Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Authors = Libin Xiao

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2289 KiB  
Brief Report
The Isoforms of Ral Guanine Nucleotide Dissociation Stimulator (RalGDS) in LLC-PK1 Cells
by Jingze Song, Na Li, Xinze Dong, Jianping Xie, Hongqiao Lai, Hengzhi Zhu, Kongwang He, Libin Wen, Sizhu Suolang and Qi Xiao
Curr. Issues Mol. Biol. 2025, 47(7), 566; https://doi.org/10.3390/cimb47070566 - 18 Jul 2025
Viewed by 354
Abstract
This study investigated the isoforms of porcine-origin Ral guanine nucleotide dissociation stimulator (RalGDS) in LLC-PK1 cells using reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. Through segmented amplification, sequence assembly, and comparative genomics analysis, seven RalGDS isoforms were identified, characterized by insertions, deletions, and [...] Read more.
This study investigated the isoforms of porcine-origin Ral guanine nucleotide dissociation stimulator (RalGDS) in LLC-PK1 cells using reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. Through segmented amplification, sequence assembly, and comparative genomics analysis, seven RalGDS isoforms were identified, characterized by insertions, deletions, and frameshift mutations. These genetic variations may significantly alter RalGDS’s protein structure and function, potentially impacting its role in Ral GTPase-mediated signaling pathways. This work provides foundational insights into the genetic diversity of porcine RalGDS and its implications for porcine physiology and economically significant traits. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

23 pages, 8091 KiB  
Article
Neural ODE-Based Dynamic Modeling and Predictive Control for Power Regulation in Distribution Networks
by Libin Wen, Jinji Xi, Hong Hu, Li Xiong, Guangling Lu and Tannan Xiao
Energies 2025, 18(13), 3419; https://doi.org/10.3390/en18133419 - 29 Jun 2025
Viewed by 335
Abstract
The increasing penetration of distributed energy resources (DERs) and power electronic loads challenges the modeling and control of modern distribution networks (DNs). The traditional models often fail to capture the complex aggregate dynamics required for advanced control strategies. This paper proposes a novel [...] Read more.
The increasing penetration of distributed energy resources (DERs) and power electronic loads challenges the modeling and control of modern distribution networks (DNs). The traditional models often fail to capture the complex aggregate dynamics required for advanced control strategies. This paper proposes a novel framework for DN power regulation based on Neural Ordinary Differential Equations (NODEs) and Model Predictive Control (MPC). NODEs are employed to develop a data-driven, continuous-time dynamic model capturing the aggregate relationship between the voltage at the point of common coupling (PCC) and the network’s power consumption, using only PCC measurements. Building upon this NODE model, an MPC strategy is designed to regulate the DN’s active power by manipulating the PCC voltage. To ensure computational tractability for real-time applications, a local linearization technique is applied to the NODE dynamics within the MPC, transforming the optimization problem into a standard Quadratic Programming (QP) problem that can be solved efficiently. The framework’s efficacy is comprehensively validated through simulations. The NODE model demonstrates high accuracy in predicting the dynamic behavior in a DN against a detailed simulator, with maximum relative errors below 0.35% for active power. The linearized NODE-MPC controller shows effective tracking performance, constraint handling, and computational efficiency, with typical QP solve times below 0.1 s within a 0.1 s control interval. The validation includes offline tests using the NODE model and online co-simulation studies using CloudPSS and Python via Redis. Application scenarios, including Conservation Voltage Reduction (CVR) and supply–demand balancing, further illustrate the practical potential of the proposed approach for enhancing the operation and efficiency of modern distribution networks. Full article
Show Figures

