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Abstract: The study examines the applicability of six metaheuristic regression techniques—M5 model
tree (M5RT), multivariate adaptive regression spline (MARS), principal component regression (PCR),
random forest (RF), partial least square regression (PLSR) and Gaussian process regression (GPR)—for
predicting short-term significant wave heights from one hour to one day ahead. Hourly data from
two stations, Townsville and Brisbane Buoys, Queensland, Australia, and historical values were used
as model inputs for the predictions. The methods were assessed based on root mean square error,
mean absolute error, determination coefficient and new graphical inspection methods (e.g., Taylor
and violin charts). On the basis of root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2) statistics, it was observed that GPR provided the best accuracy in
predicting short-term single-time-step and multi-time-step significant wave heights. On the basis
of mean RMSE, GPR improved the accuracy of M5RT, MARS, PCR, RF and PLSR by 16.63, 8.03,
10.34, 3.25 and 7.78% (first station) and by 14.04, 8.35, 13.34, 3.87 and 8.30% (second station) for the
test stage.

Keywords: significant wave height; short-term prediction; Gaussian process regression; partial least
square regression

MSC: 90C59; 90C90

1. Introduction

Accurate measurement of wave properties is crucial for designing coastal and offshore
structures, undertaking maritime projects, estimating sediment transport, and performing
other coastal-engineering-related tasks. Winds acting on the ocean’s surface are the single
most important factor in determining wave heights; however, other influential variables
such as ocean currents, environmental changes, and earth systems also affect them [1,2].
Hence, proper estimation of wave properties is a challenge in coastal and offshore engineer-
ing. Various factors represent the wave characteristics, of which significant wave height
(HSW) is the most important property [2–4].

Several methods exist for short- and mid-term prediction of HSW, including wave
energy balance-based models [3], numerical models [4], chaos-theory-based models [5], em-
pirical models [6], time-series and stochastic models [7,8], and soft computing and machine
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learning methodologies [9,10]. The spectral energy or action balance equation is the foun-
dation for some widely used models, including empirical and numerical models. However,
their implementation poses several challenges due to their complexity, extensive computa-
tional cost, and precise local bathymetric data requirements, which are the main drawbacks
of these methodologies. In the field of chaos, solitons and fractals, several researchers have
conducted mathematical modeling to understand complex dynamical systems [11,12].

It is worth noting that artificial intelligence systems are powerful tools for modeling
intricate relationships and identifying patterns in complex datasets. In a relevant study,
Pourzangbar et al. [13] demonstrated that the prediction of scour depth due to non-breaking
waves with the aid of Machine Learning (ML) models such as regression trees and support
vector regression achieves the highest accuracy. Therefore, soft computing and ML methods,
which fall under artificial intelligence methodologies, have been successfully utilized in
modeling wave characteristics and wave heights [14–16]. Besides the beneficial features of
the ML methodologies, it should be mentioned that the majority of ML models do not offer
a simple, explicit description of the mathematical structure of the constructed models. This
trait can sometimes be considered a shortcoming of the ML models.

Applications of ML models in ocean and coastal engineering have received a great
deal of attention recently [17]. This area includes several objectives, such as prediction
of wave height [18], prediction of water level and tides [19], breakwater simulation [13],
and ocean current simulation [20]. In the realm of HSW modeling, which is the main topic
of this study, Mahjoobi and Mosabbeb [21] utilized machine learning models, such as a
regressive support vector machine (SVM) model, a multilayer perceptron (MLP) neural
network, and a radial basis function (RBF) neural network, to predict short-term HSW
based on waves and wind in Lake Michigan. The study revealed that all ML models
successfully predicted HSW (R > 0.93), but the SVM with an RBF kernel provided the most
accurate predictions (R = 0.96). In a separate study, Krishna Kumar et al. [22] developed
two types of hybrid sequential learning machine models, namely the minimal resource
allocation network (MRAN) and the growing and pruning radial basis function (GAP-RBF)
network, to forecast wave heights at 13 sites. Results revealed more accurate predictions
using MRAN and GAP-RBF than traditional ML models. Additionally, Kaloop et al. [23]
employed a hybrid model, wavelet-particle swarm optimization (PSO)—extreme learning
machine (ELM), to predict HSW. They utilized wavelet analysis for the frequency content
analysis of wave signals and then applied particle swarm optimization (PSO) to train the
ELM model. The relative performance of several regular ML models indicates the better
ability of the developed hybrid model to simulate HSW for short-term (hourly) and mid-
term (daily) lead times. Table 1 summarizes the applications of ML and soft computing
techniques in predicting HSW. An overview of the literature in Table 1 demonstrates that
most researchers applied network-based ML models for predicting HSW, such as artificial
neural networks (ANNs), ELMS, recurrent neural networks (RNNs), and long short-term
memory (LSTM). In contrast, the SVM/SVR and the tree-based/regression-based models
have been used less frequently.

The complex and nonlinear nature of HSW time series has a tremendous impact on
forecasting and predicting accuracy [24]. Although ML models are powerful and capable
tools for modeling wave height, the structure of most network-based ML models, like
ANNs and adaptive network-based fuzzy inference systems (ANFIS), is not as transparent
as regression-based ML models. Furthermore, network-based ML models necessitate
trial and error to determine network hyperparameters, like hidden-layer and neuron
numbers, which is time-consuming [25,26]. It is worth noting that other ML models,
such as genetic programming and gene expression programming methods, along with
regression-based models (e.g., model trees), could be a beneficial alternative for modeling
nonlinear phenomena such as HSW [27].

