Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Authors = Matthias Ritter ORCID = 0000-0003-2543-3673

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6353 KB  
Article
Improved Method for the Retrieval of Extinction Coefficient Profile by Regularization Techniques
by Richard Matthias Herrmann, Christoph Ritter, Christine Böckmann and Sandra Graßl
Remote Sens. 2025, 17(5), 841; https://doi.org/10.3390/rs17050841 - 27 Feb 2025
Cited by 1 | Viewed by 1224
Abstract
In this work, we revise the retrieval of extinction coefficient profiles from Raman Lidar. This is an ill-posed problem, and we show that methods like Levenberg–Marquardt or Tikhonov–Phillips can be applied. We test these methods for a synthetic Lidar profile (known solution) with [...] Read more.
In this work, we revise the retrieval of extinction coefficient profiles from Raman Lidar. This is an ill-posed problem, and we show that methods like Levenberg–Marquardt or Tikhonov–Phillips can be applied. We test these methods for a synthetic Lidar profile (known solution) with different noise realizations. Further, we apply these methods to three different cases of data from the Arctic: under daylight (Arctic Haze), under daylight with a high and vertically extended aerosol layer, and at nighttime with high extinction. We show that our methods work and allow a trustful derivation of extinction up to clearly higher altitudes (at about half a signal-to-noise ratio) compared with the traditional, non-regularized Ansmann solution. However, these new methods are not trivial and require a choice of parameters, which depend on the noise of the data. As the Lidar signal quality quickly decreases with range, a separation of the profile into several sub-intervals seems beneficial. Full article
Show Figures

Figure 1

13 pages, 2644 KB  
Article
Reverse Shoulder Arthroplasty Baseplate Stability Is Affected by Bone Density and the Type and Amount of Augmentation
by Daniel Ritter, Patric Raiss, Patrick J. Denard, Brian C. Werner, Manuel Kistler, Celina Lesnicar, Micheal van der Merwe, Peter E. Müller, Matthias Woiczinski, Coen A. Wijdicks and Samuel Bachmaier
Bioengineering 2025, 12(1), 42; https://doi.org/10.3390/bioengineering12010042 - 8 Jan 2025
Viewed by 3653
Abstract
Objective: This study evaluated the effects of bony increased offset (BIO) and metallic augments (MAs) on primary reverse shoulder arthroplasty (RSA) baseplate stability in cadaveric specimens with variable bone densities. Methods: Thirty cadaveric specimens were analyzed in an imaging and biomechanical investigation. Computed [...] Read more.
Objective: This study evaluated the effects of bony increased offset (BIO) and metallic augments (MAs) on primary reverse shoulder arthroplasty (RSA) baseplate stability in cadaveric specimens with variable bone densities. Methods: Thirty cadaveric specimens were analyzed in an imaging and biomechanical investigation. Computed tomography (CT) scans allowed for preoperative RSA planning and bone density analysis. Three correction methods of the glenoid were used: (1) corrective reaming with a standard baseplate, which served as the reference group (n = 10); (2) MA-RSA (n = 10); and (3) angled BIO-RSA (n = 10). Each augment group consisted of 10° (n = 5) and 20° (n = 5) corrections. Biomechanical testing included cyclic loading in an articulating setup, with optical pre- and post-cyclic micromotion measurements in a rocking horse setup. Results: There were no differences in bone density between groups based on CT scans (p > 0.126). The BIO-RSA group had higher variability in micromotion compared to the MA-RSA and reference groups (p = 0.013), and increased total micromotion compared to the reference group (p = 0.039). Both augmentations using 20° corrections had increased variance in rotational stability compared to the reference group (p = 0.043). Micromotion correlated with the subchondral bone density in the BIO-RSA group (r = −0.63, p = 0.036), but not in the MA-RSA (p > 0.178) or reference (p > 0.117) groups. Conclusions: Time-zero baseplate implant fixation is more variable with BIO-RSA and correlates with bone density. Corrections of 20° with either augmentation approach increase variability in rotational micromotion. The preoperative quantification of bone density may be useful before utilizing 20° of correction, especially when adding a bone graft in BIO-RSAs. Full article
(This article belongs to the Special Issue Advances in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