Figure 1

20 pages, 6378 KiB  
Article
Edge Computing-Based Machine Vision for Non-Invasive and Rapid Soft Sensing of Mushroom Liquid Strain Biomass
by Libin Wu, Guimiao Xiao, Deyao Huang, Xiandong Zhang, Dapeng Ye and Haiyong Weng
Agronomy 2025, 15(1), 242; https://doi.org/10.3390/agronomy15010242 - 20 Jan 2025
Cited by 1 | Viewed by 1710
Abstract
Biomass monitoring of mushroom liquid strains during the fermentation process demands real-time analysis with minimal manual intervention, highlighting the urgent need for intelligent surveillance. This study introduced a soft sensor method based on edge computing machine vision, termed Edge CV, for in situ [...] Read more.
Biomass monitoring of mushroom liquid strains during the fermentation process demands real-time analysis with minimal manual intervention, highlighting the urgent need for intelligent surveillance. This study introduced a soft sensor method based on edge computing machine vision, termed Edge CV, for in situ non-invasive estimation of biomass. In our experiment, the hardware of the Edge CV system includes the Jetson Nano with 4 GB RAM, 64 GB ROM, and a 128-core Maxwell GPU for executing intelligent machine vision tasks, along with embedded cameras for image data acquisition. Furthermore, a cascaded machine vision model was developed to enable biomass evaluation on the Edge CV system. The cascaded machine vision model mainly consists of three steps: first, the object detection task to locate the observation window, achieving a mean Average Precision (mAP50:95) of 82.3% with 78.7 GFLOPs; then, the segmentation task to extract liquid strain data within the observation window, yielding a mean intersection over union (MIoU) of 85.9% with 110.4 GFLOPs; and finally, calculating mycelium biomass indices via the morphological image processing task. The correlation between Edge CV inference and manual measurement showed an R2 of 0.963 and an RMSE of 0.027 for normalized biomass indices, demonstrating a robust and consistent trend. Therefore, this study illustrates the practical application of edge computing-based machine vision for biomass soft sensing during the fermentation process. Full article
Show Figures

Figure 1

12 pages, 878 KiB  
Article
Frequency and Genetic Analysis of Porcine Circovirus Type 2, Which Circulated between 2014 and 2021 in Jiangsu, China
by Qi Xiao, Meng Qu, Jianping Xie, Cigen Zhu, Yuping Shan, Aihua Mao, Wenxian Qian, Jiaping Zhu, Jiahui Guo, Dong Lang, Jiaqiang Niu, Libin Wen and Kongwang He
Animals 2024, 14(19), 2882; https://doi.org/10.3390/ani14192882 - 7 Oct 2024
Viewed by 1278
Abstract
Porcine circovirus-associated diseases, caused by porcine circovirus type 2 (PCV2), are widespread and result in significant economic losses to the global swine industry. PCV2 can currently be divided into nine genotypes (PCV2a to PCV2i), with the currently dominant one being the PCV2d genotype. [...] Read more.
Porcine circovirus-associated diseases, caused by porcine circovirus type 2 (PCV2), are widespread and result in significant economic losses to the global swine industry. PCV2 can currently be divided into nine genotypes (PCV2a to PCV2i), with the currently dominant one being the PCV2d genotype. In this study, 2675 samples from 804 pig farms in 13 cities in Jiangsu Province, China, were collected between 2014 and 2021 and subjected to polymerase chain reaction analysis to investigate the frequency and genetic diversity of PCV2. The results showed that 41.42% (1108/2675) of samples tested positive for PCV2. The researchers further analyzed the genetic characteristics of 251 PCV2 strains and found that they belonged to the following four genotypes: PCV2a, PCV2b, PCV2d, and PCV2i. The dominant genotype was PCV2d, with a frequency of 49.80% (125/251). The detection rate of PCV2b was significantly higher than those of PCV2a and PCV2i, at 35.46% (89/251), 7.57% (19/251), and 7.17% (18/251), respectively. The percentage of different genotypes of PCV2 varied irregularly over time. We have further revealed the fingerprint of PCV2i genomic nucleotides for the first time. In conclusion, this study illustrates the high frequency and evolutionary features of PCV2 in Jiangsu Province over the past few years. Full article
Show Figures

