Among the models developed, the ANFIS-HHO and ANFIS-WOA models outperformed the other models, predicting Epan in the study stations with different combinations of input variables. Between these two models, ANFIS-WOA performed better than ANFIS-HHO. The results also proved the capability of the models when they were used for the prediction of Epan when given a study station using the data obtained for another station. Our study can provide insights into the development of predictive hybrid models when the analysis is conducted in data-scare regions. Full article
Show Figures

Figure 1

22 pages, 5277 KiB  
Article
Towards a Comprehensive Assessment of Statistical versus Soft Computing Models in Hydrology: Application to Monthly Pan Evaporation Prediction
by Mohammad Zounemat-Kermani, Behrooz Keshtegar, Ozgur Kisi and Miklas Scholz
Water 2021, 13(17), 2451; https://doi.org/10.3390/w13172451 - 6 Sep 2021
Cited by 13 | Viewed by 2942
Abstract
This paper evaluates six soft computational models along with three statistical data-driven models for the prediction of pan evaporation (EP). Accordingly, improved kriging—as a novel statistical model—is proposed for accurate predictions of EP for two meteorological stations in Turkey. In the standard kriging [...] Read more.
This paper evaluates six soft computational models along with three statistical data-driven models for the prediction of pan evaporation (EP). Accordingly, improved kriging—as a novel statistical model—is proposed for accurate predictions of EP for two meteorological stations in Turkey. In the standard kriging model, the input data nonlinearity effects are increased by using a nonlinear map and transferring input data from a polynomial to an exponential basic function. The accuracy, precision, and over/under prediction tendencies of the response surface method, kriging, improved kriging, multilayer perceptron neural network using the Levenberg–Marquardt (MLP-LM) as well as a conjugate gradient (MLP-CG), radial basis function neural network (RBFNN), multivariate adaptive regression spline (MARS), M5Tree and support vector regression (SVR) were compared. Overall, all the applied models were highly capable of predicting monthly EP in both stations with a mean absolute error (MAE) < 0.77 mm and a Willmott index (d) > 0.95. Considering periodicity as an input parameter, the MLP-LM provided better results than the other methods among the soft computing models (MAE = 0.492 mm and d = 0.981). However, the improved kriging method surpassed all the other models based on the statistical measures (MAE = 0.471 mm and d = 0.983). Finally, the outcomes of the Mann–Whitney test indicated that the applied soft computational models do not have significant superiority over the statistical ones (p-value > 0.65 at α = 0.01 and α = 0.05). Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 4570 KiB  
Review
Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan
by Toqeer Ahmed, Mohammad Zounemat-Kermani and Miklas Scholz
Int. J. Environ. Res. Public Health 2020, 17(22), 8518; https://doi.org/10.3390/ijerph17228518 - 17 Nov 2020
Cited by 96 | Viewed by 16766
Abstract
Climate variability is heavily impacting human health all around the globe, in particular, on residents of developing countries. Impacts on surface water and groundwater resources and water-related illnesses are increasing, especially under changing climate scenarios such as diversity in rainfall patterns, increasing temperature, [...] Read more.
Climate variability is heavily impacting human health all around the globe, in particular, on residents of developing countries. Impacts on surface water and groundwater resources and water-related illnesses are increasing, especially under changing climate scenarios such as diversity in rainfall patterns, increasing temperature, flash floods, severe droughts, heatwaves and heavy precipitation. Emerging water-related diseases such as dengue fever and chikungunya are reappearing and impacting on the life of the deprived; as such, the provision of safe water and health care is in great demand in developing countries to combat the spread of infectious diseases. Government, academia and private water bodies are conducting water quality surveys and providing health care facilities, but there is still a need to improve the present strategies concerning water treatment and management, as well as governance. In this review paper, climate change pattern and risks associated with water-related diseases in developing countries, with particular focus on Pakistan, and novel methods for controlling both waterborne and water-related diseases are discussed. This study is important for public health care, particularly in developing countries, for policy makers, and researchers working in the area of climate change, water quality and risk assessment. Full article
Show Figures