13 pages, 2632 KB  
Article
Volumetric Humeral Canal Fill Ratio Effects Primary Stability and Cortical Bone Loading in Short and Standard Stem Reverse Shoulder Arthroplasty: A Biomechanical and Computational Study
by Daniel Ritter, Patric Raiss, Patrick J. Denard, Brian C. Werner, Peter E. Müller, Matthias Woiczinski, Coen A. Wijdicks and Samuel Bachmaier
J. Imaging 2024, 10(12), 334; https://doi.org/10.3390/jimaging10120334 - 23 Dec 2024
Cited by 1 | Viewed by 2374
Abstract
Objective: This study evaluated the effect of three-dimensional (3D) volumetric humeral canal fill ratios (VFR) of reverse shoulder arthroplasty (RSA) short and standard stems on biomechanical stability and bone deformations in the proximal humerus. Methods: Forty cadaveric shoulder specimens were analyzed in a [...] Read more.
Objective: This study evaluated the effect of three-dimensional (3D) volumetric humeral canal fill ratios (VFR) of reverse shoulder arthroplasty (RSA) short and standard stems on biomechanical stability and bone deformations in the proximal humerus. Methods: Forty cadaveric shoulder specimens were analyzed in a clinical computed tomography (CT) scanner allowing for segmentation of the humeral canal to calculate volumetric measures which were verified postoperatively with plain radiographs. Virtual implant positioning allowed for group assignment (VFR < 0.72): Standard stem with low (n = 10) and high (n = 10) filling ratios, a short stem with low (n = 10) and high filling ratios (n = 10). Biomechanical testing included cyclic loading of the native bone and the implanted humeral component. Optical recording allowed for spatial implant tracking and the quantification of cortical bone deformations in the proximal humerus. Results: Planned filling ratios based on 3D volumetric measures had a good-to-excellent correlation (ICC = 0.835; p < 0.001) with implanted filling ratios. Lower canal fill ratios resulted in significantly higher variability between short and standard stems regarding implant tilt (820 N: p = 0.030) and subsidence (220 N: p = 0.046, 520 N: p = 0.007 and 820 N: p = 0.005). Higher filling ratios resulted in significantly lower bone deformations in the medial calcar area compared to the native bone, while the bone deformations in lower filling ratios did not differ significantly (p > 0.177). Conclusions: Lower canal filling ratios maintain dynamic bone loading in the medial calcar of the humerus similar to the native situation in this biomechanical loading setup. Short stems implanted with a low filling ratio have an increased risk for implant tilt and subsidence compared to high filling ratios or standard stems. Full article
Show Figures

Figure 1

20 pages, 1654 KB  
Article
Carbohydrate Metabolism Differentiates Pectinatus and Megasphaera Species Growing in Beer
by Manuel J. Arnold, Stefan W. Ritter, Matthias A. Ehrmann, Yohanes N. Kurniawan, Koji Suzuki, Thomas M. Becker and Wolfgang Liebl
Microorganisms 2024, 12(10), 2045; https://doi.org/10.3390/microorganisms12102045 - 10 Oct 2024
Cited by 1 | Viewed by 2010
Abstract
Obligate anaerobic beer spoilage bacteria have been a menace to the brewing industry for several decades. Technological advances in the brewing process aimed at suppressing aerobic spoilers gave rise to problems with obligate anaerobes. In previous studies, the metabolic spectrum of Pectinatus and [...] Read more.
Obligate anaerobic beer spoilage bacteria have been a menace to the brewing industry for several decades. Technological advances in the brewing process aimed at suppressing aerobic spoilers gave rise to problems with obligate anaerobes. In previous studies, the metabolic spectrum of Pectinatus and Megasphaera species has been described, but their metabolism in the beer environment remains largely unknown. We used high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GCMS) to further characterize beer spoiled by 30 different strains from six beer-spoiling species of Pectinatus and Megasphaera (P. cerevisiiphilus, P. frisingensis, P. haikarae, M. cerevisiae, M. paucivorans, and M. sueciensis). We detected differences in carbohydrate utilization and the volatile organic compounds (volatilome) produced during beer spoilage by all six species. We were able to show that glycerol, one of the basic components of beer, is the common carbon source used by all strains. It appears that this carbon source allows for anaerobic beer spoilage by Pectinatus and Megasphaera despite the spoilage-preventing intrinsic barriers of beer (iso-α-acids, ethanol, low pH, scarce nutrients); thus, extrinsic countermeasures are key for prevention. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