Figure 1

16 pages, 4242 KiB  
Article
Thermodynamic Assessment of the P2O5-Na2O and P2O5-MgO Systems
by Lideng Ye, Chenbo Li, Jifeng Yang, Guangcheng Xiao, Zixuan Deng, Libin Liu, Ligang Zhang and Yun Jiang
Materials 2024, 17(10), 2221; https://doi.org/10.3390/ma17102221 - 8 May 2024
Viewed by 1635
Abstract
Knowledge about the thermodynamic equilibria of the P2O5-Na2O and P2O5-MgO systems is very important for controlling the phosphorus content of steel materials in the process of steelmaking dephosphorization. The phase equilibrium and thermodynamic [...] Read more.
Knowledge about the thermodynamic equilibria of the P2O5-Na2O and P2O5-MgO systems is very important for controlling the phosphorus content of steel materials in the process of steelmaking dephosphorization. The phase equilibrium and thermodynamic data of the P2O5-Na2O and P2O5-MgO systems were critically evaluated and re-assessed by the CALPHAD (CAlculation of PHAse Diagram) approach. The liquid phase was described by the ionic two-sublattice model for the first time with the formulas (Na+1)P(O−2, PO3−1, PO4−3, PO5/2)Q and (Mg+2)P(O−2, PO3−1, PO4−3, PO5/2)Q, respectively, and the selection of the species constituting the liquid phase was based on the structure of the phosphate melts. A new and improved self-consistent set of thermodynamic parameters for the P2O5-Na2O and P2O5-MgO systems was finally obtained, and the calculated phase diagram and thermodynamic properties exhibited excellent agreement with the experimental data. The difference in the phase composition of invariant reactions from the experimentally determined values reported in the literature is less than 0.9 mol.%. The present thermodynamic modeling contributes to constructing a multicomponent oxide thermodynamic database in the process of steelmaking dephosphorization. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

12 pages, 5229 KiB  
Article
Study on the Mechanism of Wellbore Blockage and Scaling Trend Prediction of Keshen Block
by Libin Zhao, Yongling Zhang, Yuanyuan He, Zihao Yang, Xiao Liang, Xiaopei Wang and Qi Mao
Processes 2024, 12(4), 782; https://doi.org/10.3390/pr12040782 - 13 Apr 2024
Cited by 3 | Viewed by 1247
Abstract
Located in the Kuqa foreland basin, Tarim Basin, the Xinkeshen gas field is a rare ultra-deep and ultra-high-pressure fractured tight sandstone gas reservoir. During the development process, the fluid in the well migrates from the bottom hole to the ground. Due to the [...] Read more.
Located in the Kuqa foreland basin, Tarim Basin, the Xinkeshen gas field is a rare ultra-deep and ultra-high-pressure fractured tight sandstone gas reservoir. During the development process, the fluid in the well migrates from the bottom hole to the ground. Due to the huge temperature drop and pressure drop in the wellbore, salting-out and scale-out occur in the well to destroy the oil and gas flow channel, resulting in a decrease in gas production in the well and seriously affecting the normal production of the oil field. Aiming at the problem of wellbore scaling and blockage in the Keshen gas field, this paper takes the wellbore of the Keshen block as the research object. After analyzing the composition of produced water and scale in the wellbore, the solution of ‘fixing scale, clarifying mechanism, early prediction, and fine treatment’ is formulated, and the analysis and evaluation technology of the scale formation process and the prediction model of the gas well model are formed. The wellbore blockage in Keshen block is composed of iron oxide, calcium carbonate crystal, calcite crystal, and wellbore steel falling off due to electrochemical corrosion. It is indicated that the scale attached to the steel sheet causes electrochemical corrosion of the steel sheet, resulting in ‘hydrogen embrittlement’, resulting in the bubbling and falling off of the wellbore steel. Through simulation, it is found that the amount of fouling increases with the increase in wellbore depth, and the amount of fouling is 1.97 kg/d at 6800 m, which is in good agreement with the actual situation. Based on the temperature and pressure curves in the wellbore, the simulation results show that the corrosion rate reaches the highest value of 6.37 mm/yr at the depth of 3400 m. Because of the above problems, a polyaspartic acid scale inhibitor with a scale inhibition rate of 98.9% for wells in Keshen block was synthesized. It has important guidance and reference significance for the accurate treatment of scaling problems in the Keshen gas well. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 8306 KiB  
Article
Transcriptomics Reveal an Integrated Gene Regulation Network of Early Flowering Development in an Oil Sunflower Mutant Induced by Heavy Ion Beam
by Xiao Liu, Xuhui Mao, Jihong Chen, Yan Du, Wenjie Jin, Ruiyuan Liu, Libin Zhou and Ying Qu
Agriculture 2024, 14(3), 449; https://doi.org/10.3390/agriculture14030449 - 11 Mar 2024
Cited by 2 | Viewed by 2526
Abstract
The oil sunflower is an important oil crop and ornamental plant. Flowering time affects the environmental adaptability and final yield of oil sunflowers. Floral induction is one of the important events that determines subsequent reproductive growth and seed setting, but there has been [...] Read more.
The oil sunflower is an important oil crop and ornamental plant. Flowering time affects the environmental adaptability and final yield of oil sunflowers. Floral induction is one of the important events that determines subsequent reproductive growth and seed setting, but there has been no systematic study on the regulation of gene expression during the transition from vegetative growth to reproductive growth in oil sunflowers. In this study, an oil sunflower mutant displaying early flowering (ef) was obtained by heavy ion beam irradiation. This mutant had a stable genetic trait, and its flowering time was 15 days earlier than the wild type (WT) in the field. The histology result showed that the ef mutant induced floral meristem at 6-leaf stage earlier than WT. The shoot apical meristems (SAMs) of the ef mutant and WT at 4-leaf, 6-leaf, 8-leaf, 10-leaf and budding periods were collected for RNA sequencing. The results showed that the transition from the leaf meristem to the floral meristem resulted in significant changes in the transcriptional landscape. Overall, 632, 1825, 4549, 5407 and 2164 differentially expressed genes (DEGs) were identified at 4-leaf, 6-leaf, 8-leaf, 10-leaf and budding periods, respectively. These DEGs were mainly enriched in biological pathways, including plant hormone signal transduction, carbon metabolism, protein processing in endoplasmic reticulum, secondary metabolism, and photosynthesis. We also found significant differences in the expression levels of starch and sucrose metabolism-related genes in the ef mutant and WT, indicating that sugar signaling plays an important role in the early flowering of oil sunflowers, especially SUC9 and sugar synthesis and degradation enzyme genes. In addition to hormone and sugar signals, flowering integration genes SOC1, AP1, FUL and LFY were upregulated in the ef mutant, and genes in photoperiod, aging, autonomous and temperature pathways were also involved in the regulation of floral transition. The results showed that plant hormones, sucrose metabolism, and flowering genes synergistically cause the early flowering of oil sunflowers. Our study provided important information for understanding flowering and is helpful for the genetic improvement of sunflowers. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

