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Abstract: This study evaluates standalone and hybrid soft computing models for predicting dissolved
oxygen (DO) concentration by utilizing different water quality parameters. In the first stage, two
standalone soft computing models, including multilayer perceptron (MLP) neural network and
cascade correlation neural network (CCNN), were proposed for estimating the DO concentration in
the St. Johns River, Florida, USA. The DO concentration and water quality parameters (e.g., chloride
(Cl), nitrogen oxides (NOx), total dissolved solid (TDS), potential of hydrogen (pH), and water
temperature (WT)) were used for developing the standalone models by defining six combinations of
input parameters. Results were evaluated using five performance criteria metrics. Overall results
revealed that the CCNN model with input combination III (CCNN-III) provided the most accurate
predictions of DO concentration values (root mean square error (RMSE) = 1.261 mg/L, Nash-Sutcliffe
coefficient (NSE) = 0.736, Willmott’s index of agreement (WI) = 0.919, R2 = 0.801, and mean absolute
error (MAE) = 0.989 mg/L) for the standalone model category. In the second stage, two decomposition
approaches, including discrete wavelet transform (DWT) and variational mode decomposition (VMD),
were employed to improve the accuracy of DO concentration using the MLP and CCNN models with
input combination III (e.g., DWT-MLP-III, DWT-CCNN-III, VMD-MLP-III, and VMD-CCNN-III).
From the results, the DWT-MLP-III and VMD-MLP-III models provided better accuracy than the
standalone models (e.g., MLP-III and CCNN-III). Comparison of the best hybrid soft computing
models showed that the VMD-MLP-III model with 4 intrinsic mode functions (IMFs) and 10 quadratic
penalty factor (VMD-MLP-III (K = 4 and α = 10)) model yielded slightly better performance than
the DWT-MLP-III with Daubechies-6 (D6) and Symmlet-6 (S6) (DWT-MLP-III (D6 and S6)) models.
Unfortunately, the DWT-CCNN-III and VMD-CCNN-III models did not improve the performance
of the CCNN-III model. It was found that the CCNN-III model cannot be used to apply the hybrid
soft computing modeling for prediction of the DO concentration. Graphical comparisons (e.g.,
Taylor diagram and violin plot) were also utilized to examine the similarity between the observed
and predicted DO concentration values. The DWT-MLP-III and VMD-MLP-III models can be an
alternative tool for accurate prediction of the DO concentration values.
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1. Introduction

Water quality explains the descriptions of biological, chemical, and physical characteristics of
water bodies [1,2]. The assessment of water quality parameters, such as dissolved oxygen (DO), algae,
nitrogen (N), total nitrogen (TN), phosphorus (P), total phosphorus (TP), biochemical oxygen demand
(BOD), and chemical oxygen demand (COD), is necessary to improve the operational performance and
develop water resource management effectively [3].

DO, as one of the water quality parameters, refers to the free-level non-compound oxygen
dissolved in water or other liquids [4–8]. Too high or low levels of DO concentration can affect the
maintenance of water quality [9]. Therefore, DO is a key parameter to assess water quality in rivers,
reservoirs, and lakes, and as one of the indicators for the healthy functioning of aquatic ecosystems [10].

Water quality modeling includes contaminant transport, biochemical transformation, and
forecasting/prediction of water pollution [3,11]. Accurate forecasting/prediction of water quality
can provide the basic data to control water quality and deal with water quality incidents [12].
In traditional water quality modeling, water quality models can be calibrated using the trial and error
method. However, since the traditional calibration processes require a large number of iterations,
they cannot be effective [11]. Therefore, the inverse methods (e.g., fuzzy logic, Bayesian inference,
and maximum entropy technique, etc.), which are more robust, objective, and sound approaches, are
recommended. One of the widely used inverse methods is the indirect inverse method, which is
developed using forging nonlinear optimization problems [11,13].

The diverse researches on water quality modeling using heuristic approaches (e.g., artificial neural
network (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and support vector machines (SVM),
etc.) have been investigated and reported in the literature during the past two decades [14–20].

Diamantopoulou et al. [21] suggested the cascade correlation neural network (CCNN) to predict
the missing monthly data of water quality parameters. Kuo et al. [22] suggested the backpropagation
neural network (BPNN) to quantify the cause-and-effect relationship in reservoir eutrophication.
Zhao et al. [23] developed the BPNN to forecast water quality in reservoirs. Zou et al. [11] developed
the genetic algorithm-based neural network (GA-NN) to solve inverse water quality problems.
Dogan et al. [24] predicted the BOD concentration using the feedforward neural network (FFNN) in
the Melen River, Turkey. Najah et al. [3] used ANNs to predict three water quality parameters (i.e.,
total dissolved solids, electrical conductivity, and turbidity) in the Johor River, Malaysia.

Singh et al. [25] employed SVM (i.e., support vector classification (SVC) and regression (SVR))
to optimize a monitoring program using water quality data. Han et al. [26] used a radial basis
function neural network (RBFNN) for water quality prediction in the wastewater treatment process.
Gazzaz et al. [9] proposed the FFNN to predict water quality indexes in the Kinta River, Malaysia.
Xu and Lie [12] provided a hybrid approach combining the BPNN and wavelet transform (WT) to
develop a water quality model. Ay and Kisi [27] developed the k-means clustering-based multilayer
perceptron (k-means MLP) for modeling the COD concentration in Adapazari, Turkey. Li et al. [28]
implemented a hybrid model based on integrated SVR with the firefly algorithm (FFA) for prediction
of the water quality indicator (WQI) over a period of 10 years in the Euphrates River, Iraq.

Among the various heuristic techniques, ANNs (e.g., BPNN, MLP, and FFNN) have been
accomplished for prediction, forecasting, modelling, and estimation of DO [29,30]; BOD and DO [31];
TN, TP, and DO [32] using different input data in the river stream. Some heuristic approaches (e.g.,
MLP, FFNN, ANFIS, and RBFNN) have been applied to ponds, lakes, and reservoirs [5,33–37].