27 pages, 1266 KB  
Article
A Meta Algorithm for Interpretable Ensemble Learning: The League of Experts
by Richard Vogel, Tobias Schlosser, Robert Manthey, Marc Ritter, Matthias Vodel, Maximilian Eibl and Kristan Alexander Schneider
Mach. Learn. Knowl. Extr. 2024, 6(2), 800-826; https://doi.org/10.3390/make6020038 - 9 Apr 2024
Cited by 1 | Viewed by 3351
Abstract
Background. The importance of explainable artificial intelligence and machine learning (XAI/XML) is increasingly being recognized, aiming to understand how information contributes to decisions, the method’s bias, or sensitivity to data pathologies. Efforts are often directed to post hoc explanations [...] Read more.
Background. The importance of explainable artificial intelligence and machine learning (XAI/XML) is increasingly being recognized, aiming to understand how information contributes to decisions, the method’s bias, or sensitivity to data pathologies. Efforts are often directed to post hoc explanations of black box models. These approaches add additional sources for errors without resolving their shortcomings. Less effort is directed into the design of intrinsically interpretable approaches. Methods. We introduce an intrinsically interpretable methodology motivated by ensemble learning: the League of Experts (LoE) model. We establish the theoretical framework first and then deduce a modular meta algorithm. In our description, we focus primarily on classification problems. However, LoE applies equally to regression problems. Specific to classification problems, we employ classical decision trees as classifier ensembles as a particular instance. This choice facilitates the derivation of human-understandable decision rules for the underlying classification problem, which results in a derived rule learning system denoted as RuleLoE. Results. In addition to 12 KEEL classification datasets, we employ two standard datasets from particularly relevant domains—medicine and finance—to illustrate the LoE algorithm. The performance of LoE with respect to its accuracy and rule coverage is comparable to common state-of-the-art classification methods. Moreover, LoE delivers a clearly understandable set of decision rules with adjustable complexity, describing the classification problem. Conclusions. LoE is a reliable method for classification and regression problems with an accuracy that seems to be appropriate for situations in which underlying causalities are in the center of interest rather than just accurate predictions or classifications. Full article
(This article belongs to the Special Issue Advances in Explainable Artificial Intelligence (XAI): 2nd Edition)
Show Figures

Figure 1

21 pages, 4185 KB  
Article
Androgen Receptor Splice Variants Contribute to the Upregulation of DNA Repair in Prostate Cancer
by Yuri Tolkach, Anika Kremer, Gábor Lotz, Matthias Schmid, Thomas Mayr, Sarah Förster, Stephan Garbe, Sana Hosni, Marcus V. Cronauer, Ildikó Kocsmár, Éva Kocsmár, Péter Riesz, Abdullah Alajati, Manuel Ritter, Jörg Ellinger, Carsten-Henning Ohlmann and Glen Kristiansen
Cancers 2022, 14(18), 4441; https://doi.org/10.3390/cancers14184441 - 13 Sep 2022
Cited by 11 | Viewed by 3932
Abstract
Background: Canonical androgen receptor (AR) signaling regulates a network of DNA repair genes in prostate cancer (PCA). Experimental and clinical evidence indicates that androgen deprivation not only suppresses DNA repair activity but is often synthetically lethal in combination with PARP inhibition. The present [...] Read more.
Background: Canonical androgen receptor (AR) signaling regulates a network of DNA repair genes in prostate cancer (PCA). Experimental and clinical evidence indicates that androgen deprivation not only suppresses DNA repair activity but is often synthetically lethal in combination with PARP inhibition. The present study aimed to elucidate the impact of AR splice variants (AR-Vs), occurring in advanced or late-stage PCA, on DNA repair machinery. Methods: Two hundred and seventy-three tissue samples were analyzed, including primary hormone-naïve PCA, primary metastases, hormone-sensitive PCA on androgen deprivation therapy (ADT) and castration refractory PCA (CRPC group). The transcript levels of the target genes were profiled using the nCounter platform. Experimental support for the findings was gained in AR/AR-V7-expressing LNCaP cells subjected to ionizing radiation. Results: AR-Vs were present in half of hormone-sensitive PCAs on androgen deprivation therapy (ADT) and two-thirds of CRPC samples. The presence of AR-Vs is highly correlated with increased activity in the AR pathway and DNA repair gene expression. In AR-V-expressing CRPC, the DNA repair score increased by 2.5-fold as compared to AR-V-negative samples. Enhanced DNA repair and the deregulation of DNA repair genes by AR-V7 supported the clinical data in a cell line model. Conclusions: The expression of AR splice variants such as AR-V7 in PCA patients following ADT might be a reason for reduced or absent therapy effects in patients on additional PARP inhibition due to the modulation of DNA repair gene expression. Consequently, AR-Vs should be further studied as predictive biomarkers for therapy response in this setting. Full article
Show Figures