13 pages, 5886 KiB  
Article
The Temporal and Spatial Characteristics of Wind–Photovoltaic–Hydro Hybrid Power Output Based on a Cloud Model and Copula Function
by Haoling Min, Pinkun He, Chunlai Li, Libin Yang and Feng Xiao
Energies 2024, 17(5), 1024; https://doi.org/10.3390/en17051024 - 22 Feb 2024
Cited by 2 | Viewed by 1185
Abstract
In a high proportion of wind–photovoltaic–hydro hybrid power systems, fluctuation and dispersion make it difficult to accurately quantify the output characteristics. Therefore, in this study, a cloud model and copula correlation coefficient matrix were constructed for a hybrid power generation system based on [...] Read more.
In a high proportion of wind–photovoltaic–hydro hybrid power systems, fluctuation and dispersion make it difficult to accurately quantify the output characteristics. Therefore, in this study, a cloud model and copula correlation coefficient matrix were constructed for a hybrid power generation system based on the output data. Multiple backward cloud transformation based on the sampling-with-replacement method was proposed to calculate the improved entropy and hyperentropy to analyze the fluctuation range and dispersion degree quantitatively. A similarity index was proposed to evaluate the similarity between wind power, PV power, and hydropower. A suitable copula function was selected, and the Kendall and Spearman coefficients show the correlation relationships of the hybrid systems. The temporal and spatial characteristics of the hybrid systems were analyzed based on the two models. A typical example in Qinghai proved the effectiveness and applicability of the method. The results show that the correlation between photovoltaic power and hydropower is better and that, in summer, hydropower can be used to adjust the output of renewable energy. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