Singh et al. [4] introduced two ANNs for estimating water quality parameters (i.e., DO and BOD)
in the Gomti River, India. Faruk [38] proposed an autoregressive integrated moving average (ARIMA)
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based neural network (ARIMA-NN) to predict water quality parameters (e.g., temperature, boron, and
DO) in the Büyük Menderes River, Turkey. Ay and Kisi [10] proposed the MLP, RBFNN, and multilinear
regression (MLR) to estimate the DO concentration in Fountain Creek, Colorado. Han et al. [39]
developed a self-organizing RBF (SORBF) to predict the DO concentration in activated sludge
wastewater treatment processes. Martí et al. [40] proposed the MLP, gene expression programming
(GEP), and MLR to estimate the DO concentration at a sand filter outlet. Antanasijević et al. [41]
used the generalized regression neural network (GRNN) for forecasting the DO concentration in
the Danube River, Serbia. Heddam [42] proposed the grid partition-based ANFIS (ANFIS-GRID),
subtractive clustering based ANFIS (ANFIS-SUB), and MLR for estimating the DO concentration in the
Klamath River, Oregon. Najah et al. [43] applied the ANFIS for the prediction of DO concentration.
Nemati et al. [44] investigated ANFIS, MLP, and MLR to estimate the DO concentration in the Tai Po
River, Hong Kong. Keshtegar and Heddam [45] developed the modified response surface method
(MRSM) and MLP to estimate the DO concentration.

Although there have been many studies to estimate the DO concentration using heuristic
approaches, the applications of CCNN have been limited. Olyaie et al. [8] used the MLP, RBFNN, SVM,
and linear genetic programming (LGP) for predicting the DO concentration in the Delaware River,
New Jersey. Tomić et al. [46] determined the extrapolation of an ANN model, which was established
for predicting the DO concentration in the Danube River. In addition, a specific investigation using
heuristic and decomposition approaches, for example, the hybrid approaches using DWT [47–50] and
VMD [51], cannot be found with ease for DO forecasting/prediction category [12,52].

Liu et al. [48] proposed a hybrid model based on wavelet analysis (WA), least squares support
vector regression (LSSVR), and an optimal improved Cauchy particle swarm optimization (CPSO)
algorithm for predicting the DO concentration. The WA-LSSVR-CPSO model demonstrated a powerful
and reliable approach for predicting the DO concentration in intensive aquaculture. Ravansalar et al. [50]
evaluated 30-min DO concentration using the ANN and wavelet-based ANN (WANN) models in the
River Calder, England. Results showed that the WANN model provided a 30-min DO concentration
prediction that was comparable to ANN. Fijani et al. [51] discussed two hybrid models based on
the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN),
VMD, extreme learning machines (ELMs), and least squares support vector machines (LSSVMs)
models for predicting chlorophyll-a (Chl-a) and DO concentrations, respectively. They found that the
CEEMDAN-VMD-ELM model produced the best results to predict water quality parameters (e.g.,
Chl-a and DO concentration).

This paper proposes two heuristic models (e.g., MLP and CCNN) and decomposition approaches
(e.g., DWT and VMD) for predicting the DO concentration in the St. Johns River, Florida, USA. The
model performances are evaluated using model efficiency indexes and diagnostic analysis using
graphical comparisons (e.g., Taylor diagram and violin plot). The paper is organized as follows: The
second part provides methodologies, including MLP, CCNN, DWT, and VMD, respectively. The third
part proposes a study area and data, and the fourth part presents results and discussion. Conclusions
are found at the end of the paper.

2. Materials and Methods

2.1. Multilayer Perceptron (MLP) Neural Network Model

ANNs have been adopted as popular and well-established models in heuristic approaches.
An ANN is a parallel information processing system with a set of neurons arranged in one or more
hidden layers [53]. The MLP, which is an explicit form of the ANNs model, consists of three (or more)
layers with an input layer (where the data are fed into the model), one (or more) hidden layer (where the
data are processed to construct a model), and an output layer (where the results are generated) [54–57].
The neurons are connected by appropriate weights in each layer to the neurons in continuous layers.
In this study, the sigmoid and linear activation functions, which have been commonly utilized for
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modeling purposes [58–61], were utilized in the hidden and output layers, respectively. Moreover,
the Levenberg–Marquardt backpropagation (LMBP) algorithm was employed for training the MLP
model. The LMBP algorithm has a more accurate curve fitting ability that is applied to the input–output
data [62,63]. Figure 1a shows the structure of the MLP model, where, i, j, k = the input layer, the hidden
layer, and the output layer, respectively; Wkj = the connection weights between the hidden and the
output layers; Wji = the connection weights between the input and the hidden layers; B1 = the bias in
the hidden layer; and B2 = the bias in the output layer. In addition, DO = dissolved oxygen (mg/L);
Cl = chloride (mg/L); NOx = nitrogen oxides (mg/L); TDS = total dissolved solid; pH = potential of
hydrogen; and WT = water temperature (◦C).
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2.2. Cascade Correlation Neural Network (CCNN) Model

A CCNN is an efficient constructive neural network combining the idea of incremental structure
and learning during its training. Training starts with a minimal network consisting of an input and
output layer without a hidden layer. If the training can no longer reduce the residual error, then the
training phase is stopped, and enters the next phase for the training of a potential hidden neuron [64,65].
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The potential hidden neuron has associated connection weights from the input layer and all preexisting
hidden neurons but not toward the output layer. The connection weights are optimized by the gradient
ascent method to maximize the correlation between its output and the residual error of the CCNN
model. When a potential hidden neuron is trained, connection weights associated with the output layer
remain unchanged. When a potential hidden neuron is added to the structure of the CCNN model,
it becomes a new hidden neuron, and its incoming connection weights are fixed for the remainder of
the training phase [65–67]. Figure 1b represents the structure of the CCNN model.