Figure 1

22 pages, 1841 KB  
Review
Ferroptosis in Hepatocellular Carcinoma: Mechanisms, Drug Targets and Approaches to Clinical Translation
by Dino Bekric, Matthias Ocker, Christian Mayr, Sebastian Stintzing, Markus Ritter, Tobias Kiesslich and Daniel Neureiter
Cancers 2022, 14(7), 1826; https://doi.org/10.3390/cancers14071826 - 4 Apr 2022
Cited by 47 | Viewed by 8120
Abstract
Ferroptosis, an iron and reactive oxygen species (ROS)-dependent non-apoptotic type of regulated cell death, is characterized by a massive iron overload and peroxidation of polyunsaturated fatty acids (PUFAs), which finally results in cell death. Recent studies suggest that ferroptosis can influence carcinogenesis negatively [...] Read more.
Ferroptosis, an iron and reactive oxygen species (ROS)-dependent non-apoptotic type of regulated cell death, is characterized by a massive iron overload and peroxidation of polyunsaturated fatty acids (PUFAs), which finally results in cell death. Recent studies suggest that ferroptosis can influence carcinogenesis negatively and therefore may be used as a novel anti-cancer strategy. Hepatocellular carcinoma (HCC) is a deadly malignancy with poor chances of survival and is the second leading cause of cancer deaths worldwide. Diagnosis at an already late stage and general resistance to current therapies may be responsible for the dismal outcome. As the liver acts as a key factor in iron metabolism, ferroptosis is shown to play an important role in HCC carcinogenesis and, more importantly, may hold the potential to eradicate HCC. In this review, we summarize the current knowledge we have of the role of ferroptosis in HCC and the application of ferroptosis as a therapy option and provide an overview of the potential translation of ferroptosis in the clinical practice of HCC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

17 pages, 3916 KB  
Article
Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue
by Sander Bekeschus, Mikael Ispirjan, Eric Freund, Frederik Kinnen, Juliane Moritz, Fariba Saadati, Jacqueline Eckroth, Debora Singer, Matthias B. Stope, Kristian Wende, Christoph A. Ritter, Henry W. S. Schroeder and Sascha Marx
Cancers 2022, 14(3), 813; https://doi.org/10.3390/cancers14030813 - 5 Feb 2022
Cited by 14 | Viewed by 4081
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized [...] Read more.
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings. Full article
Show Figures