The prediction/forecasting accuracy of HSW worsens as the lead time expands. Hence,
having different prediction strategies based on various forecasting lead times can greatly
enhance the models’ capability and reliability. This study focuses on the implications
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of regression-based models for achieving this purpose. In this regard, several models
are employed to predict HSW, including tree-based methodologies (e.g., multivariate
adaptive regression spline (MARS), random forest (RF), and M5 model tree (M5RT) and
the statistics-based partial least square regression (PLSR) and Gaussian process regression
(GPR)). The main reasons for opting for these ML models lie in their high capabilities for
modeling complicated phenomena and their diverse architecture, which makes them good
candidates for reaching a general perspective in choosing more appropriate ML structures
for simulating wave height. The modeling strategies are based on lagged HSW data and
forecasting HSW multiple lead times. This study appraises the prospects and competency
of six regression-based ML models in predicting (viz., forecasting) HSW for different hourly
lead times up to 24 h.

Table 1. Literature review—applications of ML models for predicting significant wave height.

Researcher(s) Models Applied Target Parameter/
Prediction Interval Remarks

Londhe and Panchang [28] Feed-forward artificial
neural network (ANN) HSW/mid-term (daily)

The model’s ability to identify
interannual variability and provide
more reliable forecasts was shown
to be critical; this was achieved by
considering several years of data
and carefully selecting the
training set.

Mahjoobi and
Etemad-Shahidi [29]

Classification and regression
trees (CART) and ANNs HSW/short-term (hourly)

Results indicated that the CART
model could be used successfully to
predict HSW.

Mahjoobi
and Mosabbeb [21]

Regressive support vector
machines, MLP and RBF
neural networks.

HSW/short-term (hourly)

The cross-validation and
non-cross-validation results showed
that the SVMs (RBF kernel and
polynomial kernel) performed
slightly better than ANNs.

Etemad-Shahidi
and Mahjoobi [30] M5 model tree and ANN HSW/short-term (hourly)

The results implied that the M5 tree
is marginally better than
the ANN’s.

Özger [7]
Wavelet fuzzy logic (WFL),
ARIMA, and ANN

HSW/short-term to
mid-term (hourly)

The WFL outperformed other
models. Also, its performance
improved with longer lead times.

Altunkaynak [31] Geno-multilayer
perceptron ANN HSW/Short-term (15 min)

Good consistency was reported
between the observed and
predicted results from the
geno-multilayer perceptron model.

Salcedo-Sanz et al. [32] Support vector regression HSW/Short-term (hourly)
The SVR model provided good
results in HSW estimation from
sea-surface X-band radar images.

Duan et al. [33] Support vector regression HSW/Short-term (hourly)

The statistical indices showed that
the empirical model
decomposition-SVR provided
proper short-term
prediction performance.

Cornejo-Bueno et al. [34]

Grouping genetic algorithm
and extreme learning
machine (GGA-ELM),
GGA-MLP, and SVR

HSW/Short-term (hourly)

The outcomes of the models
showed that the proposed
GGA-ELM improved the
predicted results.
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Table 1. Cont.

Researcher(s) Models Applied Target Parameter/
Prediction Interval Remarks

Berbić et al. [35] ANNs and SVMs HSW/Short-term
(half-hourly)

HSW was predicted for 0.5 to 5.5 h
lead time. The SVM performed
slightly better than the ANN.

Nikoo et al. [36]

Fuzzy KNN-based, SVR,
regression tree induction
(M5P), Bayesian
network model

HSW/Short-term (hourly)
The Fuzzy KNN-based model
performed better than other applied
ones, followed by the M5P model.

Ali and Prasad [37] Hybridized extreme
learning machine HSW/Short-term (hourly)

The hybrid ELM model exhibited
high accuracy in predicting HSW
and was identified as a
promising tool.

Kaloop et al. [23]
Wavelet—particle swarm
optimization—extreme
learning machine

HSW/short–term (hourly)
and mid-term (daily)

The study suggested that
WPSO-ELM performed better than
ANN, fuzzy logic, SVM, MLR, and
ELM in predicting HSW for
different lead times.

Demetriou et al. [38] Ensemble tree modeling
and ANN HSW/short-term (minutely) The decision tree ensemble

provided better outcomes.

Feng et al. [39]

Recurrent neural network
(RNN), long short-term
memory network (LSTM),
and gated recurrent
unit network (GRU)

HSW/(hourly)
The findings indicated that GRU
and LSTM networks outperformed
traditional RNNs.

Gao et al. [40] Hybrid-ensemble deep
randomized networks HSW/(hourly, four-hourly)

The neuron pruning strategy for
removing noisy information from
the random features enhanced the
prediction accuracy of the
ML model.

Minuzzi and Farina [10] Long short-term
memory algorithm (LSTM) HSW/(hourly)

The findings indicated that a
data-driven approach can serve as a
substitute for computationally
intensive physical models, with an
accuracy level of around 95%
compared to reanalysis data and
87% in comparison to buoy data.