Figure 1

20 pages, 2705 KiB  
Article
Kernel Extreme Learning Machine: An Efficient Model for Estimating Daily Dew Point Temperature Using Weather Data
by Meysam Alizamir, Sungwon Kim, Mohammad Zounemat-Kermani, Salim Heddam, Nam Won Kim and Vijay P. Singh
Water 2020, 12(9), 2600; https://doi.org/10.3390/w12092600 - 17 Sep 2020
Cited by 20 | Viewed by 3479
Abstract
Accurate estimation of dew point temperature (Tdew) has a crucial role in sustainable water resource management. This study investigates kernel extreme learning machine (KELM), boosted regression tree (BRT), radial basis function neural network (RBFNN), multilayer perceptron neural network (MLPNN), and multivariate [...] Read more.
Accurate estimation of dew point temperature (Tdew) has a crucial role in sustainable water resource management. This study investigates kernel extreme learning machine (KELM), boosted regression tree (BRT), radial basis function neural network (RBFNN), multilayer perceptron neural network (MLPNN), and multivariate adaptive regression spline (MARS) models for daily dew point temperature estimation at Durham and UC Riverside stations in the United States. Daily time scale measured hydrometeorological data, including wind speed (WS), maximum air temperature (TMAX), minimum air temperature (TMIN), maximum relative humidity (RHMAX), minimum relative humidity (RHMIN), vapor pressure (VP), soil temperature (ST), solar radiation (SR), and dew point temperature (Tdew) were utilized to investigate the applied predictive models. Results of the KELM model were compared with other models using eight different input combinations with respect to root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) statistical indices. Results showed that the KELM models, using three input parameters, VP, TMAX, and RHMIN, with RMSE = 0.419 °C, NSE = 0.995, and R2 = 0.995 at Durham station, and seven input parameters, VP, ST, RHMAX, TMIN, RHMIN, TMAX, and WS, with RMSE = 0.485 °C, NSE = 0.994, and R2 = 0.994 at UC Riverside station, exhibited better performance in the modeling of daily Tdew. Finally, it was concluded from a comparison of the results that out of the five models applied, the KELM model was found to be the most robust by improving the performance of BRT, RBFNN, MLPNN, and MARS models in the testing phase at both stations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 2046 KiB  
Article
Sustainability Ranking of Desalination Plants Using Mamdani Fuzzy Logic Inference Systems
by Rabee Rustum, Anu Mary John Kurichiyanil, Shaun Forrest, Corrado Sommariva, Adebayo J. Adeloye, Mohammad Zounemat-Kermani and Miklas Scholz
Sustainability 2020, 12(2), 631; https://doi.org/10.3390/su12020631 - 15 Jan 2020
Cited by 38 | Viewed by 7894
Abstract
As water desalination continues to expand globally, desalination plants are continually under pressure to meet the requirements of sustainable development. However, the majority of desalination sustainability research has focused on new desalination projects, with limited research on sustainability performance of existing desalination plants. [...] Read more.
As water desalination continues to expand globally, desalination plants are continually under pressure to meet the requirements of sustainable development. However, the majority of desalination sustainability research has focused on new desalination projects, with limited research on sustainability performance of existing desalination plants. This is particularly important while considering countries with limited resources for freshwater such as the United Arab Emirates (UAE) as it is heavily reliant on existing desalination infrastructure. In this regard, the current research deals with the sustainability analysis of desalination processes using a generic sustainability ranking framework based on Mamdani Fuzzy Logic Inference Systems. The fuzzy-based models were validated using data from two typical desalination plants in the UAE. The promising results obtained from the fuzzy ranking framework suggest this more in-depth sustainability analysis should be beneficial due to its flexibility and adaptability in meeting the requirements of desalination sustainability. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

19 pages, 2559 KiB  
Article
Prediction of Suspended Sediment Load Using Data-Driven Models
by Rana Muhammad Adnan, Zhongmin Liang, Ahmed El-Shafie, Mohammad Zounemat-Kermani and Ozgur Kisi
Water 2019, 11(10), 2060; https://doi.org/10.3390/w11102060 - 2 Oct 2019
Cited by 62 | Viewed by 6103
Abstract
Estimation of suspended sediments carried by natural rivers is essential for projects related to water resource planning and management. This study proposes a dynamic evolving neural fuzzy inference system (DENFIS) as an alternative tool to estimate the suspended sediment load based on previous [...] Read more.
Estimation of suspended sediments carried by natural rivers is essential for projects related to water resource planning and management. This study proposes a dynamic evolving neural fuzzy inference system (DENFIS) as an alternative tool to estimate the suspended sediment load based on previous values of streamflow and sediment. Several input scenarios of daily streamflow and suspended sediment load measured at two locations of China—Guangyuan and Beibei—were tried to assess the ability of this new method and its results were compared with those of the other two common methods, adaptive neural fuzzy inference system with fuzzy c-means clustering (ANFIS-FCM) and multivariate adaptive regression splines (MARS) based on three commonly utilized statistical indices, root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE). The data period covers 01/04/2007–12/31/2015 for the both stations. A comparison of the methods indicated that the DENFIS-based models improved the accuracy of the ANFIS-FCM and MARS-based models with respect to RMSE by 33% (32%) and 31% (36%) for the Guangyuan (Beibei) station, respectively. The NSE accuracy for ANFIS-FCM and MARS-based models were increased by 4% (36%) and 15% (19%) using DENFIS for the Guangyuan (Beibei) station, respectively. It was found that the suspended sediment load can be accurately estimated by DENFIS-based models using only previous streamflow data. Full article
Show Figures