Figure 1

20 pages, 3656 KB  
Article
How Much Can Small-Scale Wind Energy Production Contribute to Energy Supply in Cities? A Case Study of Berlin
by Alina Wilke, Zhiwei Shen and Matthias Ritter
Energies 2021, 14(17), 5523; https://doi.org/10.3390/en14175523 - 4 Sep 2021
Cited by 11 | Viewed by 3917
Abstract
In light of the global effort to limit the temperature rise, many cities have undertaken initiatives to become climate-neutral, making decentralized urban energy production more relevant. This paper addresses the potential of urban wind energy production with small wind turbines, using Berlin as [...] Read more.
In light of the global effort to limit the temperature rise, many cities have undertaken initiatives to become climate-neutral, making decentralized urban energy production more relevant. This paper addresses the potential of urban wind energy production with small wind turbines, using Berlin as an example. A complete framework from data selection to economic feasibility is constructed to enable the empirical assessment of wind energy for individual buildings and Berlin as a whole. Based on a detailed dataset of all buildings and hourly wind speed on a 1 km2 grid, the results show that multiple turbines on suitable buildings can significantly contribute to households’ energy consumption but fall short of covering the full demand. For individual households, our economic evaluation strongly recommends the self-consumption of the produced electricity. The findings suggest that while the use of small wind turbines should be continuously encouraged, exploring other renewable resources or combination of wind and photovoltaic energy in the urban environment remains important. Full article
(This article belongs to the Special Issue Economic Impacts of Renewable Energy Developments)
Show Figures

Figure 1

13 pages, 15371 KB  
Article
A New Water-Soluble Thermosensitive Star-Like Copolymer as a Promising Carrier of the Chemotherapeutic Drug Doxorubicin
by Mariia Chernykh, Dmytro Zavalny, Viktoriya Sokolova, Stanislav Ponomarenko, Svitlana Prylutska, Yuliia Kuziv, Vasyl Chumachenko, Andrii Marynin, Nataliya Kutsevol, Matthias Epple, Uwe Ritter, Jacek Piosik and Yuriy Prylutskyy
Materials 2021, 14(13), 3517; https://doi.org/10.3390/ma14133517 - 24 Jun 2021
Cited by 10 | Viewed by 2682
Abstract
A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as [...] Read more.
A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank’s solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles’ behavior in animal tumor models in vivo as promising carriers of anticancer agents. Full article
Show Figures

Figure 1

16 pages, 18341 KB  
Article
Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration
by Fernando Zorilla, Marcel Ritter, Johannes Sappl, Wolfgang Rauch and Matthias Harders
Computers 2020, 9(2), 23; https://doi.org/10.3390/computers9020023 - 29 Mar 2020
Cited by 12 | Viewed by 5651
Abstract
Surface tension has a strong influence on the shape of fluid interfaces. We propose a method to calculate the corresponding forces efficiently. In contrast to several previous approaches, we discriminate to this end between surface and non-surface SPH particles. Our method effectively smooths [...] Read more.
Surface tension has a strong influence on the shape of fluid interfaces. We propose a method to calculate the corresponding forces efficiently. In contrast to several previous approaches, we discriminate to this end between surface and non-surface SPH particles. Our method effectively smooths the fluid interface, minimizing its curvature. We make use of an approach inspired by Monte Carlo integration to estimate local normals as well as curvatures, based on which the force can be calculated. We compare different sampling schemes for the Monte Carlo approach, for which a Halton sequence performed best. Our overall technique is applicable, but not limited to 2D and 3D simulations, and can be coupled with any common SPH formulation. It outperforms prior approaches with regard to total computation time per time step in dynamic scenes. Additionally, it is adjustable for higher quality in small scale scenes with dominant surface tension effects. Full article
(This article belongs to the Special Issue Computer Graphics & Visual Computing (CGVC 2019))
Show Figures

Figure 1

32 pages, 3886 KB  
Article
Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System
by David Ritter, Roland Meyer, Matthias Koch, Markus Haller, Dierk Bauknecht and Christoph Heinemann
Energies 2019, 12(16), 3098; https://doi.org/10.3390/en12163098 - 12 Aug 2019
Cited by 14 | Viewed by 4459
Abstract
In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued [...] Read more.
In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid. Full article
(This article belongs to the Special Issue 100% Renewable Energy Transition: Pathways and Implementation)
Show Figures