2. Case Study

Two wave monitoring sites in Queensland, Australia were selected for predicting HSW.
The Townsville wave monitoring buoy is located in South East Queensland at coordinates of
19◦09.550′ S latitude and 147◦03.560′ E longitude, and the Brisbane wave monitoring buoy
is situated in North Queensland, with a geographical location of 27◦29.230′ S latitude and
153◦37.900′ E longitude (Figure 1). The Queensland environmental department monitored
HSW data at both wave monitoring sites for 30 min intervals from 1 January 2022 to
31 December 2022. The data were collected for both wave monitoring sites from the online
portal of the Queensland government (https://www.data.qld.gov.au/dataset, accessed on
20 February 2023). For single and multistep wave height prediction, only hourly data for
significant wave height (HSW) were used for both stations. For the applications of models,
all of the HSW variable data were divided into training and testing parts. However, the
selection of a more critical training and testing dataset from the data is a key step. Therefore,
a 4-fold cross-validation technique was used as a preliminary step for the selection of the
training and testing dataset using the MARS model. For this purpose, the full data set was

https://www.data.qld.gov.au/dataset
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divided into four equal test datasets parts, and each part was tested against the remaining
training dataset. After the preliminary results of the 4-fold cross-validation technique,
hourly HSW data for 1 January 2022 to 5 October 2022, were utilized as training data,
whereas the hourly HSW data from 6 October 2022 to 31 December 2022, were utilized as
the testing dataset. Table 2 shows the basic HSW statistics for the stations.
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3. Methods
3.1. Multivariate Adaptive Regression Splines (MARS)

The multivariate adaptive regression spline (MARS) model is a common prediction
algorithm. Friedman [41] developed and introduced this model in 1991. Subsequently, sev-
eral amendments were made to boost the model’s quality and reduce the prediction error.
The remarkable enhancement of the MARS method lies in its capability of input-output
mapping without any specific assumptions. Unlike other prediction models, which require
assumptions for mapping, MARS considers segment endpoints as nodes. As a nonparamet-
ric regression model, it enables time-series predictions. Because of the model’s adaptability,
it can handle additive interactions or include connections to other model inputs. MARS
can handle the compound mapping of the predictor and response easily. It can also use
both forward and backward stepwise measures. Andres et al. [42] proposed a backward
stepwise procedure to eliminate preventable variables and enhance the model’s capability.
In addition, the stepwise forward procedure can be used to determine which variables
serve as inputs to the MARS model. Unlike previous prediction models that consider
segment terminals as nodes, the MARS model does not require any assumptions about
the mapping between input and output variables. This nonparametric regression model
can predict continuous numerical outcomes and has adaptable procedures for handling
relationships that are almost additive or include relations with other input variables.

Using two basis functions with a variety of inputs, Y is mapped from X using c as the
threshold value:

Y = max(0, X− c) (1)

Y = max(0, c− X) (2)

MARS uses two adjacent splines to ensure the continuity of the basis function at the
lump. The MARS algorithm has been extensively employed in various research fields due
to its ability to predict accurately. This study utilized MARS to predict HSW at the sample
sites. Figure 2 shows the flow chart of the MARS model used in this study.
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3.2. Gaussian Process Regression (GPR)

GPR is crucial in defining the initial distribution for a versatile regression model and
classification. It is a nonparametric method used to identify the presence of hesitation in
the model to further improve its capability [43]. The GPR model is a crucial supervised
learning tool to use after Bayesian machine learning models, because it performs well
with small datasets without underfitting or overfitting. Additionally, it excels at analyzing
nonlinear datasets by utilizing probabilistic approaches and approximating posterior degra-
dation by requiring prior data distribution. The diversity of the covariance function is an
essential component of the Gaussian process, which helps to develop tasks with different
structures [44–46]. Also, the standard property of the GPR model makes this model vital
for statistical modeling. The covariance is defined in the Gaussian process with the mean
function m(x).

m(x) = E( f (x)) (3)

k
(
x, x′

)
= E

(
( f (x)−m(x))

(
f
(
x′
)
−m(x′)

))
(4)

Here, k(x, x′) represents the kernel or covariance function evaluated at the points x
and x′. The Gaussian process function is expressed as:

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(5)

The average function value is 0, and the following form can recognize the input-
target relationship.

y = f (x) + δ (6)

Here, δ is Gaussian white noise uncorrelated with f (x), with a mean value of 0 and
a variance of σ2. Also, y and f (x) follow Gaussian distribution, and the set of the joint
distribution of finite observations is a Gaussian process:

y ∼ GP
(

m(x), k
(

x, x′
)
+ σ2γij

)
(7)

Here, γij is the Kronecker delta function. Also, it is assumed that y = [y1, y2, y3, . . . , yn]
T

and f = [ f (x1), f (x2), f (x3), . . . , f (xn)] depend upon the Gaussian process

p( f ) = N(0, K) (8)

where k is the covariance matrix with the elements:

k =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . .

. . .
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (9)

Here, ki is the covariance between the values of the eigenfunctions f (xi) and f
(

xj
)
.

Gaussian process regression (GPR) is used to calculate the predicted distribution for
the function values of the f ∗ at the test point X∗ = [x∗1, x∗2, . . . , x∗m]. GPR gives the
marginal distribution:

p( f ) = N( f |0, K) (10)

Ky = K + σ2 I (11)

[
y
y∗

]
=

([
f
f ∗

]
+

[
δ
δ∗

])
N
(

0,
[

Ky K∗

KT
n K∗∗ + σ2

])
(12)
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for the eigenfunction for the variable, and

K∗ = [k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)]
T (13)

K∗∗ = k(x∗, x∗) (14)

Using the Gaussian condition laws, the predictive distribution p(y∗|y) is a Gaussian
distribution with the variance and mean m(x∗) = k∗Tk−1

y y [47]. The determination of the
covariance is an essential component in the Gaussian process regression.

3.3. Random Forest (RF)

Multiple decision trees are the basis of an RF, which can be used for both classification
and regression. Researchers have turned to the bagging technique to create forecasting
training sets that are independent of one another [48–52]. The output of the RF is based on
an average of the predictions made with each tree during the regression phase [41,42]. The
fundamental procedures of this paradigm are as follows:

(a) First, k decision tree models are constructed using the bootstrap sampling approach,
where k random samples are drawn from the original training set.

