Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Luigi Faillace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 745 KiB  
Article
Theory of Diffraction by Holes of Arbitrary Sizes
by Mostafa Behtouei, Luigi Faillace, Mauro Migliorati, Andrea Mostacci, Luigi Palumbo and Bruno Spataro
Electronics 2025, 14(12), 2454; https://doi.org/10.3390/electronics14122454 - 17 Jun 2025
Viewed by 232
Abstract
High-gradient accelerating radio frequency (RF) ] cavities are currently being developed in several national laboratories for applications in high-energy physics. Ultra-high accelerating gradients, reaching up to the GV/m range, can be achieved using ultra-compact accelerating structures operating in the sub-terahertz (sub-THz) regime. However, [...] Read more.
High-gradient accelerating radio frequency (RF) ] cavities are currently being developed in several national laboratories for applications in high-energy physics. Ultra-high accelerating gradients, reaching up to the GV/m range, can be achieved using ultra-compact accelerating structures operating in the sub-terahertz (sub-THz) regime. However, accurately measuring the key RF parameters of such compact structures presents significant experimental challenges, and even minor inaccuracies can lead to substantial errors. Additionally, RF simulations for these cavities often require extensive computational resources. Among the most critical parameters to determine is the reflection coefficient. To provide a fast and accurate analytical estimation, we have developed an electromagnetic theory describing the coupling between a resonant cavity and an RF waveguide. This approach is based on Bethe’s small-aperture polarization method, further developed by Collin. An exact analytical expression for the reflection coefficient is presented, formulated as a function of the physical parameters of the cavity waveguide system and applicable to arbitrary geometries, materials, and frequencies. Full article
Show Figures

Figure 1

11 pages, 2066 KiB  
Article
Numerical and Analytical Study of the Magnetic Field Distribution in a Three-Solenoid System
by Mostafa Behtouei, Alberto Bacci, Martina Carillo, Moreno Comelli, Luigi Faillace, Mauro Migliorati, Livio Verra and Bruno Spataro
Fractal Fract. 2025, 9(6), 383; https://doi.org/10.3390/fractalfract9060383 - 16 Jun 2025
Viewed by 337
Abstract
This study investigates the magnetic fields produced by a three-solenoid system configuration using both traditional numerical solvers and fractional integral methods. We focus on the role of mesh resolution in influencing simulation accuracy, examining coils with dimensions 80 mm × 160 mm and [...] Read more.
This study investigates the magnetic fields produced by a three-solenoid system configuration using both traditional numerical solvers and fractional integral methods. We focus on the role of mesh resolution in influencing simulation accuracy, examining coils with dimensions 80 mm × 160 mm and a radius of 15.5 mm, each carrying a current of 200 A. Magnetic field behavior is analyzed along a line parallel to the central axis at a distance equal to half the solenoid’s radius. The fractional integral formulation employed provides a refined understanding of field variations, especially in off-axis regions. Comparisons with the Poisson solver highlight consistency across methods and suggest pathways for further optimization. The results support the potential of fractional approaches in advancing electromagnetic field modeling, particularly in accelerator and beamline applications. Full article
(This article belongs to the Special Issue Applications of Fractals and Fractional Calculus in Nuclear Reactors)
Show Figures