20 pages, 11846 KiB  
Article
Physiological and Transcriptomic Analyses Reveal the Effects of Carbon-Ion Beam on Taraxacum kok-saghyz Rodin Adventitious Buds
by Xia Chen, Yan Du, Shanwei Luo, Ying Qu, Wenjie Jin, Shizhong Liu, Zhuanzi Wang, Xiao Liu, Zhuo Feng, Bi Qin and Libin Zhou
Int. J. Mol. Sci. 2023, 24(11), 9287; https://doi.org/10.3390/ijms24119287 - 26 May 2023
Cited by 2 | Viewed by 2376
Abstract
Taraxacum kok-saghyz Rodin (TKS) has great potential as an alternative natural-rubber (NR)-producing crop. The germplasm innovation of TKS still faces great challenges due to its self-incompatibility. Carbon-ion beam (CIB) irradiation is a powerful and non-species-specific physical method for mutation creation. Thus far, the [...] Read more.
Taraxacum kok-saghyz Rodin (TKS) has great potential as an alternative natural-rubber (NR)-producing crop. The germplasm innovation of TKS still faces great challenges due to its self-incompatibility. Carbon-ion beam (CIB) irradiation is a powerful and non-species-specific physical method for mutation creation. Thus far, the CIB has not been utilized in TKS. To better inform future mutation breeding for TKS by the CIB and provide a basis for dose-selection, adventitious buds, which not only can avoid high levels of heterozygosity, but also further improve breeding efficiency, were irradiated here, and the dynamic changes of the growth and physiologic parameters, as well as gene expression pattern were profiled, comprehensively. The results showed that the CIB (5–40 Gy) caused significant biological effects on TKS, exhibiting inhibitory effects on the fresh weight and the number of regenerated buds and roots. Then,15 Gy was chosen for further study after comprehensive consideration. CIB-15 Gy resulted in significant oxidative damages (hydroxyl radical (OH) generation activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and malondialdehyde (MDA) content) and activated the antioxidant system (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) of TKS. Based on RNA-seq analysis, the number of differentially expressed genes (DEGs) peaked at 2 h after CIB irradiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DNA-replication-/repair- (mainly up-regulated), cell-death- (mainly up-regulated), plant-hormone- (auxin and cytokinin, which are related to plant morphogenesis, were mainly down-regulated), and photosynthesis- (mainly down-regulated) related pathways were involved in the response to the CIB. Furthermore, CIB irradiation can also up-regulate the genes involved in NR metabolism, which provides an alternative strategy to elevate the NR production in TKS in the future. These findings are helpful to understand the radiation response mechanism and further guide the future mutation breeding for TKS by the CIB. Full article
(This article belongs to the Special Issue Recent Advances in Plant Molecular Science in China 2023)
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Effect of Kisspeptin-Type Neuropeptide on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus
by Xueying Guo, Libin Zhang and Kang Xiao
Animals 2023, 13(4), 705; https://doi.org/10.3390/ani13040705 - 17 Feb 2023
Cited by 5 | Viewed by 2475
Abstract
Kisspeptins are neuropeptides encoded by the kiss1 gene, and little is known about them outside the vertebrate lineage. Two kisspeptin-type neuropeptides (KPs) have been discovered in Apostichopus japonicus (AjK1 and AjK2), an edible sea cucumber, and have been linked to reproductive and metabolic [...] Read more.
Kisspeptins are neuropeptides encoded by the kiss1 gene, and little is known about them outside the vertebrate lineage. Two kisspeptin-type neuropeptides (KPs) have been discovered in Apostichopus japonicus (AjK1 and AjK2), an edible sea cucumber, and have been linked to reproductive and metabolic regulation. In this study, we evaluated how KPs affected locomotor behavior in one control group and two treatment groups (AjK1 and AjK2). We discovered that AjK1 had a significant dose effect, primarily by shortening the stride length and duration of movement to reduce the sea cucumber movement distance, whereas AjK2 had little inhibitory effect at the same dose. The levels of phosphatidylethanolamine (PE), phosphatidylcholine (PC), uridine, glycine, and L-serine in the longitudinal muscle of A. japonicus treated with AjK1 differed significantly from those of the control, which may explain the observed changes in locomotor behavior. Treatment with AjK2 induced changes in aspartate levels. Our results imply that AjK1 is more likely than AjK2 to have a role in the regulation of A. japonicus locomotion. Full article
(This article belongs to the Collection Behavioral Ecology of Aquatic Animals)
Show Figures

