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Abstract: The potential of four different neuro-fuzzy embedded meta-heuristic algorithms, particle
swarm optimization, genetic algorithm, harmony search, and teaching–learning-based optimization
algorithm, was investigated in this study in estimating the water quality of the Yamuna River in Delhi,
India. A cross-validation approach was employed by splitting data into three equal parts, where the
models were evaluated using each part. The main aim of this study was to find an accurate prediction
model for estimating the water quality of the Yamuna River. It is worth noting that the hybrid
neuro-fuzzy and LSSVM methods have not been previously compared for this issue. Monthly water
quality parameters, total kjeldahl nitrogen, free ammonia, total coliform, water temperature, potential
of hydrogen, and fecal coliform were considered as inputs to model chemical oxygen demand (COD).
The performance of hybrid neuro-fuzzy models in predicting COD was compared with classical
neuro-fuzzy and least square support vector machine (LSSVM) methods. The results showed higher
accuracy in COD prediction when free ammonia, total kjeldahl nitrogen, and water temperature were
used as inputs. Hybrid neuro-fuzzy models improved the root mean square error of the classical
neuro-fuzzy model and LSSVM by 12% and 4%, respectively. The neuro-fuzzy models optimized
with harmony search provided the best accuracy with the lowest root mean square error (13.659) and
mean absolute error (11.272), while the particle swarm optimization and teaching–learning-based
optimization showed the highest computational speed (21 and 24 min) compared to the other models.

Keywords: river water; pollution; chemical oxygen demand; neuro-fuzzy; meta-heuristic algorithms;
harmony search

1. Introduction

The industrialization of economics has caused serious environmental problems world-
wide. This issue made the members of the United Nations agree to 17 sustainable develop-
ment goals (SDGs) for growing economies and poverty reduction, while preserving the
environment [1]. Conserving the oceans and seas is one of the fundamental goals of the
SDGs. Rivers are one of the primary sources of water that discharge from the land to the
sea, and can transfer pollution to the seas and oceans.

Water is vital for life, and the river is the major source of water for life. Therefore, river
water quality (WQ) and maintaining river WQ are crucial for sustainable living on earth.
They are also crucial for the sustainability of the global ecosystem. However, economic
activities, industrialization, and urbanization have affected river WQ globally. This is more
prominent in developing countries, due to rapid but often unplanned development. The
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Yamuna River, the largest tributary of India’s biggest river Ganges, is an example of such
pollution. River water pollution continuously increased with increased transportation,
urbanization, and industrialization. Industrial wastes, city sewerages, and agricultural
runoff significantly reduced the river WQ [2–5] and disturbed the whole ecosystem, includ-
ing animals and humans, especially children’s health. Monitoring the WQ of the Yamuna
River is urgent to adopt protective measures and ensure ecosystem stability [6,7]. However,
precise WQ monitoring is challenging for the river Yamuna due to the effect of many points
and non-point pollution sources. Robust models are required to estimate WQ changes
accurately, with minimum environmental inputs [8].

Chemical oxygen demand (COD) indicates the amount of oxidizable organic material
in the river water and, therefore, the dissolved oxygen (DO) levels and the anaerobic
conditions. A higher COD indicates a lower DO level and insufficient conditions for
aquatic life. Therefore, COD is widely used to measure river WQ [9–11]. Numerous models
have been developed for predicting river WQ. Most of these models are statistical, based
on multiple linear regression, moving average, and auto-regressive moving average. Such
statistical methods cannot address the nonlinearity in data; thus, they often fail to predict
WQ in complex situations [12–14]. Recent studies indicate that ordinary and advanced
artificial intelligence (AI) models are robust tools in pattern recognition, and are gaining
popularity [15]. Yilma et al. [16] recommended the application of an artificial neural
network (ANN) for the prediction of the river WQ index. Ahmed et al. [17] compared the
performance of an adaptive neuro-Fuzzy inference system (ANFIS) and two ANNs in the
prediction of river WQ. The results demonstrated that the ANFIS was capable of providing
greater accuracy. Abba et al. [18] developed three AI models for the prediction of WQ. The
considered models included the ANFIS, ANN, and least square support vector machine
(LSSVM). The obtained results indicated that the ANFIS outperformed the other methods.
Lee and Kim [19] used an ANFIS structure for the simulation of biological oxygen demand
(BOD) in the Dongjin River. The results confirmed the accuracy of the developed ANFIS.
Wong et al. [20] used an ANN and square support vector machine (SVM) for monsoonal
river classification based on water quality. The results approved the accuracy of both the
ANN and LSSVM; however, the ANN was more accurate.