Figure 1

12 pages, 3161 KiB  
Article
RF Design and Measurements of a C-Band Prototype Structure for an Ultra-High Dose-Rate Medical Linac
by Lucia Giuliano, Fabio Bosco, Martina Carillo, Giuseppe Felici, Luca Ficcadenti, Andrea Mostacci, Mauro Migliorati, Luigi Palumbo, Bruno Spataro and Luigi Faillace
Instruments 2023, 7(1), 10; https://doi.org/10.3390/instruments7010010 - 22 Feb 2023
Cited by 6 | Viewed by 2860
Abstract
In this paper, we illustrate the RF design and measurements of a C-band prototype structure for an Ultra High Dose Rate medical linac. (1) Background: FLASH Radiotherapy (RT) is a revolutionary new technique for cancer cure. It releases ultra-high radiation dose rates (above [...] Read more.
In this paper, we illustrate the RF design and measurements of a C-band prototype structure for an Ultra High Dose Rate medical linac. (1) Background: FLASH Radiotherapy (RT) is a revolutionary new technique for cancer cure. It releases ultra-high radiation dose rates (above 100 Gy/s) in microsecond short pulses. In order to obtain a high dose in a very short time, accelerators with high-intensity currents (the order of 100 mA peak currents) have to be developed. In this contest, Sapienza University, in collaboration with SIT-Sordina IORT Technology spa, is developing a new C-band linac to achieve the FLASH regime. (2) Methods: We performed the RF electromagnetic design of the prototype of the C band linac using CST STUDIO Suite Code and the RF low power RF test at Sapienza University of Rome. The measurements of the field in the cavity have been done with the bead-pull technique. (3) Results: This device is a nine-cell structure operating on the π/2 mode at 5.712 GHz (C-band). We report and discuss the test measurement results on a full-scale copper prototype, showing good agreement with CST RF simulations. A tuning procedure has been implemented in order to ensure proper operating frequency and to reach a field profile flatness of the order of a few percent. (4) Conclusions: The prototype of a C-band linac for FLASH applications was successfully tested with low RF power at Sapienza University. The fabrication and ad hoc tuning procedures have been optimized and discussed in the paper. Full article
Show Figures

Figure 1

11 pages, 1684 KiB  
Article
Characterization of Ultra-High-Dose Rate Electron Beams with ElectronFlash Linac
by Lucia Giuliano, Gaia Franciosini, Luigi Palumbo, Lilia Aggar, Marie Dutreix, Luigi Faillace, Vincent Favaudon, Giuseppe Felici, Federica Galante, Andrea Mostacci, Mauro Migliorati, Matteo Pacitti, Annalisa Patriarca and Sophie Heinrich
Appl. Sci. 2023, 13(1), 631; https://doi.org/10.3390/app13010631 - 3 Jan 2023
Cited by 24 | Viewed by 3897
Abstract
Purpose: The electron linac ElectronFlash installed at Institut Curie (Orsay, France) is entirely dedicated to FLASH irradiation for radiobiological and pre-clinical studies. The system was designed to deliver an ultra-high-dose rate per pulse (UHDR) (above 106 Gy/s) and a very high average [...] Read more.
Purpose: The electron linac ElectronFlash installed at Institut Curie (Orsay, France) is entirely dedicated to FLASH irradiation for radiobiological and pre-clinical studies. The system was designed to deliver an ultra-high-dose rate per pulse (UHDR) (above 106 Gy/s) and a very high average dose rate at different energies and pulse durations. A campaign of tests and measurements was performed to obtain a full reliable characterizations of the electron beam and of the delivered dose, which are necessary to the radiobiological experiments. Methods: A Faraday cup was used to measure the electron charges in a single RF pulse. The percentage depth dose (PDD) and the transverse dose profiles, at the energies of 5 MeV and 7 MeV, were evaluated employing Gafchromic films EBT-XD for two Poly-methylmethacrylate (PMMA) applicators with irradiation sizes of 30 mm and 120 mm, normally used for in vivo and in vitro experiments, respectively. The results were compared with Monte Carlo (MC) simulations. Results: The measurements were performed during a period of a few months in which the experimental set up was adapted and tuned in order to characterize the electron beam parameters and the values of delivered doses before the radiobiological experiments. The measurements showed that the dose parameters, obtained at the energy of 5 MeV and 7 MeV with different applicators, fulfill the FLASH regime, with a maximum value of an average dose rate of 4750 Gy/s, a maximum dose per pulse of 19 Gy and an instantaneous dose rate up to 4.75 ×106 Gy/s. By means of the PMMA applicators, a very good flatness of the dose profiles was obtained at the cost of a reduced total current. The flatness of the large field is reliable and reproducible in radiobiological experiments. The measured PDD and dose profiles are in good agreement with Monte Carlo simulations with more than 95% of the gamma-index under the thresholds of 3 mm/3%. Conclusions: The results show that the system can provide UHDR pulses totally satisfying the FLASH requirements with very good performances in terms of beam profile flatness for any size of the fields. The monitoring of electron beams and the measurement of the dose parameters played an important role in the in vivo and in vitro irradiation experiments performed at the Institut Curie laboratory. Full article
(This article belongs to the Special Issue Medical Physics: Latest Advances and Prospects)
Show Figures