2.3. Discrete Wavelet Transform (DWT)

Wavelet transform decomposition (WTD) can be generally classified as continuous wavelet
transform (CWT) and discrete wavelet transform (DWT) [68,69]. DWT requires less time of the
arithmetic processes, and is easier to implement than CWT [68,70]. A fast DWT algorithm requires
four filters for perfect implementation (e.g., decomposition low-pass, decomposition high-pass,
reconstruction low-pass, and reconstruction high-pass) [68,71–73]. The low-pass filter for decomposition
and reconstruction categories permits the interpretation of low frequency components, while the
high-pass filter approves the investigation of high frequency components [72,74]. The multi-resolution
approach using Mallat’s DWT algorithm can be explained as a process to depict ‘approximation’ and
‘details’ for an underlying signal. An approximation produces a conventional trend of the original
signal, while the details provide its high-frequency components [72,73,75]. The feature reports for
Mallat’s DWT algorithm can be found in Nason [76] and Percival and Walden [77]. Figure 2 shows
Mallat’s DWT algorithm for three-level decomposition [73].
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2.4. Variational Mode Decomposition (VMD)

VMD is a fully adaptive and non-recursive algorithm for time-frequency signal analysis [78].
An original time series, f, can be decomposed into K intrinsic mode functions (IMFs) using the VMD
approach. The constrained variation formulation for generating IMFs can be written as Equation (1):

min
{uk}, {ωk}

 K∑
k=1

‖∂t
[(
δ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt

‖

2

2

, s.t.
K∑

k=1

uk(t) = f , (1)

where δ = the Dirac function; j2 = −1; ‖ · ‖2 = the L2 distance; ωk = the center frequency; * = the
convolution; uk(t) = Ak(t) cos(φk(t)) = the kth IMF; φk = the non-decreasing function; and Ak = the
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non-negative function. The constrained variational formulation can be modified as the following
unconstrained pattern using an augmented Lagrangian method [78,79]:

L({uk}, {ωk}, λ) = α
K∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e− jωkt

‖
2

2

+‖ f (t) −
K∑

k=1
uk(t)‖

2

2
+

〈
λ(t), f (t) −

K∑
k=1

uk(t)
〉 (2)

where L = the augmented Lagrangian; λ = the Lagrange multiplier; and 〈a, b〉 = the scalar product of a
and b. Figure 3 explains the flowchart of the VMD algorithm [73].
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2.5. Hybrid Modeling Using DWT and VMD Approaches

DWT-based soft computing models (DWT-MLP and DWT-CCNN) are the hybrid models combined
with the standalone models (MLP and CCNN) and DWT, respectively. In the same manner, VMD-based
soft computing models (VMD-MLP and VMD-CCNN) conjugate the standalone models (MLP and
CCNN) and VMD, respectively. Therefore, DWT- and VMD-based soft computing models consist of
three steps (1). The training and testing dataset are decomposed into an approximation and multiple
details using the DWT approach, and multiple IMFs using VMD, respectively (2). The standalone models
(MLP and CCNN) are developed for each decomposed training dataset (3). The final predictions of DO
concentration values are obtained by aggregating the sub-time series predicted from the standalone
models (MLP and CCNN), respectively. Figure 4 represents the flowchart for DWT- and VMD-based
soft computing modeling.
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2.6. Performance Evaluation of Models

Performance measures are assessed by comparing predicted values with their corresponding
observed values using the following criteria:

I Root mean square error (RMSE):

RMSE =

√√
1
n

n∑
i=1

[DOobs −DOpre]
2. (3)

II Nash–Sutcliffe coefficient (NSE):

NSE = 1−

n∑
i=1

[DOobs −DOpre]
2

n∑
i=1

[DOobs −DOpre]
2

. (4)

III Willmott’s index of agreement (WI):

WI = 1−


n∑

i=1
(DOobs −DOpre)

2

n∑
i=1

(∣∣∣DOpre −DOobs
∣∣∣+ ∣∣∣DOobs −DOobs

∣∣∣)2

. (5)

IV Mean absolute error (MAE):

MAE =
1
n

n∑
i=1

∣∣∣DOpre −DOobs
∣∣∣. (6)
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V Coefficient of determination (R2):

R2 =


[

n∑
i=1

DOobsDOpre −
1
n

n∑
i=1

DOobs
n∑

i=1
DOpre

]
[

n∑
i=1

DO2
obs −

1
n

[
n∑

i=1
DOobs

]2 n∑
i=1

DO2
pre −

1
n

[
n∑

i=1
DOpre

]2

, (7)

where DOobs and DOpre are the observed and predicted values, respectively; DOobs and DOpre are
the average of observed and predicted values, respectively; and n is the length of time series data.
The discrepancy between observed and predicted values can be shown using the RMSE criterion.
A value of zero reflects perfect prediction. The RMSE criterion must be used for model evaluation to
obtain accuracy in absolute units [80]. NSE is taken into account to evaluate the ability of predicting
models [81]. If the squared difference between observed and predicted DO values is relatively large
to concur with the variance in the observed DO values, then the NSE criterion will be zero. If the
NSE criterion is negative, the results indicate that the observed mean is a better predictor than the
model [81,82]. If the NSE criterion is equal to one, it indicates a perfect model [83]. The WI criterion
varies between zero and one. WI calculates the ratio of mean square error (MSE) and can provide an
advantage over the RMSE [84–86]. The MAE criterion can provide better information for a model’s
prediction. The MAE cannot be weighted towards higher or lower magnitudes. However, it evaluates
all derivations from observed DO values in an equal manner [87].

3. Case Study

In this study, the fluctuations of the DO concentration independent of some parameters (e.g.,
chloride (Cl), nitrogen oxides (NOx), total dissolved solid (TDS), potential of hydrogen (pH), and water
temperature (WT)) were selected as a case study. This study area was located in the southern east of
Florida with a latitude of 28◦32′33.864′′ N and a longitude of 80◦56′33.428′′ W (Figure 5). All data
numbered 232 records along about 12 years (1996–2013). The data were arbitrarily divided into two
parts for training and testing phases. The training datasets were chosen at 80% (n = 186) of the data
length and the testing datasets covered the remaining 20% (n = 46).
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4. Application and Results

4.1. Setting up the Standalone Models

The statistical parameters of the collected dataset are presented in Table 1. A considerable wide
domain of data values can be observed in Table 1 (e.g., max of NOx = 0.46 mg/L and max of TDS
= 1950.0). This issue implies that before importing the data to the standalone models (MLP and
CCNN), they should be standardized between specific ranges (e.g., from 0 to 1). As can be seen from
Table 1, the pH was the highest correlated parameter to the DO concentration (correlation coefficient
(CC) = 0.760). It was followed by NOx (CC = 0.554) and then by WT with a negative value of the
correlation coefficient (CC = −0.544), which denoted the reverse effect of WT on the DO concentration.
Based on the coefficient of variation, the WT data were least dispersed, and the NOx data were most
sporadic. Several combinations for setting up the standalone models (MLP and CCNN) regarding
the input vectors (e.g., consisting of five chemical characteristic parameters of chloride (Cl), nitrogen
oxides (NOx), total dissolved solid (TDS), potential of hydrogen (pH), and water temperature (WT))
can be created. Bear in mind that the only value in the output layer always corresponded to the
DO concentration.