Hybrid AI models, e.g., LSSVM or ANFIS with meta-heuristic algorithms, have been
introduced to address the drawbacks of statistical methods [21–24]. Fadaee et al. [25] used a
butterfly optimization algorithm (BOA) for training the ANFIS to predict dissolved oxygen
(DO) in rivers. The results showed that the BOA is stronger than other optimization algo-
rithms in the literature. Song et al. [26] developed a model for the prediction of WQ based
on the LSSVM and sparrow search algorithm (SSA). The capability of LSSVM–SSA was
confirmed in the Yangtze River. Arya Azar et al. [27] developed two hybrid algorithms for
estimating the longitudinal dispersion coefficient of river pollution. The models included
a hybrid of the ANFIS and SVR, with Harris hawks optimization (HHO) meta-heuristic
algorithm. The results demonstrated that the HHO may increase the performance of
AI models.

Around 40% of India’s populace relies on the Yamuna River for water supply. There-
fore, the Yamuna River’s WQ prediction using highly accurate models is directly related to
national public health and a sustainable environment. In this study, AI-based models were
used for accurate prediction of the Yamuna River’s WQ. The least square support vector
machine (LSSVM) model was developed using the strength of kernels, which can predict
any phenomenon much more accurately than statistical models [28–30]. Kernel-based
methods can handle the nonlinearity and non-stationary of time series and accurately
predict the series [31–33]. The ANFIS has emerged as a powerful AI model for predicting
environmental processes. It is more accurate than the classical AI models [34]. However,
the ANFIS also requires tuning of its internal parameters for improved accuracy. The
ANFIS uses derivative-based learning as the standard parameter learning process, which
has a high probability of becoming trapped in local minima. The recent literature revealed
that integrating AI models with optimization algorithms could improve their prediction
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performance by finding optimal control parameters. In the present study, the ANFIS was
integrated with four meta-heuristic algorithms, particle swarm optimization (PSO), genetic
algorithm (GA), harmony search (HS), and teaching–learning-based optimization (TLBO)
to predict the Yamuna River, Delhi’s long-term WQ. Most meta-heuristic algorithms need
to be initialized before starting the iterations to calculate the best answer. TLBO was chosen
since it is known as one of the optimization algorithms that needs the lowest number of
initial parameters. PSO, GA, and HS are famous and powerful algorithms, and their perfor-
mance has been confirmed in many disciplines. The performances of hybrid ANFISs were
compared with the classical ANFIS method to show the efficiency of the TLBO algorithm
compared to the classical method. The heuristic ANFIS methods were also compared with
the LSSVM method, which was recently applied by Kisi and Parmar [21] to investigate
the accuracy of proposed neuro-fuzzy methods in estimating COD. It is worth noting that
the application of LSSVM, as well as TLBO, PSO, GA, and HS meta-heuristics algorithms
together with the ANFIS to model WQ variables, is a novel comparison. Since the perfor-
mance of meta-heuristics depends on the particular problem, the results of this research
can determine the best candidates for practical applications with the Yamuna River.

A brief overview of the study area is provided in Section 2, whereas a description of
the ANFIS and meta-heuristics algorithms are provided in Section 3. Section 4 discusses
the results obtained through the application of the models, and finally, Section 5 provides
the main conclusions derived from the study, including limitations and recommendations.

2. Case Study

The Yamuna River is the longest and largest tributary of the Ganga, the largest river in
India. After originating from the Yamunotri Glacier in the Garhwal Himalayas in northern
India, it travels 1376 km before merging with the River Ganga at Allahabad. The Yamuna
River contributes 40.2% of the total water of the Ganga. Nearly 70% or 57 million inhabitants
of the Indian capital Delhi depend on the Yamuna River for water. The river mixes with
the drainage system many times during its long travel from its origin, which causes severe
pollution of its water.

The sampling site at Nizamuddin in Delhi is used to monitor the WQ of the Yamuna.
The industrial waste and sewerage of the states of Haryana and Delhi affect the WQ at the
sample site (Figure 1). This study used 10-year monthly average COD data (January 1999–
April 2009) collected by the Central Pollution Control Board (www.cpcb.nic.in, accessed on
1 July 2020). A basic statistical summary of the data is provided in Table 1. WQ parameters
of free ammonia (AMM), total kjeldahl nitrogen (TKN), water temperature (WT), total
coliform (TC), fecal coliform (FC), and potential of hydrogen (PH) were recorded at the
sample site. Table 2 provides the Pearson’s correlations between the WQ parameters and
COD for all of the data sets. It is clear from the table that the COD is highly positively
correlated with the river water parameters AMM, TKN, TC, and FC, while it has negative
correlations with the pH and WT parameters. The mean values of the river water parame-
ters for the studied period are 7.47225 mg/L, 65.05833 mg/L, 15.42467 mg/L, 20.498 mg/L,
25.68517 mg/L, 39,941,063 mg/L, and 5,084,043 mg/L for the pH, COD, AMM, TKM, WT,
TC, and FC, respectively.