Figure 1

5 pages, 909 KiB  
Communication
A Hard Copper Open X-Band RF Accelerating Structure Made by Two Halves
by Bruno Spataro, Mostafa Behtouei, Fabio Cardelli, Martina Carillo, Valery Dolgashev, Luigi Faillace, Mauro Migliorati and Luigi Palumbo
Instruments 2022, 6(1), 5; https://doi.org/10.3390/instruments6010005 - 15 Jan 2022
Cited by 2 | Viewed by 2733
Abstract
This communication focuses on the technological developments aiming to show the viability of novel welding techniques [...] Full article
(This article belongs to the Special Issue Recent Advance in Particle Accelerator Instrumentation)
Show Figures

Figure 1

9 pages, 724 KiB  
Article
Relativistic versus Nonrelativistic Approaches to a Low Perveance High Quality Matched Beam for a High Efficiency Ka-Band Klystron
by Mostafa Behtouei, Bruno Spataro, Luigi Faillace, Martina Carillo, Alberto Leggieri, Luigi Palumbo and Mauro Migliorati
Instruments 2021, 5(4), 33; https://doi.org/10.3390/instruments5040033 - 10 Nov 2021
Cited by 3 | Viewed by 3002
Abstract
Advanced technical solution for the design of a low perveance electron gun with a high quality beam dedicated to high power Ka-band klystrons is presented in this paper. The proposed electron gun can be used to feed linear accelerating structures at 36 GHz [...] Read more.
Advanced technical solution for the design of a low perveance electron gun with a high quality beam dedicated to high power Ka-band klystrons is presented in this paper. The proposed electron gun can be used to feed linear accelerating structures at 36 GHz with an estimated input power of 20 MW, thus achieving an effective accelerating electric field in the (100–150) MV/m range. Additionally, in the framework of the Compact Light XLS project, a short Ka-band accelerating structure providing an integrated voltage of at least 15 MV, has been proposed for bunch-phase linearization. For the klystron, a very small beam dimension is needed and the presented electron gun responds to this requirement. An estimate of the rotational velocity at beam edge indicates that the diamagnetic field due to rotational currents are small compared to the longitudinal volume. A detailed analysis of how this has been achieved, including compression of the beam, rotation in the magnetic field, and analysis of the subsequently generated diamagnetic field has been discussed. Full article
(This article belongs to the Special Issue Recent Advance in Particle Accelerator Instrumentation)
Show Figures

Figure 1

10 pages, 3178 KiB  
Article
Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam
by Salvatore Macis, Luca Tomarchio, Silvia Tofani, S. Javad Rezvani, Luigi Faillace, Stefano Lupi, Akinori Irizawa and Augusto Marcelli
Condens. Matter 2020, 5(1), 16; https://doi.org/10.3390/condmat5010016 - 10 Mar 2020
Cited by 6 | Viewed by 2920
Abstract
In this work, we show the damage induced by an intense coherent terahertz (THz) beam on copper surfaces. The metallic surface was irradiated by multiple picosecond THz pulses generated by the Free Electron Laser (FEL) at the ISIR facility of the Osaka University, [...] Read more.
In this work, we show the damage induced by an intense coherent terahertz (THz) beam on copper surfaces. The metallic surface was irradiated by multiple picosecond THz pulses generated by the Free Electron Laser (FEL) at the ISIR facility of the Osaka University, reaching an electric field on the sample surface up to ~4 GV/m. No damage occurs at normal incidence, while images and spectroscopic analysis of the surface point out a clear dependence of the damage on the incidence angle, the electric field intensity, and polarization of the pulsed THz radiation. Ab initio analysis shows that the damage at high incidence angles could be related to the increase of the absorbance, i.e., to the increase of the temperature around or above 1000 °C. The experimental approach we introduced with multiple fast irradiations represents a new powerful technique useful to test, in a reproducible way, the damage induced by an intense electric gradient on copper and other metallic surfaces in view of future THz-based compact particle accelerators. Full article
Show Figures