(b) A split feature set of n (nm, where m is the total number of features in the sample)
features is chosen at random from each sample. Nodes are generated after evalu-
ating the optimum characteristics, with the minimal Gini coefficient serving as the
dividing line.

(c) The trees reach their full potential without trimming. The procedures above yield
random forests when repeated.

(d) A democratic vote on each record determines the final results based on the k catego-
rization outcomes. It is helpful to look at the average decline in the Gini coefficient at
the node split to determine the classification.

Figure 3 shows the working procedure of the RF model.
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3.4. Principal Component Regression (PCR)

The PCR provides a linear regression model relating inputs with the output. Suppose
the input dataset X ∈ Rn×m has a sample size n and a number of variables m. Also,
Y ∈ Rn×l is the output data set with n observations, and l is the quality variable [53–55].

Singular value decomposition (SVD) is applied to the covariance matrix XT X
n−1 to find

the loading and eigenvalue matrices Λ = diag(λ1, λ2, λ3, . . . λm).

XTX
n− 1

=

[
_
P P̃

][
Λpc 0
0 Λres

][ _
P

T

P̃T

]
≈

_
PΛpc

_
P

T
(15)

Here, the process variables are divided into residual subspace and subspace.

X =
_
X + X̃ =

_
T
_
P

T
+ X̃ (16)

Equation YT ≈ φXT multiplies X
n−1 by both sides, resulting in YT X

n−1 ≈ φ XT X
n−1 .

The regression coefficient is expressed as:

φ =
YTX

_
PΛ−1

pc
_
P

T

n− 1
=

YT
(

Λ
−1
2

pc
_
P

T
XT
)T

Λ
−1
2

pc
_
P

T

n− 1
(17)

φ = Λ
−1
2

pc
_
P

T
(18)

The PCR regression model is obtained as:

_
y = φx =

YT
(

Λ
−1
2

pc
_
P

T
XT
)T

Λ
−1
2

pc
_
P

T

n− 1
x = φx (19)

where x = Λ
−1
2

pc
_
P

T
x is the normalized input variable and φ is the corresponding regression

coefficient vector. The singular value decomposition (SVD) is again applied but now on the
φ. The decomposed findings are given below.

φ =

YT
(

Λ
−1
2

pc
_
P

T
XT
)T

n− 1
=

_
U
[

D1/2 0
][ _

V
T

ṼT

]
=

_
UD1/2

_
V

T
(20)

The projection x onto y is shown as:

y =
_
V

T
x =

_
V

T
Λ
−1
2

pc
_
P

T
x ∼ N(0, Il×l) (21)

where y is a key variable vector for quality. The prediction y is as follows:

_
y = φx =

_
UD1/2

_
V

T
Λ
−1
2

pc
_
P

T
x =

_
UD1/2y (22)

The PCR model’s prediction results are applied to predict short-term significant
wave height.
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3.5. Partial Least Square Regression (PLSR)

PLSR is developed by merging two models, the principal component analysis and
multiple linear regression models. It finds the linear transformation of the input features,
which are highly covariant with the response variable and are also uncorrelated with
themselves [56]. Such variables are known as latent components. This model employs
the regression method to predict the response value and rebuild the original data matrix
using latent features. The objective function is designed to maximize the covariance of this
latent component with the response variable. The cross-validation approach minimizes
prediction error [56–58]. These latent variables are called X-scores (ta) and are Y predictors:

X = TP′ + E (23)

where T is the score matrix, columns are ta, P′ is the loading matrix, and E is the matrix of
the X-residuals.

T = XW∗ (24)

Here, W∗ is a matrix of transformed PLSR weights.

Y = TC∗ + F (25)

C∗ is the Y-weight matrix, and F is the matrix of the Y-residuals.

3.6. M5 Regression Tree (M5RT)

The M5 regression tree model uses a decision tree to establish a connection between
inputs and output. Quinlan first proposed this method [59] and it was later refined by
Wang and Witten [60]. There are two classes in the M5 tree model. The first class sorts
input variables into categories according to linear regression in an attempt to minimize
the approximation error between observed and forecasted values. This initial process
constructs the decision tree based on the input evidence and uses the standard deviation
drop to establish the division rule for the M5 tree model [61,62]. The second set consists of
the compiled trees from each leaf. Each age involves more granular categorization, down
to the level of individual branches and leaves. The M5 tree model was developed from
the popular classification and regression tree (CART) technique. Following is a detailed
explanation of the standard deviation (SDR) formula.

SDR = sd(T)−∑
|Ti|
|T| sd(Ti) (26)

where Ti is the i-th result of the possible group, SDR is the standard deviation reduction, sd
is the standard deviation, T is a collection of samples reaching the node, and i is an integer.
Overfitting occurs when the data’s sd is less than that of the parent nodes, leading to a
massive, tree-like structure that doesn’t generalize effectively.

4. Accuracy Assessment

The main aim of this study was to compare several metaheuristic regression methods,
M5RT, MARS, PCR, RF, PLSR and GPR, in predicting HSW. Root mean square error (RMSE),
mean absolute error (MAE), and determination coefficient (R2) criteria were used to assess
the methods employed.

RMSE : Root Mean Square Error =

√
1
N ∑N

i=1 [(HSWo)i − (HSWC)i]
2 (27)

MAE : Mean Absolute Error =
1
N ∑N

i=1 |(HSWo)i − (HSWC)i | (28)
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R2 : Determination Coefficient =

 ∑N
t=1
(

HSWo − HSWo
)(

HSWc − HSWc
)√

∑N
t=1 (HSWo − HSWo)

2
(HSWc − HSWc)

2

2

(29)

where HSWc, HSWo, HSWo, N are calculated, observed, and mean significant wave height
and the number of data, respectively.