The WQ parameters were used as inputs to develop the COD prediction in different
scenarios. The effect of the parameters was analyzed in these scenarios. Cross-validation
was used to assess the model performance, where the available data (120 monthly values)
were split into three equal parts, M1, M2, and M3, as shown in Table 3. Thus, the models
were evaluated for three different data sets. The period of each training and test is provided
in Table 3, where M1 indicates model 1, and vice versa. The data of the clusters were
divided into two main parts, including the training and the testing data sets. The models
were optimized using the training part, and the testing data sets were used for evaluating
the accuracy of the predictions. About 15% of the training data were randomly separated
during the optimization process to prevent overfitting. In cluster M1, the models were
trained using data from 1999 January to 2005 August (80 monthly values), and were tested
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using data from 2005 September to 2009 December (40 monthly values). The other periods
can be observed in Table 3.
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Figure 1. Sampling site at Nizamuddin in Delhi.

Table 1. The monthly statistics of COD at the sampling site in Delhi during different periods (Kisi
and Parmar, [21]).

Data Set xmean Sx Csx xmin xmax

January 1999 to April 2002 56.8 22.6 −0.08 18 104
April 2002 to September 2005 70.4 25.4 −0.64 13 116

September 2005 to December 2009 68.0 31.9 −0.24 9 127
Note: xmean, Sx, Csx, xmin, and xmax indicate the overall mean, standard deviation, and skewness, respectively.
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Table 2. Pearson’s correlations between water quality parameters and COD.

pH AMM TKN WT TC FC

COD

Pearson Correlation −0.048 0.823 ** 0.741 ** −0.273 ** 0.211 * 0.164

Sig. (2-tailed) 0.603 0.000 0.000 0.003 0.021 0.074

N 120 120 120 120 120 120

Notes: ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 3. The training and test data sets used in the study (Kisi and Parmar, [21]).

Cross-Validation Training Testing

M1 Jan1999 to August 2005 September 2005 to December 2009

M2 January 1999 to April 2002 &
September 2005 to December 2009 May 2002 to August 2005

M3 May 2002 to December 2009 January 1999 to August 2002

3. Methods
3.1. Least Square Support Vector Machine

The SVMs were constructed based on the statistical learning theory and the structural
risk minimization principle. These make the SVMs sufficiently capable of not becoming
trapped in local minima. However, reaching out to an accurate SVM model was challenging
due to its requirement of solving a set of nonlinear quadratic equations. In this respect,
Suykens et al. [35] introduced a simpler form of the SVM known as the least square
support vector machine (LSSVM). LSSVM employs a set of linear equations to train models.
Similarly to the SVMs, the LSSVMs models are based on kernel methods, which can
accurately estimate hydrological phenomena during training and testing [21].

3.2. Adaptive Neuro-Fuzzy Inference System

The adaptive neuro-Fuzzy inference system (ANFIS) is a robust data-driven model that
integrates a feed-forward artificial neural network (ANN) and fuzzy inference system (FIS)
to simulate complex problems. In the ANFIS, the Sugeno-type FIS part is utilized to process
the input information using different numbers and membership functions (MFs). For the
adjustment of the fuzzy logic parameters, an adaptive learning algorithm that integrates
the least square and ANN training algorithm (gradient descent) is utilized. Information
about the theoretical and practical usage of the ANFIS can be found in several pertinent
sources [36,37].

3.3. The Hybrid Procedure of ANFIS and Meta-Heuristic Algorithms

In the ANFIS, MF parameters, such as the center and the width in Gaussian MFs,
should be optimized. In the standard version of the ANFIS, the amalgamation of gradient
descent (CD) and least square estimator (LSE) optimizes the parameters. Instead of using
the CD-LSE algorithm, the ANFIS structure can be merged with meta-heuristic algorithms.
It has been reported in some previous studies that merging meta-heuristic algorithms
improves the model accuracy in solving complex hydrological problems [38–40].

This study assessed the skill of the ANFIS model merged with four meta-heuristic
algorithms, particle swarm optimization (PSO), genetic algorithm (GA), harmony search
(HS), and teaching–learning-based optimization (TLBO), and compared their performance
with the standalone ANFIS model. The performance was compared in optimizing the
Gaussian MF parameters for the inputs and linear MF parameters for the output of the
ANFIS. Figure 2 shows a flowchart of the developed integration of the ANFIS with meta-
heuristic algorithms. A brief description of the algorithms is as follows.
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3.3.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is considered a population-based evolutionary
optimization algorithm that can be applied to decision-making functions. Its creation was
inspired by the sociological and biological behavior of animals in groups (e.g., flocks of
birds). In PSO, each potential solution (swarm) represents the particle of a population.
Particles follow the optimal particle (global best; Gbest) through a multi-dimensional search
space with keeping the memory of their own previous best personal solution (Pbest). In
this regard, each particle updates its position and velocity vector according to the values of
Pbest and Gbest [41,42].