Figure 1

12 pages, 49583 KiB  
Article
Molybdenum Oxides Coatings for High Demanding Accelerator Components
by Jessica Scifo, Augusto Marcelli, Bruno Spataro, Dariush Hampai, Sultan Dabagov, Stefano Sarti, Antonio Di Trolio, Riccardo Moscatelli, Salvatore Macis and Luigi Faillace
Instruments 2019, 3(4), 61; https://doi.org/10.3390/instruments3040061 - 12 Nov 2019
Cited by 4 | Viewed by 3312
Abstract
Large electric gradients are required for a variety of new applications, notably including the extreme high brightness electron sources for X-ray free electron lasers (FELs), radio-frequency (RF) photo-injectors, industrial and medical accelerators, and linear accelerators for particle physics colliders. In the framework of [...] Read more.
Large electric gradients are required for a variety of new applications, notably including the extreme high brightness electron sources for X-ray free electron lasers (FELs), radio-frequency (RF) photo-injectors, industrial and medical accelerators, and linear accelerators for particle physics colliders. In the framework of the INFN-LNF, SLAC (USA), KEK (Japan), UCLA (Los Angeles) collaboration, the Frascati National Laboratories (LNF) are involved in the modelling, development, and testing of RF structures devoted to particles acceleration by high gradient electric fields of particles through metal devices. In order to improve the maximum sustainable gradients in normal-conducting RF-accelerating structures, both the RF breakdown and dark current should be minimized. To this purpose, studying new materials as well as manufacturing techniques are mandatory to identify better solutions to such extremely requested applications. In this contribution, we discuss the possibility of using a dedicated coating on a solid copper sample (and other metals) with a relatively thick film to improve and optimize breakdown performances and to minimize the dark current. We present here the first characterization of MoO3 films deposited on copper by pulsed-laser deposition (PLD). Full article
(This article belongs to the Special Issue Physics and Applications of High Brightness Beams)
Show Figures

Figure 1

10 pages, 1264 KiB  
Article
GeV-Class Two-Fold CW Linac Driven by an Arc-Compressor
by Alberto Bacci, Angelo Bosotti, Simone Di Mitri, Illya Drebot, Luigi Faillace, Paolo Michelato, Laura Monaco, Michele Opromolla, Rocco Paparella, Vittoria Petrillo, Marcello Rossetti Conti, Andrea Renato Rossi, Luca Serafini and Daniele Sertore
Instruments 2019, 3(4), 54; https://doi.org/10.3390/instruments3040054 - 10 Oct 2019
Cited by 3 | Viewed by 3162
Abstract
We present a study of an innovative scheme to generate high repetition rate (MHz-class) GeV electron beams by adopting a two-pass two-way acceleration in a super-conducting Linac operated in Continuous Wave (CW) mode. The beam is accelerated twice in the Linac by being [...] Read more.
We present a study of an innovative scheme to generate high repetition rate (MHz-class) GeV electron beams by adopting a two-pass two-way acceleration in a super-conducting Linac operated in Continuous Wave (CW) mode. The beam is accelerated twice in the Linac by being re-injected, after the first pass, in opposite direction of propagation. The task of recirculating the electron beam is performed by an arc compressor composed by 14 Double Bend Achromat (DBA). In this paper, we study the main issues of the two-fold acceleration scheme, the electron beam quality parameters preservation (emittance, energy spread), together with the bunch compression performance of the arc compressor, aiming to operate an X-ray Free Electron Laser. The requested power to supply the cryogenic plant and the RF sources is also significantly reduced w.r.t a conventional one-pass SC Linac for the same final energy. Full article
(This article belongs to the Special Issue Physics and Applications of High Brightness Beams)
Show Figures