5. Results and Discussion

This section compares the six metaheuristic regression approaches in predicting HSW
for multiple horizons from t + 1 (one hour ahead) to t + 24 (one day ahead). The following
section explains the results in detail.

5.1. Results

Before application of the models, the data were divided into two parts, training (80%)
and testing (20%), and then simulations were performed in the MATLAB environment. This
study used MATLAB statistics and ML toolbox for the simulations. The training and testing
results for the M5RT, MARS, PCR, RF, PLSR and GPR models are provided in Tables 3–8
for the first station. In the tables, t + 1 indicates 1 h ahead, or a 1 h time horizon, and HSWt
refers to significant wave height at time t (current hour). This study used three lags as inputs
to the regression models because, beyond this, lag did not produce considerably better
accuracy. It is visible from Tables 3–8 that all regression models had the best accuracy in the
prediction of t + 1 HSWs with three lagged inputs (HSWt, HSWt−1, HSWt−2). Therefore,
this study used this input case to predict HSW for the higher horizons from t + 2 (2 h ahead)
to t + 24 (1 day ahead). As expected, the models’ accuracies decreased with increasing time
horizons, because the relationship between inputs and output is more complex in the case
of farther horizons. For example, the RMSE and MAE of M5RT increased from 0.1254 m
and 0.0860 m, respectively, to 0.5929 m and 0.4224 m, and R2 decreased from 0.9769 to
0.5022 in the test stage. A comparison of the metaheuristic regression models revealed
that GPR provided the best accuracy in predicting HSW 1 h ahead with the lowest RMSE
(0.1115 m) and MAE (0.0771 m) and the highest R2 (0.9817) in the test stage. The relative
RMSE differences between GPR and M5RT, MARS, PCR, RF and PLSR were 11.08, 6.38,
2.02, 1.24 and 0.27%, respectively. There was a slight difference between GPR and PLSR
models in predicting HSW for t + 1 horizon.

Table 3. Model performance in training and testing for multiple-step HSW predictions—M5RT for
Station 1.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.1270 0.0915 0.9755 0.1296 0.0895 0.9733

HSWt, HSWt−1, 0.1190 0.0850 0.9765 0.1284 0.0896 0.9746

HSWt, HSWt−1, HSWt−2 0.1176 0.0839 0.9771 0.1254 0.0860 0.9769

t + 2 HSWt, HSWt−1, HSWt−2 0.1356 0.0930 0.9726 0.1390 0.0982 0.9680

t + 4 HSWt, HSWt−1, HSWt−2 0.1786 0.1241 0.9504 0.2010 0.1385 0.9402

t + 8 HSWt, HSWt−1, HSWt−2 0.2579 0.1787 0.8900 0.3058 0.2098 0.8656

t + 12 HSWt, HSWt−1, HSWt−2 0.3156 0.2211 0.8353 0.3941 0.2701 0.7764

t + 24 HSWt, HSWt−1, HSWt−2 0.4451 0.3177 0.6723 0.5939 0.4224 0.5022
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Table 4. Model performance in training and testing for multiple-step HSW predictions—MARS for
Station 1.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.1245 0.0901 0.9773 0.1233 0.0853 0.9744

HSWt, HSWt−1, 0.1167 0.0837 0.9784 0.1204 0.0833 0.9775

HSWt, HSWt−1, HSWt−2 0.1161 0.0831 0.9788 0.1191 0.0826 0.9777

t + 2 HSWt, HSWt−1, HSWt−2 0.1352 0.0927 0.9727 0.1384 0.0980 0.9683

t + 4 HSWt, HSWt−1, HSWt−2 0.1770 0.1226 0.9517 0.1934 0.1321 0.9442

t + 8 HSWt, HSWt−1, HSWt−2 0.2538 0.1759 0.8934 0.2798 0.1927 0.8833

t + 12 HSWt, HSWt−1, HSWt−2 0.3098 0.2167 0.8413 0.3535 0.2456 0.8149

t + 24 HSWt, HSWt−1, HSWt−2 0.4409 0.3143 0.6785 0.5007 0.3619 0.6280

Table 5. Model performance in training and testing for multiple-step HSW predictions—PCR for
Station 1.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt

HSWt, HSWt−1, 0.1140 0.0803 0.9778 0.1182 0.0818 0.9786

HSWt, HSWt−1, HSWt−2 0.1093 0.0794 0.9808 0.1138 0.0795 0.9781

t + 2 HSWt, HSWt−1, HSWt−2 0.1349 0.0924 0.9728 0.1382 0.0978 0.9684

t + 4 HSWt, HSWt−1, HSWt−2 0.1745 0.1205 0.9537 0.1823 0.1258 0.9472

t + 8 HSWt, HSWt−1, HSWt−2 0.2432 0.1704 0.9021 0.2735 0.1857 0.8884

t + 12 HSWt, HSWt−1, HSWt−2 0.3017 0.2107 0.8494 0.3412 0.2356 0.8264

t + 24 HSWt, HSWt−1, HSWt−2 0.4349 0.3086 0.6872 0.4741 0.3388 0.6564

Table 6. Model performance in training and testing for multiple-step HSW predictions—RF for
Station 1.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.1213 0.0876 0.9783 0.1210 0.0841 0.9756