3.3.2. Genetic Algorithm

Genetic algorithm (GA) is a search technique that is widely employed to solve opti-
mization issues. It is a particular kind of evolutionary algorithm that makes use of concepts
from evolutionary biology including natural selection and genetic drift. GAs use Darwinian
principles of natural selection to arrive at the best possible formula for making a prediction
or modifying a pattern. They work well with regression-based forecasting methods. It
mimics the way natural selection works to solve problems. Some of the inputs derive
solutions via genetic selection, which are then evaluated as candidates using the fitness
function. The process is iterated until the termination condition is fulfilled. In general, GA
is an iteration-based algorithm which finds the solution through a random process [43–45].

3.3.3. Harmony Search

Harmony search (HS) is one of the newest and simplest meta-heuristic methods that
mimics an orchestra’s harmonic behavior of searching for the optimal feasible solution. In
other words, finding an optimal solution for a complex problem resembles playing music.
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The HS has recently become a popular optimization algorithm due to its applicability
for discrete and continuous optimization problems, its few mathematical calculations,
simple concept, few parameters, and easy running. Furthermore, compared to other
meta-heuristic methods, it has fewer mathematical requirements, and has been widely
adapted for solving different engineering issues through simply changing the parameters
and operators. Another advantage of this method over the GA is that it uses all the
available solutions in its memory, which yields higher flexibility in searching the solution
spaces [46–48].

3.3.4. Teaching–Learning-Based Optimization Algorithm

The teaching–learning-based optimization algorithm (TLBO), proposed by Rao [49],
was designed based on principles of learning and teaching, where the teacher plays an
essential role in the class, and can raise students’ levels and the average level of the class
through a good speech and communication style. Generally, an individual with a better
value and higher level compared to others is determined to be a teacher who shares his/her
knowledge with others. The TLBO algorithm comprises two optimization phases, the
teacher and learning phases.

In the teacher phase, the average class level is raised to the teacher level; thus, the
student’s level changes in this phase. The teacher phase is followed by the learning phase,
where the students can learn from and influence each other to improve students’ levels [50–52].

4. Application of the Methods

Four meta-heuristic algorithms, PSO, GA, HS, and TLBO, were applied to improve
the skill of the classic ANFIS in estimating river water chemical oxygen demand (COD)
from six water quality (WQ) parameters, free ammonia (AMM), total kjeldahl nitrogen
(TKN), water temperature (WT), total coliform (TC), fecal coliform (FC), and potential of
hydrogen (PH). Meta-heuristic algorithms were integrated with theANFIS to improve its
performance. The improvement was measured by comparing the hybrid ANFIS model
with the classical ANFIS and least square support vector machine (LSSVM) models. The
following input combinations were attempted, following the previous study of Kisi and
Parmar [13,15]:

i. AMM, TKN, and WT;
ii. AMM, TKN, WT, and TC;
iii. AMM, TKN, WT, TC, and FC;
iv. AMM, TKN, WT, TC, FC, and PH.

The parameter values of the meta-heuristic algorithms are provided in Table 4. These
values were selected based on recommendations from the literature [53,54], and trial
and error. The models’ performance was evaluated using root mean square error (RMSE),
correlation coefficient (R2), mean absolute error (MAE), and peak percent threshold statistics
(PPTS), as described in Equations (1)–(4), following the study of [15]:

RMSE =

√√√√ 1
N

N

∑
i=1

(CODi,o − CODi,e)
2 (1)

MAE =
1
N

N

∑
i=1
|CODi,o − CODi,e| (2)

PPTS(l,u) =
1

(kl − ku + 1)

ku

∑
i=kl

|Ei| (3)

Ei =
CODi,o − CODi,e

CODi,o
× 100 (4)
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where N is the sample size; CODi,o and CODi,e are the measured and modelled COD,
respectively; kl = lxN

100 and ku = uxN
100 in which u and l are higher and lower bounds in

%, respectively; Ei denotes the relative error of the ith data. PPTS(l,u) indicates the mean
absolute relative error in modeling COD varying between the top u% and l% data.

Table 4. The parameter values of the four meta-heuristic algorithms used in this study.