Figure 1

14 pages, 1268 KiB  
Article
BriXs Ultra High Flux Inverse Compton Source Based on Modified Push-Pull Energy Recovery Linacs
by Illya Drebot, Alberto Bacci, Angelo Bosotti, Francesco Broggi, Francesco Canella, Paolo Cardarelli, Simone Cialdi, Luigi Faillace, Gianluca Galzerano, Mauro Gambaccini, Dario Giannotti, Dario Giove, Giovanni Mettivier, Paolo Michelato, Laura Monaco, Rocco Paparella, Gianfranco Paternó, Vittoria Petrillo, Francesco Prelz, Marcello Rossetti Conti, Andrea Renato Rossi, Paolo Russo, Antonio Sarno, Edoardo Suerra, Angelo Taibi and Luca Serafiniadd Show full author list remove Hide full author list
Instruments 2019, 3(3), 49; https://doi.org/10.3390/instruments3030049 - 10 Sep 2019
Cited by 17 | Viewed by 3971
Abstract
We present a conceptual design for a compact X-ray Source BriXS (Bright and compact X-ray Source). BriXS, the first stage of the Marix project, is an Inverse Compton Source (ICS) of X-ray based on superconducting cavities technology for the electron beam with energy [...] Read more.
We present a conceptual design for a compact X-ray Source BriXS (Bright and compact X-ray Source). BriXS, the first stage of the Marix project, is an Inverse Compton Source (ICS) of X-ray based on superconducting cavities technology for the electron beam with energy recirculation and on a laser system in Fabry-Pérot cavity at a repetition rate of 100 MHz, producing 20–180 keV monochromatic X-Rays devoted mainly to medical applications. An energy recovery scheme based on a modified folded push-pull CW-SC twin Energy Recovery Linac (ERL) ensemble allows us to sustain an MW-class beam power with almost one hundred kW active power dissipation/consumption. Full article
(This article belongs to the Special Issue Physics and Applications of High Brightness Beams)
Show Figures

Figure 1

7 pages, 2499 KiB  
Article
Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study
by Salvatore Macis, Javad Rezvani, Ivan Davoli, Giannantonio Cibin, Bruno Spataro, Jessica Scifo, Luigi Faillace and Augusto Marcelli
Condens. Matter 2019, 4(2), 41; https://doi.org/10.3390/condmat4020041 - 18 Apr 2019
Cited by 22 | Viewed by 4869
Abstract
Structural changes of MoO3 thin films deposited on thick copper substrates upon annealing at different temperatures were investigated via ex situ X-Ray Absorption Spectroscopy (XAS). From the analysis of the X-ray Absorption Near-Edge Structure (XANES) pre-edge and Extended X-ray Absorption Fine Structure [...] Read more.
Structural changes of MoO3 thin films deposited on thick copper substrates upon annealing at different temperatures were investigated via ex situ X-Ray Absorption Spectroscopy (XAS). From the analysis of the X-ray Absorption Near-Edge Structure (XANES) pre-edge and Extended X-ray Absorption Fine Structure (EXAFS), we show the dynamics of the structural order and of the valence state. As-deposited films were mainly disordered, and ordering phenomena did not occur for annealing temperatures up to 300 °C. At ~350 °C, a dominant α-MoO3 crystalline phase started to emerge, and XAS spectra ruled out the formation of a molybdenum dioxide phase. A further increase of the annealing temperature to ~500 °C resulted in a complex phase transformation with a concurrent reduction of Mo6+ ions to Mo4+. These original results suggest the possibility of using MoO3 as a hard, protective, transparent, and conductive material in different technologies, such as accelerating copper-based devices, to reduce damage at high gradients. Full article
(This article belongs to the Special Issue High Precision X-Ray Measurements)
Show Figures

Figure 1

Back to TopTop