Graphical abstract

14 pages, 821 KB  
Article
The Influence of Wind Energy and Biogas on Farmland Prices
by Olena Myrna, Martin Odening and Matthias Ritter
Land 2019, 8(1), 19; https://doi.org/10.3390/land8010019 - 15 Jan 2019
Cited by 23 | Viewed by 6440
Abstract
In the context of the rapid development of renewable energy in Germany in the last decade, and increased concerns regarding its potential impacts on farmland prices, this paper investigates the impact of wind energy and biogas production on agricultural land purchasing prices. To [...] Read more.
In the context of the rapid development of renewable energy in Germany in the last decade, and increased concerns regarding its potential impacts on farmland prices, this paper investigates the impact of wind energy and biogas production on agricultural land purchasing prices. To quantify the possible impact of the cumulative capacity of wind turbines and biogas plants on arable land prices in Saxony-Anhalt, we estimate a community-based and a transaction-based model using spatial econometrics and ordinary least squares. Based on data from 2007 to 2016, our analysis shows that a higher cumulative capacity of wind turbines in communities leads to higher farmland transaction prices, though the effect is very small: if the average cumulative capacity of wind turbines per community doubles, we expect that farmland prices per hectare increase by 0.4%. Plots that are directly affected by a wind turbine or part of a regional development plan, however, experience strong price increases. Full article
Show Figures

Figure 1

13 pages, 5926 KB  
Article
Wind Energy Potential of Gaza Using Small Wind Turbines: A Feasibility Study
by Mohamed Elnaggar, Ezzaldeen Edwan and Matthias Ritter
Energies 2017, 10(8), 1229; https://doi.org/10.3390/en10081229 - 18 Aug 2017
Cited by 36 | Viewed by 10137
Abstract
In this paper, we conduct a feasibility study of the wind energy potential in Gaza, which suffers from a severe shortage of energy supplies. Our calculated energy harvested from the wind is based on data for a typical meteorological year, which are fed [...] Read more.
In this paper, we conduct a feasibility study of the wind energy potential in Gaza, which suffers from a severe shortage of energy supplies. Our calculated energy harvested from the wind is based on data for a typical meteorological year, which are fed into a small wind turbine of 5 kW power rating installable on the roof of residential buildings. The expected annual energy output at a height of 10 m amounts to 2695 kWh, but it can be increased by 35–125% at higher altitudes between 20 m and 70 m. The results also depict the great potential of wind energy to complement other renewable resources such as solar energy: the harvested energy of a wind system constitutes to up to 84% of the annual output of an equivalent power rating photovoltaic system and even outperforms the solar energy in the winter months. We also show that one wind turbine and one comparable photovoltaic system together could provide enough energy for 3.7 households. Hence, a combination of wind and solar energy could stabilize the decentralized energy production in Gaza. This is very important in a region where people seek to reach energy self-sufficient buildings due to the severe electricity shortage in the local grid. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

16 pages, 9522 KB  
Article
Neighborhood Effects in Wind Farm Performance: A Regression Approach
by Matthias Ritter, Simone Pieralli and Martin Odening
Energies 2017, 10(3), 365; https://doi.org/10.3390/en10030365 - 16 Mar 2017
Cited by 6 | Viewed by 4521
Abstract
The optimization of turbine density in wind farms entails a trade-off between the usage of scarce, expensive land and power losses through turbine wake effects. A quantification and prediction of the wake effect, however, is challenging because of the complex aerodynamic nature of [...] Read more.
The optimization of turbine density in wind farms entails a trade-off between the usage of scarce, expensive land and power losses through turbine wake effects. A quantification and prediction of the wake effect, however, is challenging because of the complex aerodynamic nature of the interdependencies of turbines. In this paper, we propose a parsimonious data driven regression wake model that can be used to predict production losses of existing and potential wind farms. Motivated by simple engineering wake models, the predicting variables are wind speed, the turbine alignment angle, and distance. By utilizing data from two wind farms in Germany, we show that our models can compete with the standard Jensen model in predicting wake effect losses. A scenario analysis reveals that a distance between turbines can be reduced by up to three times the rotor size, without entailing substantial production losses. In contrast, an unfavorable configuration of turbines with respect to the main wind direction can result in production losses that are much higher than in an optimal case. Full article
Show Figures

Figure 1

Back to TopTop