Optimization Method Parameters

PSO

Population Size = 500
Maximum Iteration = 2000

Iteration Weight = 1
Inertia Weight Damping Ratio = 0.95

Personal Learning Coefficient = 1
Global Learning Coefficient = 2

GA

Population Size = 500
Maximum Iteration = 2000
Crossover Percentage = 0.7

Mutation Rate = 0.01

HS

Harmony Memory Size = 500
Maximum Iteration = 2000

Pitch Adjustment Rate = 0.1
Harmony Memory Consideration Rate = 0.9

TLBO Population Size = 500
Maximum Iteration = 2000

5. Results and Discussion

Table 5 presents the performance of the applied methods in modeling Chemical
Oxygen Demand (COD) using three inputs, free ammonia (AMM), total kjeldahl nitrogen
(TKN), and water temperature (WT). Average statistics of the test results are also provided
in Table 5. It shows that the ANFIS with meta-heuristic algorithms performed better than
the least square support vector machine (LSSVM). As expected, merging the neuro-fuzzy
method and the new algorithms remarkably enhanced the predictivity of the classical
ANFIS method. Among the hybrid ANFIS methods, the ANFIS–HS provided the best
RMSE (14.024 mg/L), MAE (11.033 mg/L), and the best PPTS criterion estimates. The
ANFIS–HS decreased the RMSE of the classical ANFIS and LSSVM from 16.261 mg/L and
15.093 mg/L to 14.024 mg/L, with percentages of 13.75 and 7.08, respectively.

The RMSE, R2, MAE, and PPTS statistics of the different neuro-fuzzy methods and
LSSVM are shown in Table 6 for input combination (ii) (AMM, TKN, WT, and total coliform,
TC). Here also, the methods showed the best and worst predictivity for the M2 and M1
data sets. Training the ANFIS with meta-heuristic algorithms improved its accuracy,
similarly to the previous input combination. Hybrid ANFIS methods, except ANFIS–PSO,
outperformed the LSSVM, while ANFIS–PSO showed similar performance. Among the
hybrid methods, ANFIS–TLBO and ANFIS–HS showed the best performance. However,
the PPTS 5%, PPTS 10%, and PPTS 20% values of ANFIS–TLBO were lower than ANFIS–HS,
which indicates that TLBO acted slightly better than HS. The RMSE of the ANFIS and
LSSVM methods reduced from 16.722 mg/L and 15.177 mg/L to 14.565 mg/L, or by 13%
and 4% using the ANFIS–TLBO and ANFIS–HS methods, respectively. The addition of TC
as input could not improve the accuracy of the applied models.

Tables 7 and 8 show the test results of the applied methods for input combinations
(iii) and (iv), respectively. The results showed that all hybrid ANFIS methods provided a
higher skill than the classical ANFIS and LSSVM algorithms in modelling COD. For input
combination (iii), the ANFIS–HS provided the best accuracy in terms of various comparison
statistics. This method increased the RMSE of the classical ANFIS and LSSVM methods
by 7% and 6%, respectively. For input combination (iv), the ANFIS–TLBO showed the
best performance in RMSE, while the ANFIS–HS showed slightly lower PPTS than the
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ANFIS–TLBO. The RMSE of the ANFIS and LSSVM methods reduced from 16.451 mg/L
and 15.987 mg/L to 15.158 mg/L, or by 8% and 5%, respectively, using the ANFIS–TLBO.
The results indicate that COD estimation accuracy did not increase by including fecal
coliform (FC) and potential of hydrogen (PH) as inputs.

Table 5. Comparison of models’ performance with AMM, TKN, and WT as inputs.

Method Cross-Validation
Statistics

RMSE R MAE PPTS 5% PPTS 10% PPTS 20%

ANFIS

M1 17.874 0.824 13.845 29.360 30.872 34.236
M2 13.770 0.837 11.411 23.314 24.465 26.914
M3 17.139 0.743 13.552 30.714 32.284 35.637

Mean 16.261 0.801 12.936 27.796 29.207 32.262

ANFIS–PSO

M1 15.872 0.864 12.333 26.291 27.624 30.582
M2 13.723 0.840 11.327 22.364 23.469 25.750
M3 15.396 0.759 12.399 27.155 28.470 31.163

Mean 14.997 0.821 12.020 25.270 26.521 29.165

ANFIS–GA

M1 15.646 0.870 11.970 24.669 25.931 28.535
M2 13.802 0.837 11.315 23.415 24.597 27.082
M3 15.372 0.739 12.298 28.318 29.796 32.933

Mean 14.940 0.815 11.861 25.467 26.775 29.517

ANFIS–HS

M1 15.226 0.878 11.650 24.416 25.659 28.400
M2 12.802 0.860 10.249 19.934 20.978 23.030
M3 14.043 0.795 11.199 25.386 26.671 29.228

Mean 14.024 0.844 11.033 23.245 24.436 26.886

ANFIS–TLBO

M1 15.470 0.874 11.946 25.600 26.902 29.749
M2 13.280 0.850 11.051 22.889 23.966 26.371
M3 15.479 0.747 12.523 28.691 30.174 33.405

Mean 14.743 0.824 11.840 25.727 27.014 29.842

LSSVM *

M1 16.460 0.867 12.720 28.110 29.520 32.520
M2 13.590 0.915 11.150 22.760 23.980 26.500
M3 15.230 0.841 12.420 28.760 30.200 33.270

Mean 15.093 0.874 12.097 26.543 27.900 30.763

Note: * Results were obtained from Kisi and Parmar [21].