Figure 1

17 pages, 3890 KiB  
Article
Influence of Complex Service Factors on Ravelling Resistance Performance for Porous Asphalt Pavements
by Zhihao Cheng, Shaopeng Zheng, Naixing Liang, Xiao Li and Libin Li
Buildings 2023, 13(2), 323; https://doi.org/10.3390/buildings13020323 - 21 Jan 2023
Cited by 7 | Viewed by 2194
Abstract
The study aims to analyze the influence of complex service factors on ravelling resistance performance for large-void asphalt pavements by carrying out tests on environmental and vehicle factors, conducting ultraviolet aging, freeze–thaw cycles, as well as vehicle speed simulated tests with the Rotating [...] Read more.
The study aims to analyze the influence of complex service factors on ravelling resistance performance for large-void asphalt pavements by carrying out tests on environmental and vehicle factors, conducting ultraviolet aging, freeze–thaw cycles, as well as vehicle speed simulated tests with the Rotating Surface Abrasion Test, vehicle tests, and traffic volume tests, and by making a correlation analysis between the Cantabro Abrasion test and Rotating Surface Abrasion Test. The result shows that environmental factors significantly affect the ravelling resistance performance of drainage asphalt pavements. With the increase in the times of UV aging and freeze–thaw cycles, the ravelling loss rate of asphalt specimens shows a tendency to increase, and the combined test of UV aging and freeze–thaw cycles aggravated the ravelling damage of asphalt specimens. Meanwhile, vehicle factors have a significant attenuation effect on the ravelling resistance performance of drainage asphalt pavements. With the increase in the speed, pressure, and times of the Rotating Surface Abrasion, the ravelling loss rate of asphalt specimens shows a steady tendency to increase. Furthermore, there exists a good correlation between the Rotating Surface Abrasion speed, pressure, times, and the ravelling loss rate. Finally, the two test results of the Cantabro Abrasion test and Rotating Surface Abrasion test are consistent in their changes during single/composite factor analysis, confirming the feasibility of using the Rotating Surface Abrasion test index to characterize the change in the ravelling resistance performance of drainage asphalt pavements. Full article
(This article belongs to the Special Issue Innovation in Pavement Materials)
Show Figures

Figure 1

27 pages, 6203 KiB  
Article
Improved Neural Network with Spatial Pyramid Pooling and Online Datasets Preprocessing for Underwater Target Detection Based on Side Scan Sonar Imagery
by Jinrui Li, Libin Chen, Jian Shen, Xiongwu Xiao, Xiaosong Liu, Xin Sun, Xiao Wang and Deren Li
Remote Sens. 2023, 15(2), 440; https://doi.org/10.3390/rs15020440 - 11 Jan 2023
Cited by 35 | Viewed by 6713
Abstract
Fast and high-accuracy detection of underwater targets based on side scan sonar images has great potential for marine fisheries, underwater security, marine mapping, underwater engineering and other applications. The following problems, however, must be addressed when using low-resolution side scan sonar images for [...] Read more.
Fast and high-accuracy detection of underwater targets based on side scan sonar images has great potential for marine fisheries, underwater security, marine mapping, underwater engineering and other applications. The following problems, however, must be addressed when using low-resolution side scan sonar images for underwater target detection: (1) the detection performance is limited due to the restriction on the input of multi-scale images; (2) the widely used deep learning algorithms have a low detection effect due to their complex convolution layer structures; (3) the detection performance is limited due to insufficient model complexity in training process; and (4) the number of samples is not enough because of the bad dataset preprocessing methods. To solve these problems, an improved neural network for underwater target detection—which is based on side scan sonar images and fully utilizes spatial pyramid pooling and online dataset preprocessing based on the You Look Only Once version three (YOLO V3) algorithm—is proposed. The methodology of the proposed approach is as follows: (1) the AlexNet, GoogleNet, VGGNet and the ResNet networks and an adopted YOLO V3 algorithm were the backbone networks. The structure of the YOLO V3 model is more mature and compact and has higher target detection accuracy and better detection efficiency than the other models; (2) spatial pyramid pooling was added at the end of the convolution layer to improve detection performance. Spatial pyramid pooling breaks the scale restrictions when inputting images to improve feature extraction because spatial pyramid pooling enables the backbone network to learn faster at high accuracy; and (3) online dataset preprocessing based on YOLO V3 with spatial pyramid pooling increases the number of samples and improves the complexity of the model to further improve detection process performance. Three-side scan imagery datasets were used for training and were tested in experiments. The quantitative evaluation using Accuracy, Recall, Precision, mAP and F1-Score metrics indicates that: for the AlexNet, GoogleNet, VGGNet and ResNet algorithms, when spatial pyramid pooling is added to their backbone networks, the average detection accuracy of the three sets of data was improved by 2%, 4%, 2% and 2%, respectively, as compared to their original formulations. Compared with the original YOLO V3 model, the proposed ODP+YOLO V3+SPP underwater target detection algorithm model has improved detection performance through the mAP qualitative evaluation index has increased by 6%, the Precision qualitative evaluation index has increased by 13%, and the detection efficiency has increased by 9.34%. These demonstrate that adding spatial pyramid pooling and online dataset preprocessing can improve the target detection accuracy of these commonly used algorithms. The proposed, improved neural network with spatial pyramid pooling and online dataset preprocessing based on the YOLO V3 method achieves the highest scores for underwater target detection results for sunken ships, fish flocks and seafloor topography, with mAP scores of 98%, 91% and 96% for the above three kinds of datasets, respectively. Full article
Show Figures