Table 1. Summary of statistics parameters of input and output variables (n = 232).

Variable Unit Min Max Median Mean SD CV CC

Input

Cl mg/L 40.000 850.000 200.000 247.649 164.973 0.666 0.418
NOx mg/L 0.001 0.460 0.072 0.089 0.087 0.978 0.554
TDS 134.000 1950.000 559.500 642.362 355.163 0.553 0.394
pH Standard Units 6.100 8.220 7.180 7.148 0.421 0.059 0.760
WT ◦C 8.980 32.220 23.510 232.378 5.211 0.022 −0.544

Output DO mg/L 0.090 11.480 5.920 5.485 2.565 0.468 1.000

Note: CV: the coefficient of variation, and CC: the coefficient correlation between inputs and DO.
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In this study, six different input combinations for constructing the models, including five chemical
characteristic parameters (combination ID = I) and even one quality parameter (combination ID = V
and combination ID = VI), based on the highest positive and negative values of CC in Table 1 were
constructed (see Table 2).

Table 2. Input combinations for structuring the MLP and CCNN models.

ID of the Input Combination Input Input No. Output

I Cl, NOx, TDS, pH, WT 5 DO
II Cl, NOx, pH, WT 4 DO
III NOx, pH, WT 3 DO
IV WT, NOx 2 DO
V WT 1 DO
VI PH 1 DO

Constructing the ANN architecture involves the creation of the ANN topology and training
parameters, such as the number of neurons in the hidden layer(s). Looking back at Table 2, the first step
of ANN architecture for determining the input combinations was already completed. In the second
step, the main structure of ANN in terms of the number of layers should be specified. Based on the
reports for the capability of the one hidden layer supervised neural networks in simulating complex
phenomena [88], this study adopted a one hidden layer architecture for the standalone models (e.g.,
MLP and CCNN). Finally, the optimal number of neurons in the hidden layer was determined using
the MSE criterion by a trial and error approach (see the third column of Tables 3–5).

Table 3. Performance statistics of various input combination using MLP and CCNN models.

Model ID Topology
Training Phase Testing Phase

RMSE
(mg/L) NSE WI R2 MAE

(mg/L)
RMSE
(mg/L) NSE WI R2 MAE

(mg/L)

MLP

I 5-2-1 1.211 * 0.778 * 0.933 * 0.781 * 0.924 * 1.425 0.663 0.897 0.769 1.126
II 4-2-1 1.237 0.768 0.930 0.769 0.938 1.359 0.694 0.902 0.774 1.062

III ** 3-4-1 1.306 0.742 0.918 0.752 0.994 1.261 * 0.736* 0.919 * 0.801 * 0.989 *
IV 2-4-1 1.830 0.493 0.817 0.496 1.437 1.427 0.662 0.868 0.707 1.072
V 1-1-1 2.138 0.308 0.676 0.310 1.810 2.007 0.332 0.684 0.335 1.633
VI 1-1-1 1.585 0.620 0.871 0.620 1.264 2.138 0.242 0.741 0.568 1.773

CCNN

I 5-1-1 1.227 0.772 0.933 0.773 0.953 1.172 0.772 0.935 0.795 0.790
II 4-1-1 1.196 * 0.783 * 0.937 * 0.785 * 0.881 * 0.581 0.773 0.935 0.801 0.195

III ** 3-2-1 1.245 0.765 0.931 0.767 0.922 0.550 * 0.797 * 0.942 * 0.825 * 0.185 *
IV 2-3-1 1.760 0.531 0.837 0.531 1.341 0.674 0.695 0.896 0.705 0.246
V 1-10-1 1.816 0.501 0.806 0.502 1.460 0.926 0.424 0.798 0.452 0.385
VI 1-2-1 1.579 0.622 0.875 0.624 1.251 0.757 0.615 0.869 0.654 0.297

Note: * shows the best performance for each column; ** stands for introducing the best model.

Table 4. Performance statistics using DWT-MLP-III and DWT-CCNN-III models.

Model DWT Topology
Training Phase Testing Phase

RMSE
(mg/L) NSE WI R2 MAE

(mg/L)
RMSE
(mg/L) NSE WI R2 MAE

(mg/L)

MLP-III

C6 9-27-1 0.523 0.958 0.989 0.958 0.345 0.364 0.978 0.994 0.978 0.291
C12 9-26-1 0.418 0.974 0.993 0.974 0.314 0.178 0.979 0.995 0.979 0.066
C18 9-21-1 0.441 0.971 0.992 0.971 0.343 0.202 0.973 0.993 0.975 0.072
D6 9-22-1 0.437 0.971 0.993 0.971 0.310 0.161 0.983 0.996 0.983 0.061
D12 9-22-1 0.346 0.982 0.995 0.982 0.255 0.180 0.978 0.995 0.979 0.066
D18 9-28-1 0.447 0.970 0.992 0.970 0.336 0.223 0.967 0.992 0.970 0.086
S6 9-22-1 0.437 0.971 0.993 0.971 0.310 0.161 0.983 0.996 0.983 0.061

S12 9-28-1 0.420 0.973 0.993 0.973 0.308 0.184 0.977 0.994 0.977 0.069
S18 9-37-1 0.434 0.971 0.993 0.972 0.294 0.186 0.977 0.994 0.977 0.068

CCNN-III

C6 9-0-1 1.341 0.727 0.914 0.730 1.035 1.360 0.693 0.907 0.739 1.055
C12 9-0-1 1.335 0.730 0.916 0.735 1.041 0.656 0.711 0.913 0.747 0.250
C18 9-1-1 1.217 0.776 0.935 0.780 0.942 0.611 0.749 0.927 0.794 0.219
D6 9-2-1 1.216 0.776 0.934 0.778 0.956 0.605 0.754 0.928 0.792 0.219
D12 9-1-1 1.245 0.765 0.929 0.768 0.971 0.659 0.708 0.918 0.757 0.244
D18 9-0-1 1.330 0.732 0.917 0.735 1.028 0.869 0.709 0.912 0.755 0.245
S6 9-2-1 1.216 0.776 0.934 0.778 0.956 0.605 0.754 0.928 0.792 0.219

S12 9-0-1 1.336 0.730 0.915 0.734 1.046 0.683 0.687 0.903 0.728 0.258
S18 9-1-1 1.256 0.761 0.929 0.763 0.958 0.612 0.749 0.928 0.787 0.207



Appl. Sci. 2019, 9, 2534 11 of 24

Table 5. Performance statistics using VMD-MLP-III and VMD-CCNN-III models.