Figure 1

24 pages, 7233 KiB  
Article
Can Decomposition Approaches Always Enhance Soft Computing Models? Predicting the Dissolved Oxygen Concentration in the St. Johns River, Florida
by Mohammad Zounemat-Kermani, Youngmin Seo, Sungwon Kim, Mohammad Ali Ghorbani, Saeed Samadianfard, Shabnam Naghshara, Nam Won Kim and Vijay P. Singh
Appl. Sci. 2019, 9(12), 2534; https://doi.org/10.3390/app9122534 - 21 Jun 2019
Cited by 71 | Viewed by 5598
Abstract
This study evaluates standalone and hybrid soft computing models for predicting dissolved oxygen (DO) concentration by utilizing different water quality parameters. In the first stage, two standalone soft computing models, including multilayer perceptron (MLP) neural network and cascade correlation neural network (CCNN), were [...] Read more.
This study evaluates standalone and hybrid soft computing models for predicting dissolved oxygen (DO) concentration by utilizing different water quality parameters. In the first stage, two standalone soft computing models, including multilayer perceptron (MLP) neural network and cascade correlation neural network (CCNN), were proposed for estimating the DO concentration in the St. Johns River, Florida, USA. The DO concentration and water quality parameters (e.g., chloride (Cl), nitrogen oxides (NOx), total dissolved solid (TDS), potential of hydrogen (pH), and water temperature (WT)) were used for developing the standalone models by defining six combinations of input parameters. Results were evaluated using five performance criteria metrics. Overall results revealed that the CCNN model with input combination III (CCNN-III) provided the most accurate predictions of DO concentration values (root mean square error (RMSE) = 1.261 mg/L, Nash-Sutcliffe coefficient (NSE) = 0.736, Willmott’s index of agreement (WI) = 0.919, R2 = 0.801, and mean absolute error (MAE) = 0.989 mg/L) for the standalone model category. In the second stage, two decomposition approaches, including discrete wavelet transform (DWT) and variational mode decomposition (VMD), were employed to improve the accuracy of DO concentration using the MLP and CCNN models with input combination III (e.g., DWT-MLP-III, DWT-CCNN-III, VMD-MLP-III, and VMD-CCNN-III). From the results, the DWT-MLP-III and VMD-MLP-III models provided better accuracy than the standalone models (e.g., MLP-III and CCNN-III). Comparison of the best hybrid soft computing models showed that the VMD-MLP-III model with 4 intrinsic mode functions (IMFs) and 10 quadratic penalty factor (VMD-MLP-III (K = 4 and α = 10)) model yielded slightly better performance than the DWT-MLP-III with Daubechies-6 (D6) and Symmlet-6 (S6) (DWT-MLP-III (D6 and S6)) models. Unfortunately, the DWT-CCNN-III and VMD-CCNN-III models did not improve the performance of the CCNN-III model. It was found that the CCNN-III model cannot be used to apply the hybrid soft computing modeling for prediction of the DO concentration. Graphical comparisons (e.g., Taylor diagram and violin plot) were also utilized to examine the similarity between the observed and predicted DO concentration values. The DWT-MLP-III and VMD-MLP-III models can be an alternative tool for accurate prediction of the DO concentration values. Full article
Show Figures

Figure 1

16 pages, 1215 KiB  
Article
Computing Air Demand Using the Takagi–Sugeno Model for Dam Outlets
by Mohammad Zounemat-Kermani and Miklas Scholz
Water 2013, 5(3), 1441-1456; https://doi.org/10.3390/w5031441 - 23 Sep 2013
Cited by 20 | Viewed by 7193
Abstract
An adaptive neuro-fuzzy inference system (ANFIS) was developed using the subtractive clustering technique to study the air demand in low-level outlet works. The ANFIS model was employed to calculate vent air discharge in different gate openings for an embankment dam. A hybrid learning [...] Read more.
An adaptive neuro-fuzzy inference system (ANFIS) was developed using the subtractive clustering technique to study the air demand in low-level outlet works. The ANFIS model was employed to calculate vent air discharge in different gate openings for an embankment dam. A hybrid learning algorithm obtained from combining back-propagation and least square estimate was adopted to identify linear and non-linear parameters in the ANFIS model. Empirical relationships based on the experimental information obtained from physical models were applied to 108 experimental data points to obtain more reliable evaluations. The feed-forward Levenberg-Marquardt neural network (LMNN) and multiple linear regression (MLR) models were also built using the same data to compare model performances with each other. The results indicated that the fuzzy rule-based model performed better than the LMNN and MLR models, in terms of the simulation performance criteria established, as the root mean square error, the Nash–Sutcliffe efficiency, the correlation coefficient and the Bias. Full article
Show Figures

Figure 1

Back to TopTop