HSWt, HSWt−1, 0.1069 0.0757 0.9802 0.1146 0.0789 0.9791

HSWt, HSWt−1, HSWt−2 0.1037 0.0742 0.9811 0.1129 0.0781 0.9793

t + 2 HSWt, HSWt−1, HSWt−2 0.1330 0.0915 0.9736 0.1368 0.0969 0.9691

t + 4 HSWt, HSWt−1, HSWt−2 0.1726 0.1207 0.9539 0.1799 0.1247 0.9482

t + 8 HSWt, HSWt−1, HSWt−2 0.2413 0.1689 0.9037 0.2689 0.1824 0.8921

t + 12 HSWt, HSWt−1, HSWt−2 0.3011 0.2101 0.8501 0.3332 0.2291 0.8345

t + 24 HSWt, HSWt−1, HSWt−2 0.4316 0.3040 0.6918 0.4709 0.3335 0.6598
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Table 7. Model performance in training and testing for multiple-step HSW predictions—PLSR for
Station 1.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt

HSWt, HSWt−1, 0.1022 0.0709 0.9827 0.1132 0.0784 0.9808

HSWt, HSWt−1, HSWt−2 0.0928 0.0653 0.9858 0.1118 0.0773 0.9813

t + 2 HSWt, HSWt−1, HSWt−2 0.1302 0.0874 0.9799 0.1551 0.1072 0.9642

t + 4 HSWt, HSWt−1, HSWt−2 0.1676 0.1122 0.9687 0.1763 0.1232 0.9497

t + 8 HSWt, HSWt−1, HSWt−2 0.2369 0.1584 0.9124 0.2562 0.1749 0.9021

t + 12 HSWt, HSWt−1, HSWt−2 0.2979 0.2064 0.8648 0.3208 0.2207 0.8465

t + 24 HSWt, HSWt−1, HSWt−2 0.4246 0.2954 0.7084 0.4623 0.3365 0.6681

Table 8. Model performance in training and testing for multiple-step HSW predictions—GPR for
Station 1.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.1125 0.0819 0.9791 0.1197 0.0826 0.9786

HSWt, HSWt−1, 0.0944 0.0671 0.9853 0.1120 0.0775 0.9815

HSWt, HSWt−1, HSWt−2 0.0911 0.0627 0.9863 0.1115 0.0771 0.9817

t + 2 HSWt, HSWt−1, HSWt−2 0.1297 0.0863 0.9801 0.1425 0.0988 0.9697

t + 4 HSWt, HSWt−1, HSWt−2 0.1648 0.1094 0.9688 0.1758 0.1221 0.9508

t + 8 HSWt, HSWt−1, HSWt−2 0.2346 0.1535 0.9128 0.2553 0.1741 0.9028

t + 12 HSWt, HSWt−1, HSWt−2 0.2965 0.2047 0.8651 0.3182 0.2193 0.8490

t + 24 HSWt, HSWt−1, HSWt−2 0.4191 0.2889 0.7149 0.4467 0.3312 0.6749

The RMSE and MAE for GPR predictions at multiple horizons, from 1 h ahead (t + 1)
to 1 day ahead (t + 24), ranged from 0.1115 m and 0.0771 m, respectively, to 0.4467 m and
0.3312 m, while the corresponding values for PLSR ranged from 0.1118 m and 0.0773 m to
0.4623 m and 0.3365 m, respectively. When comparing GPR to other methods for forecasting
HSW at the t + 24 horizon, the RMSE differences were as follows: 24.79, 10.78, 5.78, 5.14,
and 3.37%. When the prediction horizon was expanded, the gaps between GPR and other
regression approaches widened dramatically.

The results of training and testing of the M5RT, MARS, PCR, RF, PLSR, and GPR
models at the second station are summarized in Tables 9–14. All regression models at
this station achieved their highest accuracy when using three lagged inputs to predict
t + 1 HSWs. Consequently, this input set was employed to forecast HSW at various time
scales. However, when the time horizon was extended from t + 1 to t + 24, the performance
of metaheuristic regression approaches deteriorated significantly. During the testing phase,
the RMSE and MAE values for the M5RT model increased from 0.0418 and 0.0295 m to
0.28 and 0.2122 m, respectively, while the R2 value decreased from 0.9873 to 0.4780. GPR,
on the other hand, proved to be the best model for predicting HSWs one hour in advance
at this station, exhibiting the lowest RMSE (0.0391 m), the best MAE (0.0274 m), and the
highest R2 (0.9890) during the test phase. Comparing GPR to other methods, the RMSE
values were 6.46%, 3.46%, 1.76%, 1.26%, and 0.76% for M5RT, MARS, PCR, RF, and PLSR,
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respectively. It should be noted that for the t + 1 horizon, HSW predictions by GPR and the
PLSR/RF models differed to some extent.

Table 9. Model performance in training and testing for multiple-step HSW predictions—M5RT for
Station 2.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.0416 0.0293 0.9853 0.0467 0.0322 0.9843

HSWt, HSWt−1, 0.0412 0.0290 0.9861 0.0434 0.0304 0.9865

HSWt, HSWt−1, HSWt−2 0.0397 0.0285 0.9869 0.0418 0.0295 0.9873

t + 2 HSWt, HSWt−1, HSWt−2 0.0590 0.0411 0.9714 0.0635 0.0442 0.9710

t + 4 HSWt, HSWt−1, HSWt−2 0.0947 0.0666 0.9263 0.0988 0.0702 0.9298

t + 8 HSWt, HSWt−1, HSWt−2 0.1494 0.1096 0.8167 0.1561 0.1147 0.8258

t + 12 HSWt, HSWt−1, HSWt−2 0.1753 0.1313 0.7475 0.2029 0.1526 0.7099

t + 24 HSWt, HSWt−1, HSWt−2 0.2069 0.1568 0.6481 0.2810 0.2122 0.4780

Table 10. Model performance in training and testing for multiple-step HSW predictions—MARS for
Station 2.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.0415 0.0292 0.9855 0.0444 0.0310 0.9859