Table 6. Comparison of the applied models with AMM, TKN, WT, and TC as inputs.

Method Cross-Validation
Statistics

RMSE R MAE PPTS 5% PPTS 10% PPTS 20%

ANFIS

M1 16.403 0.860 12.637 28.844 30.341 33.574
M2 17.720 0.743 12.928 23.115 24.323 26.839
M3 16.042 0.710 12.944 28.882 30.297 33.398

Mean 16.722 0.771 12.836 26.947 28.320 31.270

ANFIS–PSO

M1 16.588 0.856 12.786 28.556 30.046 33.303
M2 13.290 0.850 11.006 22.369 23.454 25.810
M3 15.652 0.728 12.421 28.336 29.807 32.971

Mean 15.177 0.811 12.071 26.420 27.769 30.695

ANFIS–GA

M1 16.827 0.850 12.990 29.630 31.141 34.486
M2 13.830 0.835 11.213 22.845 24.036 26.378
M3 15.757 0.720 12.601 28.231 29.685 32.898

Mean 15.471 0.802 12.268 26.902 28.287 31.254

ANFIS–HS

M1 16.184 0.859 12.482 26.589 27.955 31.013
M2 12.940 0.858 10.683 22.403 23.580 26.161
M3 14.571 0.786 11.517 25.569 26.822 29.547

Mean 14.565 0.834 11.561 24.854 26.119 28.907
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Table 6. Cont.

Method Cross-Validation
Statistics

RMSE R MAE PPTS 5% PPTS 10% PPTS 20%

ANFIS–TLBO

M1 15.539 0.872 11.843 24.392 25.652 28.355
M2 13.427 0.846 10.578 21.101 22.192 24.656
M3 14.729 0.770 11.906 26.633 28.049 30.984

Mean 14.565 0.829 11.442 24.042 25.298 27.998

LSSVM *

M1 16.540 0.865 12.830 28.130 29.520 32.490
M2 13.760 0.837 11.250 22.840 24.020 26.580
M3 15.230 0.749 12.420 28.760 30.200 33.270

Mean 15.177 0.817 12.167 26.577 27.913 30.780

Note: * Results were obtained from Kisi and Parmar [21].

Table 7. Comparison of the applied models with AMM, TKN, WT, TC, and FC as inputs.

Method Cross-Validation
Statistics

RMSE r MAE PPTS 5% PPTS 10% PPTS 20%

ANFIS

M1 16.766 0.851 12.959 29.562 31.069 34.420
M2 14.895 0.812 11.793 23.277 24.444 26.965
M3 15.709 0.722 12.570 28.059 29.511 32.677

Mean 15.790 0.795 12.441 26.966 28.341 31.354

ANFIS–PSO

M1 16.595 0.853 12.559 28.952 30.457 33.915
M2 14.517 0.824 10.678 20.474 21.536 23.953
M3 15.644 0.724 12.449 28.473 29.961 33.219

Mean 15.585 0.800 11.895 25.966 27.318 30.362

ANFIS–GA

M1 16.764 0.851 12.959 29.560 31.066 34.416
M2 14.823 0.816 11.822 23.061 24.225 26.661
M3 14.985 0.749 12.128 27.780 29.207 32.282

Mean 15.524 0.805 12.303 26.800 28.166 31.120

ANFIS–HS

M1 15.761 0.866 11.738 23.790 25.013 27.775
M2 13.358 0.858 10.324 22.240 23.391 26.072
M3 15.177 0.762 11.486 23.987 25.145 27.593

Mean 14.765 0.829 11.183 23.339 24.516 27.147

ANFIS–TLBO

M1 16.243 0.858 11.936 25.587 26.867 29.685
M2 12.889 0.862 10.489 22.358 23.483 25.978
M3 15.522 0.726 12.419 27.342 28.685 31.691

Mean 14.885 0.815 11.615 25.096 26.345 29.118

LSSVM *

M1 16.440 0.868 12.620 27.800 29.260 32.350
M2 15.400 0.802 12.460 23.690 24.890 27.620
M3 15.250 0.748 12.450 28.640 30.070 33.130

Mean 15.697 0.806 12.510 26.710 28.073 31.033

Note: * Results were obtained from Kisi and Parmar [21].