Model VMD Topology
Training Phase Testing Phase

RMSE
(mg/L) NSE WI R2 MAE

(mg/L)
RMSE
(mg/L) NSE WI R2 MAE

(mg/L)

MLP-III
K = 3, α = 5 9-22-1 0.354 0.981 0.995 0.981 0.270 0.359 0.979 0.995 0.979 0.280
K = 4, α = 5 12-25-1 0.335 0.983 0.996 0.983 0.240 0.146 0.986 0.996 0.986 0.054
K = 4, α = 10 12-19-1 0.257 0.990 0.997 0.990 0.191 0.107 0.992 0.998 0.993 0.034

CCNN-III
K = 3, α = 5 9-0-1 1.312 0.739 0.920 0.744 1.003 1.307 0.717 0.916 0.762 0.965
K = 4, α = 5 12-0-1 1.322 0.735 0.921 0.737 1.026 0.611 0.750 0.926 0.792 0.228
K = 4, α = 10 12-0-1 1.327 0.733 0.921 0.738 1.036 0.597 0.761 0.929 0.791 0.218

4.2. Performance of Standalone Models

A statistical summary of the DO concentration performance using the standalone models (MLP
and CCNN) is given in Table 3. Results of the MLP model with higher (NSE, WI, and R2) and lower
(RMSE and MAE) values indicated that the first (MLP-I) and third (MLP-III) input combinations acted
better than the others for the training and testing phases, respectively. Since, however, choosing the
best model is always based on the performance of the testing phase, the MLP model with the third
combination topology (MLP-III) was selected as the best model. Similar interpretation can be done
for the CCNN models. While the second combination (CCNN-II) provided the best performance for
the training phase, the third input combination (CCNN-III) gave the best results for the testing phase.
All the statistics were enriched in the CCNN-III model in comparison to the MLP-III model. A general
comparison of the MLP-III and CCNN-III models revealed that the CCNN-III model yielded the better
predictions than the MLP-III model. The RMSE, NSE, WI, R2, and MAE criteria for the testing phase
of the CCNN-III model were improved by 129%, 8%, 2%, 3%, and 434% compared with the MLP-III
model, respectively.

The variations of the observed versus predicted DO concentration values are depicted in Figure 6a,b.
Visual analysis confirmed the better results of the CCNN-III model compared to those of the MLP-III
model with he observed values. Figure 7a,b provides scatter plots of the testing dataset between the
observed and predicted values using the MLP-III and CCNN-III models. From visual interpretation
of Figure 7a,b, it can be understood that the dots in the MLP-III plot were a bit more sporadic than
those in the CCNN-III plot. In addition, based on the coefficient of determination and the slope of the
trend lines to the unity, it can be concluded that the CCNN-III model acted better in predicting the
DO concentration.
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Figure 8 displays the error residual in mg/L over the testing phases of the MLP-III and CCNN-III
modeling. It explained that the residuals of local peaks were relatively insignificant for the CCNN-III
model, and tended to overestimate the DO concentration values; whereas the MLP-III model had
larger residuals, and tended to underestimate the DO concentration values.
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4.3. Performance of Hybrid Models

4.3.1. DWT-Based Soft Computing Models

To decompose the input dataset using the DWT algorithm, the optimal level of decomposition
(L) should be selected. In this study, Equation (8) was used to calculate the optimal level of
decomposition [68,70,72]. Although the optimal level of decomposition can be implemented using a
trial-and-error method, it is time-consuming and a waste of energy:

L = int[log(N)], (8)

where N is the length of the time series, int[k] returns the integer portion of k, and k is a real number.
In this study, L = 2 was determined using Equation (8). In addition, mother wavelets have to be set

before DWT-based soft computing models are employed. Using different mother wavelets, the dataset
was decomposed with a details (D1 and D2) and an approximation (A2) components for individual
input data [72,75]. For the DWT algorithm, Daubechies, Symmlets, and Coiflets have been frequently
used as mother wavelets in previous studies [72,75,89,90]. Therefore, the underlying mother wavelets,
including Coiflet-6 (C6), Coiflet-12 (C12), Coiflet-18 (C18), Daubechies-6 (D6), Daubechies-12 (D12),
Daubechies-18 (D18), Symmlet-6 (S6), Symmlet-12 (S12), and Symmlet-18 (S18), were implemented.
For each DWT-based soft computing model, the optimal mother wavelet yielding the best model
performance was recommended. Figure 9 shows an approximation and details decomposed using the
Symmlet-6 (S6) mother wavelet for the original water temperature (WT).
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Table 4 gives the performance statistics using the DWT-MLP-III and DWT-CCNN-III models
during the training and testing phases. Tables 3 and 4 suggested that all of the DWT-MLP-III models
improved the performance of the MLP-III model significantly, while all of the DWT-CCNN-III models
did not improve the performance of the CCNN-III model during the testing phase. In addition, the
DWT-MLP-III (D6) and DWT-MLP-III (S6) (e.g., RMSE = 0.161 (mg/L), NSE = 0.983, WI = 0.996,
R2 = 0.983, and MAE = 0.061 (mg/L) for D6 and S6) models produced the best results among all of the
DWT-MLP-III models during the testing phase. The combination of the DWT into the MLP-III model
could confirm the model accuracy for the prediction of the DO concentration. However, the CCNN-III
model provided better results than any of the DWT-CCNN-III models. A comparison explained that
all the DWT-MLP-III models yielded better results compared with all the DWT-CCNN-III models.

Figure 10a,b shows the scatter plots of the testing dataset between the observed and predicted
values using the DWT-MLP-III (S6) and DWT-CCNN-III (S6) models. From visual interpretation of
Figure 10a,b, it can be explained that the dots in the DWT-CCNN-III (S6) plot were extremely sporadic
compared to those in the DWT-MLP-III (S6) plot. In addition, based on the coefficient of determination
and the slope of trend lines to the unity, it can be concluded that the DWT-MLP-III (S6) model acted
better in predicting the DO concentration.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 24 

 
(b) D1 

 
(c) D2 

 
(d) A2 

Figure 9. Original water temperature and sub series (details (D1 and D2) and approximation (A2) 
components) decomposed using Symmlet-6 (S6) mother wavelet. 