HSWt, HSWt−1, 0.0411 0.0289 0.9861 0.0425 0.0296 0.9870

HSWt, HSWt−1, HSWt−2 0.0386 0.0274 0.9878 0.0405 0.0287 0.9882

t + 2 HSWt, HSWt−1, HSWt−2 0.0581 0.0405 0.9722 0.0590 0.0416 0.9751

t + 4 HSWt, HSWt−1, HSWt−2 0.0921 0.0647 0.9302 0.0918 0.0657 0.9395

t + 8 HSWt, HSWt−1, HSWt−2 0.1449 0.1058 0.8275 0.1547 0.1151 0.8281

t + 12 HSWt, HSWt−1, HSWt−2 0.1687 0.1254 0.7661 0.1906 0.1442 0.7389

t + 24 HSWt, HSWt−1, HSWt−2 0.2055 0.1548 0.6529 0.2527 0.1910 0.5490

Table 11. Model performance in training and testing for multiple-step HSW predictions—PCR for
Station 2.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt

HSWt, HSWt−1, 0.0409 0.0288 0.9862 0.0418 0.0292 0.9872

HSWt, HSWt−1, HSWt−2 0.0366 0.0254 0.9890 0.0398 0.0281 0.9886

t + 2 HSWt, HSWt−1, HSWt−2 0.0553 0.0391 0.9780 0.0566 0.0396 0.9740

t + 4 HSWt, HSWt−1, HSWt−2 0.0871 0.0611 0.9376 0.0901 0.0652 0.9418

t + 8 HSWt, HSWt−1, HSWt−2 0.1332 0.0959 0.8543 0.1484 0.1101 0.8417

t + 12 HSWt, HSWt−1, HSWt−2 0.1635 0.1203 0.7804 0.1868 0.1405 0.7498

t + 24 HSWt, HSWt−1, HSWt−2 0.2012 0.1510 0.6674 0.2472 0.1861 0.5651
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Table 12. Model performance in training and testing for multiple-step HSW predictions—RF for
Station 2.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.0414 0.0291 0.9857 0.0437 0.0310 0.9863

HSWt, HSWt−1, 0.0407 0.0286 0.9864 0.0412 0.0289 0.9878

HSWt, HSWt−1, HSWt−2 0.0342 0.0239 0.9904 0.0396 0.0279 0.9887

t + 2 HSWt, HSWt−1, HSWt−2 0.0545 0.0386 0.9787 0.0560 0.0391 0.9743

t + 4 HSWt, HSWt−1, HSWt−2 0.0865 0.0608 0.9385 0.0875 0.0631 0.9450

t + 8 HSWt, HSWt−1, HSWt−2 0.1328 0.0958 0.8551 0.1440 0.1063 0.8511

t + 12 HSWt, HSWt−1, HSWt−2 0.1625 0.1198 0.7829 0.1805 0.1360 0.7659

t + 24 HSWt, HSWt−1, HSWt−2 0.2009 0.1504 0.6683 0.2429 0.1828 0.5810

Table 13. Model performance in training and testing for multiple-step HSW predictions—PLSR for
Station 2.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt

HSWt, HSWt−1, 0.0404 0.0285 0.9866 0.0408 0.0288 0.9881

HSWt, HSWt−1, HSWt−2 0.0339 0.0232 0.9906 0.0394 0.0277 0.9888

t + 2 HSWt, HSWt−1, HSWt−2 0.0472 0.0321 0.9817 0.0543 0.0387 0.9777

t + 4 HSWt, HSWt−1, HSWt−2 0.0806 0.0581 0.9491 0.0838 0.0598 0.9470

t + 8 HSWt, HSWt−1, HSWt−2 0.1284 0.0888 0.9119 0.1362 0.0997 0.8671

t + 12 HSWt, HSWt−1, HSWt−2 0.1592 0.1087 0.8782 0.1755 0.1310 0.7790

t + 24 HSWt, HSWt−1, HSWt−2 0.1932 0.1428 0.7038 0.2363 0.1797 0.6024

Table 14. Model performance in training and testing for multiple-step HSW predictions—GPR for
Station 2.

Time
Horizon Input Combination Training Period Test Period

RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

t + 1

HSWt 0.0413 0.0290 0.9859 0.0435 0.0305 0.9864

HSWt, HSWt−1, 0.0402 0.0284 0.9867 0.0405 0.0286 0.9882

HSWt, HSWt−1, HSWt−2 0.0330 0.0227 0.9911 0.0391 0.0274 0.9890

t + 2 HSWt, HSWt−1, HSWt−2 0.0450 0.0305 0.9833 0.0530 0.0374 0.9799

t + 4 HSWt, HSWt−1, HSWt−2 0.0801 0.0573 0.9596 0.0835 0.0592 0.9499

t + 8 HSWt, HSWt−1, HSWt−2 0.1263 0.0824 0.9124 0.1358 0.0996 0.8678

t + 12 HSWt, HSWt−1, HSWt−2 0.1573 0.1079 0.8808 0.1754 0.1308 0.7792

t + 24 HSWt, HSWt−1, HSWt−2 0.1919 0.1414 0.7085 0.2322 0.1776 0.6134
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The GPR predictions demonstrated varying RMSE and MAE values across different
time horizons, ranging from 0.0391 m and 0.0274 m to 0.2322 m and 0.1776 m. In comparison,
the corresponding values for PLSR ranged from 0.0394 m and 0.0277 m to 0.2363 m and
0.1797 m, respectively, while for RF, they ranged from 0.0396 m and 0.0279 m to 0.2429 m
and 0.1828 m. When comparing GPR to other methods in predicting HSW at the t + 24
horizon, the relative RMSE differences were 17.37%, 8.11%, 6.07%, 4.41%, and 1.74% for
M5RT, MARS, PCR, RF, and PLSR, respectively. These findings are consistent with those of
the first station, indicating a larger disparity between GPR and other regression methods
when forecasting HSW one day in advance.