The computational times of the applied hybrid methods are reported in Table 9 for
comparison. The computer’s properties were an Intel CPU, Core i7, 8 GB RAM. The total
average computational time (in minutes) provided in the table shows that ANFIS–HS
predicted the COD in the lowest time during calibration, while the ANFIS–GA was the
slowest method. The ANFIS–PSO and ANFIS–TLBO also showed high computational
speed compared to the ANFIS–GA method. This clearly indicates the superiority of the
PSO and TLBO algorithms over GA.
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Table 8. Comparison of the models’ performance with all variables as inputs.

Method Cross-Validation
Statistics

RMSE r MAE PPTS 5% PPTS 10% PPTS 20%

ANFIS

M1 16.864 0.848 13.068 29.912 31.473 34.998
M2 15.451 0.802 12.383 23.949 25.160 27.705
M3 17.038 0.707 13.315 30.207 31.728 34.754

Mean 16.451 0.786 12.922 28.023 29.454 32.486

ANFIS–PSO

M1 15.534 0.873 11.782 24.583 25.842 28.630
M2 14.224 0.829 11.550 23.603 24.783 27.307
M3 15.726 0.722 12.583 28.078 29.529 32.684

Mean 15.161 0.808 11.972 25.421 26.718 29.540

ANFIS–GA

M1 16.634 0.860 12.679 27.777 29.227 32.420
M2 15.335 0.804 12.276 23.917 25.103 27.664
M3 15.250 0.748 12.174 27.890 29.352 32.517

Mean 15.740 0.804 12.376 26.528 27.894 30.867

ANFIS–HS

M1 16.498 0.857 12.703 24.229 25.408 27.878
M2 13.659 0.844 11.272 23.102 24.198 26.654
M3 15.998 0.717 12.759 28.147 29.606 32.547

Mean 15.385 0.806 12.245 25.159 26.404 29.026

ANFIS–TLBO

M1 16.746 0.851 12.842 28.011 29.456 32.690
M2 12.850 0.860 10.480 21.734 22.821 25.178
M3 15.878 0.725 12.663 27.699 29.131 32.144

Mean 15.158 0.812 11.995 25.815 27.136 30.004

LSSVM *

M1 16.590 0.861 12.720 28.400 29.870 33.170
M2 15.180 0.809 12.630 23.970 25.080 27.530
M3 16.190 0.706 13.140 31.150 32.680 35.950

Mean 15.987 0.792 12.830 27.840 29.210 32.217

Note: * Results were obtained from Kisi and Parmar [21].

Table 9. Computational time (min) in predicting COD by the applied hybrid methods.

Optimization
Method

Inputs

AMM, TKN
and WT

AMM, TKN,
WT and TC

AMM, TKN,
WT, TC and FC

Total Average
CPU Time (min)

ANFIS–PSO 20 21 23 21
ANFIS–GA 104 106 114 108
ANFIS–HS 12 13 13 13

ANFIS–TLBO 22 24 25 24

The observed and model estimated CODs for the input combinations (i), (ii), (iii), and
(iv) are illustrated in Figures 2–5, respectively. The figures indicate less scattered estimates
by the hybrid ANFIS methods than the ANFIS and LSSVM methods. It is worth noting
that the R2 values were compatible with the model accuracy in some cases, as it indicated a
linear relationship between the observed and model estimations. However, R2 = 1 does
not indicate that the model exactly estimated all target values. This can also be observed
in Tables 5–8, in which correlation was incompatible with the RMSE and/or MAE. In
such cases, the RMSE and/or MAE statistics should be considered as the main criterion
to determine the best model. The hybrid models were more successful in modelling peak
values than the ANFIS and LSSVM, as confirmed by the PPTS statistics in Tables 5–8. It can
also be observed that the ANFIS–HS model with input combination (i) and the M2 data set
provided more precise results with smaller values of the RMSE (13.358 mg/L) and mean
MAE (10.324 mg/L). It is also visible from Figures 3–6 that all of the models could not
estimate the extreme COD values. The main reason for this was that limited data involving
extreme values prevented the models from learning the extreme phenomena appropriately.
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Figure 7 visually compares the RMSE and MAE of the best models using bar charts. This
graph also shows the superior accuracy of hybrid ANFIS models over the single ANFIS
and LSSVM. A Taylor’s diagram of the models for the M2 data set and input combination
(i) is illustrated in Figure 8. It shows that the hybrid ANFIS models were slightly more
accurate than the ANFIS.
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6. Discussion

The potential of four hybrid ANFIS methods was investigated in this study in esti-
mating the chemical oxygen demand COD of the Yamuna River in Delhi, India, using
monthly water quality parameters, total kjeldahl nitrogen, free ammonia, total coliform,
water temperature, potential of hydrogen, and fecal coliform as inputs to the models. The
outcomes of the implemented methods were compared with those of Kisi and Parmar [21].