Table 4 gives the performance statistics using the DWT-MLP-III and DWT-CCNN-III models 
during the training and testing phases. Tables 3 and 4 suggested that all of the DWT-MLP-III models 
improved the performance of the MLP-III model significantly, while all of the DWT-CCNN-III 
models did not improve the performance of the CCNN-III model during the testing phase. In 
addition, the DWT-MLP-III (D6) and DWT-MLP-III (S6) (e.g., RMSE = 0.161 (mg/L), NSE = 0.983, WI 
= 0.996, R2 = 0.983, and MAE = 0.061 (mg/L) for D6 and S6) models produced the best results among 
all of the DWT-MLP-III models during the testing phase. The combination of the DWT into the MLP-
III model could confirm the model accuracy for the prediction of the DO concentration. However, the 
CCNN-III model provided better results than any of the DWT-CCNN-III models. A comparison 
explained that all the DWT-MLP-III models yielded better results compared with all the DWT-
CCNN-III models. 

Figure 10a,b shows the scatter plots of the testing dataset between the observed and predicted 
values using the DWT-MLP-III (S6) and DWT-CCNN-III (S6) models. From visual interpretation of 
Figure 10a,b, it can be explained that the dots in the DWT-CCNN-III (S6) plot were extremely 
sporadic compared to those in the DWT-MLP-III (S6) plot. In addition, based on the coefficient of 
determination and the slope of trend lines to the unity, it can be concluded that the DWT-MLP-III 
(S6) model acted better in predicting the DO concentration. 

 
(a) DWT-MLP-III (S6) model 

Figure 10. Cont.



Appl. Sci. 2019, 9, 2534 15 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 24 

 
(b) DWT-CCNN-III (S6) model 

Figure 10. Scatter plots of observed and predicted DO values using DWT-based soft computing 
models for the testing phase. 

4.3.2. VMD-Based Soft Computing Models 

To decompose the input dataset using the VMD algorithm, the number of IMFs (K) and the 
quadratic penalty factor (α) have to be implemented in advance. In this study, different sets of 
parameters were investigated, and three sets of parameters with higher correlations between the 
original and predicted data (i.e., the aggregation of decomposed series) were selected. The three sets 
were (K, α) = {(3, 5), (4, 5), (4, 10)}. Among them, the optimal parameters (K = 4 and α = 10) yielding 
the best performance of the VMD-based soft computing models were chosen finally. Figure 11 shows 
the original WT series and the IMFs decomposed using the VMD algorithm (K = 4 and α = 10). 

 
(a) Original water temperature 

 
(b) IMF1 

 
(c) IMF2 

Figure 10. Scatter plots of observed and predicted DO values using DWT-based soft computing models
for the testing phase.

4.3.2. VMD-Based Soft Computing Models

To decompose the input dataset using the VMD algorithm, the number of IMFs (K) and the
quadratic penalty factor (α) have to be implemented in advance. In this study, different sets of
parameters were investigated, and three sets of parameters with higher correlations between the
original and predicted data (i.e., the aggregation of decomposed series) were selected. The three sets
were (K, α) = {(3, 5), (4, 5), (4, 10)}. Among them, the optimal parameters (K = 4 and α = 10) yielding
the best performance of the VMD-based soft computing models were chosen finally. Figure 11 shows
the original WT series and the IMFs decomposed using the VMD algorithm (K = 4 and α = 10).
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Table 5 shows the performance statistics using the VMD-MLP-III and VMD-CCNN-III models
during the training and testing phases. Tables 3 and 5 indicate that all of the VMD-MLP-III models
enhanced the performance of the MLP-III model enormously, while all of the VMD-CCNN-III models
did not enhance the performance of the CCNN-III model during the testing phase. In addition, the
VMD-MLP-III (K = 4 and α = 10) model (e.g., RMSE = 0.107 (mg/L), NSE = 0.992, WI = 0.998, R2 = 0.993,
and MAE = 0.034 (mg/L)) provided the best results among all of the VMD-MLP-III models during
the testing phase. The conjugation of VMD into the MLP-III model ensured the model accuracy for
predicting the DO concentration. However, the CCNN-III model provided better results compared to
all of the VMD-CCNN-III models. A comparison explained that all of the VMD-MLP-III produced
better results compared with all of the VMD-CCNN-III models.

Tables 4 and 5 explain that the statistical results of the DWT- and VMD-MLP-III models showed
similar statistical patterns. A comparison of the best models revealed, however, that the VMD-MLP-III
(K = 4 and α = 10) model yielded slightly better results than the DWT-MLP-III (D6 and S6) model.
Figure 12a,b shows scatter plots of the testing dataset between the observed and predicted values
using the VMD-MLP-III (K = 4 and α = 10) and VMD-CCNN-III (K = 4 and α = 10) models. From
visual interpretation of Figure 12a,b, it can be explained that the dots in the VMD-CCNN-III (K = 4 and
α = 10) plot were extremely sporadic compared to those in the VMD-MLP-III (K = 4 and α = 10) plot.
Based on the coefficient of determination and the slope of trend lines to the unity, it can be concluded
that the VMD-MLP-III (K = 4 and α = 10) model acted better in predicting the DO concentration.

In general, various studies have reported that the combination of soft computing models and
decomposition approaches improved the accuracy and reliability of model performance for predicting
DO concentration [12,47–52]. Even if the CCNN model showed the outstanding performance for
standalone models, the combination of the CCNN model and decomposition approaches cannot
improve the model performance. The special model structure (e.g., adding hidden nodes) can prevent
the model performance of complex nonlinear signals. To confirm the model performance, continued
studies are required using different data, soft computing models, and decomposition approaches for
predicting diverse environmental parameters (e.g., BOD, COD, TP, and TN etc.).
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4.4. Diagnostic Analysis

In this study, three diagnostic analysis methods (i.e., Taylor diagram and violin plot) were
considered for visual evaluation of the model performance.