Figures 4 and 5 compare the results visually through scatterplots for the first and sec-
ond stations. While GPR’s accuracy in predicting HSW for the next hour is somewhat better
than that of other models (excluding M5RT), the difference was not statistically significant.
Figures 6 and 7 are Taylor diagrams illustrating GPR’s superior RMSE and correlation
values. Moreover, compared to other approaches, the sd of the GPR predictions was more
in line with the actual values. Figures 8 and 9 show a comparison of the distribution of the
predictions produced by different regression methods. The GPR distribution more closely
resembles the observed one in both stations. The computational times of the methods are
compared in Table 15. The simulations were done in the MATLAB environment (MATLAB
R2017b) using a computer with a Windows 10 (64 bit) operating system with an Intel(R)
Core (TM) i5-10500 CPU @ 3.10 GHz processor with 16 GB RAM. All three input cases are
included in Table 15. It is clear that the methods are fast enough; however, GPR seems to be
slightly faster than the other methods in simulating HSW, with an average computational
time of 0.1058 min.

Table 15. Computational time of the applied models on the basis of RMSE fitness function
(in minutes).

Models HSWt, HSWt, HSWt−1, HSWt, HSWt−1, HSWt−2 Mean Time

M5RT 0.1638 0.1724 0.1782 0.1715

MARS 0.1437 0.1519 0.1576 0.1511

PCR 0.1346 0.1482 0.1543 0.1457

RF 0.1083 0.1176 0.1217 0.1159

PLSR 0.1158 0.1264 0.1359 0.1260

GPR 0.0979 0.1068 0.1126 0.1058

5.2. Discussion

In the presented study, six different metaheuristic regression methods were compared
in predicting multiple-step HSWs using historical values as inputs for the models. Compar-
ison results revealed that the Gaussian process regression provided the best predictions
compared to the other alternatives for predicting HSWs 1 h ahead. The improvement in
RMSE and MAE was 11.08% and 0.27%, respectively, in the first station and 6.46% and
0.76% in the second station when comparing the GPR to the M5RT and PLRS methods. The
M5RT model offered the worst predictions at multiple horizons from t + 1 to t + 24. This
result can be explained by the previous literature [63,64]. Srivastava et al. [63] compared
the M5RT, MARS and RF methods for predicting solar radiation and found that the RF
provided the best accuracy while the M5RT performed worse than the MARS method.
Wang et al. [64] compared the MARS, M5RT and RF for predicting soil salinity and found
RF to provide the best accuracy.
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With substantial wave height predictions across numerous horizons, GPR showed
the greatest accuracy for both stations. This approach’s primary benefit is that it provides
precise prediction results and expresses the uncertainty of such results. It uses the Bayesian
method, providing a principled approach to dealing with uncertainty [65]. Previous studies
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also found superior accuracy for GPR in different research areas. Asante-Okyere et al. [66]
applied GPR for predicting reservoir porosity and permeability and obtained superior
accuracy over the back-propagation ANN, generalized-regression ANN (GRANN), and
radial-basis-function ANN. Shabani et al. [67] used four ML methods—GPR, K-nearest
neighbors (KNN), RF, and support vector regression—to predict pan evaporation and
found that GPR performed best. Singh et al. [68] compared the accuracy of GPR and
GRANN for modelling hybrid micro-electric discharge machining and found that GPR
provided better accuracy.

Accurate real-time predictions of HSW characteristics are crucial for various short-term
management tasks, including energy power generation. Marine engineering applications
such as ship-movement forecasting, construction of maritime structures, dredging oper-
ations, and disaster warnings all rely on precise hourly predictions of HSW [33]. As the
forecasting horizon extends from 1 h to 24 h, there is a noticeable decline in the accuracy of
the models. However, GPR (gaussian process regression) generally exhibits superiority in
such scenarios, offering potential benefits for monitoring HSW. Machine learning enables us
to uncover connections between physical parameters that may be hidden from or unknown
to us. Wave formation involves a nonlinear and intricate physical mechanism, and HSW is
influenced by various factors, including wind speed, sea surface temperature, water depth,
air humidity, and other weather parameters. In this particular study, only HSW data were
utilized as inputs due to the unavailability of other relevant influencing parameters.

6. Conclusions

The presented work studied the applicability of six metaheuristic regression
methods—M5RT, MARS, PCR, RF, PLSR and GPR—in predicting short-term significant
wave height at multiple horizons. Data from two stations, the Townsville and Brisbane
buoys, were used, and models used historical data as inputs. Among the regression meth-
ods, GPR provided the best accuracy in predicting 1 h prediction at both stations. It was
closely followed by the PLSR method, while the M5RT produced the worst outcomes.
The differences among the methods increased with the increase of the prediction horizon.
However, GPR was found to be the best model for all prediction horizons. GPR improved
the RMSE of M5RT, MARS, PCR, RF and PLSR by 17.37, 8.11, 6.07, 4.41 and 1.74% (first
station) and by 24.79, 10.78, 5.78, 5.14 and 3.37% (second station), respectively, in predicting
HSW at the t + 24 horizon (one day ahead) in the test stage. The study’s outcomes showed
that GPR is a useful tool for predicting significant wave height at multiple time horizons
from one hour to one day ahead, and can be used to monitor significant wave height for the
study area. Generalization of the implemented methods can be explored in future studies
by employing data from other sites.
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