The tables and figures revealed that the first input combination (AMM, TKN, and
WT) provided the best accuracy in modelling COD, as reported in the previous study [21].
Bhardwaj and Parmar [55] reported that COD has high positive correlations with AMM
(0.823) and TKN (0.741), and a negative correlation with WT (−0.273). Kora et al. [56] found
no correlation between COD with TC and FC at Hussain Sagar Lake, Hyderabad, India.
Kagalou et al. [57] studied the interrelationships between increased bacterial concentrations
in near-bottom samples and an increase in TC and FC counts after precipitation. Evidence
supports the idea that bacteria rely more on the source of pollution than the total organic
load, indicating weak or negative relationships between bacteriological indices and BOD
and COD levels.

It was observed from Table 4 that the best accuracy of the methods for the M2 data set,
while the M1 data set resulted in the worst accuracy. This may be because of a different
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data range of M1 compared to M2 and M3 (see Table 1), which caused difficulties for the
applied models in data extrapolation, as stated by Kisi and Parmar [21]. In addition, the
training data were more skewed (Csx = −0.64 and −0.24 for M2 and M3, respectively) than
the test data (Csx = −0.08) in this case.

The results showed that the accuracy of the models considerably fluctuated for these
inputs. For example, the adaptive neuro-fuzzy inference system (ANFIS) showed an
RMSE of 13.770 mg/L for M2, while it yielded 17.874 and 17.139 mg/L for M1 and M3,
respectively. This indicates that the testing methods with only one data set may mislead
the modeler about model performance. Therefore, cross-validation is very necessary for a
robust evaluation of the methods.

Liu et al. [58] predicted COD using dynamic kernel extreme learning machine (DKELM)
method, and compared it using partial least squares, ELM, dynamic ELM, and kernel ELM.
The best model (DKELM) provided an R2 of 0.7585 in the test stage. Sharafati et al. [59]
used ada boost regression, gradient boost regression, and random forest regression for the
prediction of COD; the highest correlation (R = 0.751) was found with the gradient boost
regression. In the present study, the ANFIS–GA produced an R2 = 0.740 (or R = 0.860),
which is acceptable compared to that of previous studies.

The main limitation of the present study is the use of limited data. That data interval
was monthly, and the available data period was very short. In order to justify the models’
robustness and/or generalization capability, more data from different regions should be
applied. It was clearly seen from the scatterplots that the hybrid methods could detect the
extreme values well, and this can be explained by the limited number of training examples,
especially for the COD extremes.

7. Conclusions

In the present study, the potential of four meta-heuristic-algorithm-integrated adap-
tive neuro-fuzzy inference system (ANFIS) models in estimating river water chemical
oxygen demand (COD) was explored. The ability of hybrid neuro-fuzzy methods was
investigated for different combinations of water quality (WQ) parameters, free ammonia
(AMM), total kjeldahl nitrogen (TKN), water temperature (WT), total coliform (TC), fecal
coliform (FC), and potential of hydrogen (PH) as inputs. Various input combinations
were used by applying a cross-validation method, and the results were compared with the
classical ANFIS and least square support vector machine (LSSVM) methods. The ANFIS
comprising AMM, TKN, and WT input parameters provided the best accuracy in estimating
monthly COD. The analysis outcomes revealed that employing meta-heuristic algorithms
improved the accuracy of the classical ANFIS, and generally outperformed the LSSVM
method in modelling COD. The ANFIS with harmony search algorithm provided the best
COD estimates in terms of accuracy and computational time. The applications produced
considerable fluctuations in estimations for the implemented models for three different
data sets; this suggested the necessity of using cross-validation for better assessment of the
applied methods.

The outcomes of this study led us to recommend the use of the hybrid neuro-fuzzy
model tuned with harmony search algorithm for estimating the water quality of the Yamuna
River, India. The results can be helpful for authorities and decision makers in managing
water pollution in this region. The hybrid model developed in this study can be used
to model COD, a vital WQ index, from AMM, TKN, and WT. The case study selected in
the current study is important for India, as the selected river is the water source for 40%
of the country’s population. Measuring COD requires sample preparation and chemical
pre-treatment, which are time-consuming and labor-intensive. The models developed in
this study can be employed for estimating COD amounts at critical points of the river,
which can be helpful for monitoring and controlling industrial and sewerage effects.

The developed models could not be generalized because only data from one site
were available to assess them; this can be carried out in future studies using more data
from other regions. The implemented methods can be applicable for other sites, but they
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require enough data and training. The models implemented by this study can be compared
with other advanced methods, such as hybrid artificial neural networks, extreme learning
machine, and deep learning models, in future studies using daily or monthly water quality
data for longer durations.
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