4.4.1. Taylor Diagram

A polar plot presented by Taylor [91] was drawn for obtaining a visual understanding of model
performance. It has the ability to highlight the goodness of model performance in comparison to
observed values. The Taylor diagram depicts three statistics: (1) Correlation coefficient (the azimuth
angle), (2) normalized standard deviation (radial distance from the origin), and (3) RMSE (distance
from the reference observed point). A perfect matching of the predicted results is identified as a
complete overlay by the reference point with the correlation coefficient equal to unity and the exact
amplitude of variations compared with observations [91–94].

Figure 13a shows the Taylor diagram of the standalone models (MLP and CCNN). In the case of
the best models, the diagram shows that the CCNN-III model had a lower RMSE than the MLP-III
model. Although the correlation coefficients and standard deviations of the predicted data for both
models were less than the observations, the node representing the CCNN-III model was closer to the
observation node. Figure 13b shows the Taylor diagram of the hybrid models. The diagram shows
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that the DWT-MLP-III (S6) and VMD-MLP-III (K = 4 and α = 10) models had a lower RMSE than
the DWT-CCNN-III (S6) and VMD-CCNN-III (K = 4 and α = 10) models. Although the correlation
coefficients and standard deviations of the predicted data of the DWT-MLP-III (S6) and VMD-MLP-III
(K = 4 and α = 10) models were less than observations, the node representing the VMD-MLP-III (K = 4
and α = 10) model was closer to the observation node.
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4.4.2. Violin Plot

As a further diagnostic tool, the violin plot is utilized in Figure 14a,b to assess the predicted
results of the developed models for DO concentration. The violin plot, which has the ability to indicate
the probability distribution of an observed and predicted dataset, is categorized as a box plot with
the integration of the kernel density plot [95]. Based on the legends of Figure 14a, the median of
the observed data was predicted by the MLP-III accurately (6.173 vs. 6.403), while the 25th and
75th percentiles in the CCNN-III had a better fit than the MLP-III. In addition, the MLP-III model
overestimated the minimum, 25th percentile, median, and 75th percentile range of the DO concentration,
whereas the CCNN-III model underestimated the 25th percentile, median, and 75th percentile range
of the DO concentration. Overall, the violin plots indicated that the CCNN-III model performed
better than the MLP-III model. Figure 14b explains that the VMD-MLP-III (K = 4 and α = 10) model
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overestimated the minimum, 25th, and median of the DO concentration, while the DWT-MLP-III
(S6) underestimated the minimum, median, 75th percentile, and maximum of the DO concentration.
Overall, the violin plots indicated that the VMD-MLP-III (K = 4 and α = 10) model performed slightly
better than the DWT-MLP-III (S6) model.
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5. Conclusions

This study investigated the accuracy of two heuristic (MLP and CCNN) and decomposition
(DWT and VMD) approaches for predicting dissolved oxygen (DO) concentration. To achieve this
goal, the DO concentration and five chemical input parameters (Cl, NOx, TDS, pH, and WT) in the
St. Johns River, Florida, USA, were used. For training and testing the developed models, the total
dataset was divided into 80% and 20%, respectively. Several statistical indices (e.g., RMSE, NSE, WI,
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R2, and MAE) and diagnostic analyses (e.g., Taylor diagram and violin plot) were used to compare the
developed models.

In the first stage, it was found that the CCNN-III (RMSE = 0.550 mg/L, NSE = 0.797, WI = 0.942,
R2 = 0.825, and MAE = 0.185 mg/L) and MLP-III (RMSE = 1.261 mg/L, NSE = 0.736, WI = 0.919,
R2 = 0.801, and MAE = 0.989 mg/L) provided the best results based on the standalone model category.
In addition, a comparison suggested that the CCNN-III model performed better than the MLP-III model.
In the second stage, however, it was found that the DWT-MLP-III (D6 and S6) (RMSE = 0.161 mg/L,
NSE = 0.983, WI = 0.996, R2 = 0.983, and MAE = 0.061 mg/L) and VMD-MLP-III (K = 4 and α = 10)
(RMSE = 0.107 mg/L, NSE = 0.992, WI = 0.998, R2 = 0.993, and MAE = 0.034 mg/L) produced the
best results based on the hybrid model category. Unfortunately, the CCNN-III did not improve the
performance using the DWT and VMD approaches.
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neural network modeling of dissolved oxygen content in surface water: Inter- and extrapolation performance
with inputs’ significance analysis. Sci. Total Environ. 2018, 610, 1038–1046. [CrossRef] [PubMed]

47. Liu, S.; Xu, L.; Li, D.; Li, Q.; Jiang, Y.; Tai, H.; Zeng, L. Prediction of dissolved oxygen content in river crab
culture based on least squares support vector regression optimized by improved particle swarm optimization.
Comput. Electron. Agric. 2013, 95, 82–91. [CrossRef]

48. Liu, S.; Xu, L.; Jiang, Y.; Li, D.; Chen, Y.; Li, Z. A hybrid WA–CPSO-LSSVR model for dissolved oxygen
content prediction in crab culture. Eng. Appl. Artif. Intell. 2014, 29, 114–124. [CrossRef]

49. Alizadeh, M.J.; Kavianpour, M.R. Development of wavelet-ANN models to predict water quality parameters
in Hilo Bay, Pacific Ocean. Mar. Pollut. Bull. 2015, 98, 171–178. [CrossRef]

50. Ravansalar, M.; Rajaee, T.; Ergil, M. Prediction of dissolved oxygen in River Calder by noise elimination time
series using wavelet transform. J. Exp. Theor. Artif. Intell. 2016, 28, 689–706. [CrossRef]

51. Fijani, E.; Barzegar, R.; Deo, R.; Tziritis, E.; Konstantinos, S. Design and implementation of a hybrid model
based on two-layer decomposition method coupled with extreme learning machines to support real-time
environmental monitoring of water quality parameters. Sci. Total Environ. 2019, 648, 839–853. [CrossRef]

52. Huang, Y.; Schmitt, F.G. Time dependent intrinsic correlation analysis of temperature and dissolved oxygen
time series using empirical mode decomposition. J. Mar. Syst. 2014, 130, 90–100. [CrossRef]

53. McClelland, J.L.; Rumelhart, D.E. Explorations in Parallel Distributed Processing: A Handbook of Models, Programs,
and Exercises; MIT Press: Cambridge, MA, USA, 1989.

54. Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009.
55. Kim, S.; Shiri, J.; Kisi, O. Pan evaporation modeling using neural computing approach for different climatic

zones. Water Resour. Manag. 2012, 26, 3231–3249. [CrossRef]
56. Kim, S.; Shiri, J.; Kisi, O.; Singh, V.P. Estimating daily pan evaporation using different data-driven methods

and lag-time patterns. Water Resour. Manag. 2013, 27, 2267–2286. [CrossRef]
57. Kim, S.; Singh, V.P. Spatial disaggregation of areal rainfall using two different artificial neural networks.

Water 2015, 7, 2707–2727. [CrossRef]
58. Deo, R.C.; Sahin, M. An extreme learning machine model for the simulation of monthly mean streamflow

water level in eastern Queensland. Environ. Monit. Assess. 2016, 188, 90. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10661-013-3450-6
http://www.ncbi.nlm.nih.gov/pubmed/24078053
http://dx.doi.org/10.1016/j.engappai.2009.09.015
http://dx.doi.org/10.1016/j.conengprac.2012.01.001
http://dx.doi.org/10.1016/j.compag.2013.08.016
http://dx.doi.org/10.1016/j.jhydrol.2014.10.009
http://dx.doi.org/10.1007/s10661-013-3402-1
http://www.ncbi.nlm.nih.gov/pubmed/24057665
http://dx.doi.org/10.1007/s11356-013-2048-4
http://www.ncbi.nlm.nih.gov/pubmed/23949111
http://dx.doi.org/10.1007/s12665-015-4450-3
http://dx.doi.org/10.1007/s00521-017-2917-8
http://dx.doi.org/10.1016/j.scitotenv.2017.08.192
http://www.ncbi.nlm.nih.gov/pubmed/28847097
http://dx.doi.org/10.1016/j.compag.2013.03.009
http://dx.doi.org/10.1016/j.engappai.2013.09.019
http://dx.doi.org/10.1016/j.marpolbul.2015.06.052
http://dx.doi.org/10.1080/0952813X.2015.1042531
http://dx.doi.org/10.1016/j.scitotenv.2018.08.221
http://dx.doi.org/10.1016/j.jmarsys.2013.06.007
http://dx.doi.org/10.1007/s11269-012-0069-2
http://dx.doi.org/10.1007/s11269-013-0287-2
http://dx.doi.org/10.3390/w7062707
http://dx.doi.org/10.1007/s10661-016-5094-9
http://www.ncbi.nlm.nih.gov/pubmed/26780409


Appl. Sci. 2019, 9, 2534 23 of 24

59. Deo, R.C.; Sahin, M. Forecasting long-term global solar radiation with an ANN algorithm coupled with
satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. Renew. Sustain.
Energy Rev. 2017, 72, 828–848. [CrossRef]

60. Fahimi, K.; Seyedhosseini, S.M.; Makui, A. Simultaneous competitive supply chain network design with
continuous attractiveness variables. Comput. Ind. Eng. 2017, 107, 235–250. [CrossRef]

61. Zounemat-Kermani, M. Assessment of several nonlinear methods in forecasting suspended sediment
concentration in streams. Hydrol. Res. 2017, 48, 1240–1252. [CrossRef]

62. Nourani, V.; Baghanam, A.H.; Adamowski, J.; Gebremichael, M. Using self-organizing maps and wavelet
transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based
rainfall–runoff modeling. J. Hydrol. 2013, 476, 228–243. [CrossRef]

63. Barzegar, R.; Moghaddam, A.A.; Baghban, H. A supervised committee machine artificial intelligent for
improving DRASTIC method to assess groundwater contamination risk: A case study from Tabriz plain
aquifer, Iran. Stoch. Environ. Res. Risk Assess. 2016, 30, 883–899. [CrossRef]

64. Fahlman, S.E.; Lebiere, C. The cascade-correlation learning architecture. In Advances in Neural Information
Processing Systems 2; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; pp. 524–532.

65. Kim, S.; Singh, V.P.; Seo, Y. Evaluation of pan evaporation modeling with two different neural networks and
weather station data. Theor. Appl. Climatol. 2014, 117, 1–13. [CrossRef]

66. Karunanithi, N.; Grenney, W.J.; Whitley, D.; Bovee, K. Neural networks for river flow prediction. J. Comput.
Civ. Eng. 1994, 8, 201–220. [CrossRef]

67. Thirumalaiah, K.; Deo, M.C. River stage forecasting using artificial neural networks. J. Hydrol. Eng. 1998, 3,
26–32. [CrossRef]

68. Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans.
Pattern Anal. Mach. Intell. 1989, 11, 674–693. [CrossRef]

69. Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting.
J. Hydrol. 2011, 399, 132–140. [CrossRef]

70. Nourani, V.; Alami, M.T.; Aminfar, M.H. A combined neural-wavelet model for prediction of Ligvanchai
watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22, 466–472. [CrossRef]

71. Kim, S.; Singh, V.P.; Lee, C.J.; Seo, Y. Modeling the physical dynamics of daily dew point temperature using
soft computing techniques. KSCE J. Civ. Eng. 2015, 19, 1930–1940. [CrossRef]

72. Seo, Y.; Kim, S.; Kisi, O.; Singh, V.J. Daily water level forecasting using wavelet decomposition and artificial
intelligence techniques. J. Hydrol. 2015, 520, 224–243. [CrossRef]

73. Seo, Y.; Kim, S.; Singh, V. Machine learning models coupled with variational mode decomposition: A new
approach for modeling daily rainfall-runoff. Atmosphere 2018, 9, 251. [CrossRef]

74. González-Audícana, M.; Otazu, X.; Fors, O.; Seco, A. Comparison between Mallat’s and the ‘à trous’ discrete
wavelet transform based algorithms for the fusion of multispectral and panchromatic images. Int. J.
Remote Sens. 2005, 26, 595–614. [CrossRef]

75. Kim, S.; Seo, Y.; Rezaie-Balf, M.; Kisi, O.; Ghorbani, M.A.; Singh, V.P. Evaluation of daily solar radiation flux
using soft computing approaches based on different meteorological information: Peninsula vs. continent.
Theor. Appl. Climatol. 2018, 1–20. [CrossRef]

76. Nason, G. Wavelet Methods in Statistics with R; Springer: New York, NY, USA, 2010.
77. Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: New York,

NY, USA, 2006; Volume 4.
78. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544.

[CrossRef]
79. Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming, 3rd ed.; Springer: New York, NY, USA, 2008.
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