Figure 1

11 pages, 1995 KiB  
Article
Adaptation of Two Wild Bird-Origin H3N8 Avian Influenza Viruses to Mammalian Hosts
by Jianpeng Liang, Qian Li, Linlin Cai, Qingli Yuan, Libin Chen, Qiuyan Lin, Chencheng Xiao, Bin Xiang and Tao Ren
Viruses 2022, 14(5), 1097; https://doi.org/10.3390/v14051097 - 19 May 2022
Cited by 11 | Viewed by 3876
Abstract
Wild birds play an important role in the emergence, evolution, and spread of zoonotic avian influenza viruses (AIVs). However, there are few studies on the cross-species transmission of the H3N8 AIV originating from wild birds. In this study, we investigated the transmissibility and [...] Read more.
Wild birds play an important role in the emergence, evolution, and spread of zoonotic avian influenza viruses (AIVs). However, there are few studies on the cross-species transmission of the H3N8 AIV originating from wild birds. In this study, we investigated the transmissibility and pathogenicity of two H3N8 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds, GZA1 and XJ47, to mammals. The HA genes of both strains belonged to Eurasian isolates, while the other genes were derived from a variety of other subtypes of AIVs. Both strains can infect specific-pathogen-free (SPF) chickens, BALB/c mice, and guinea pigs. The XJ47 strain spread horizontally in SPF chickens and guinea pigs. The GZA1 strain did not spread horizontally but caused higher weight loss and mild lung inflammation in mice. P12-GZA1- and P12-XJ47-adapted strains obtained after 12 passages in the lung of mice showed enhanced pathogenicity in mice, which led to obvious clinical symptoms, lung inflammation, and 100% death. Both adapted strains have the reported mutation T97I in the PA, and the reported mutation D701N in PB2 has been found in the P12-GZA1-adapted strain. This study provides an important scientific basis for the continuous monitoring of wild AIVs and the mechanism underlying AIV cross-species transmission. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

11 pages, 3069 KiB  
Article
Appropriate Irrigation and Fertilization Regime Restrain Indigenous Soil Key Ammonia-Oxidizing Archaeal and Bacterial Consortia to Mitigate Greenhouse Gas Emissions
by Liang Xiao, Libin Bao, Lantian Ren, Yiqin Xie, Hong Wang, Xiang Wang, Jianfei Wang, Cece Qiao and Xin Xiao
Sustainability 2022, 14(10), 6113; https://doi.org/10.3390/su14106113 - 18 May 2022
Cited by 5 | Viewed by 2288
Abstract
Harnessing an ammonia-oxidizing microbiome has become an increasingly attractive form of management for mitigating greenhouse gas emissions in rice paddies; however, the relationship between greenhouse gas emissions and ammonia-oxidizing microbiomes, using a nitrogen application and irrigation regime, has not been well investigated. To [...] Read more.
Harnessing an ammonia-oxidizing microbiome has become an increasingly attractive form of management for mitigating greenhouse gas emissions in rice paddies; however, the relationship between greenhouse gas emissions and ammonia-oxidizing microbiomes, using a nitrogen application and irrigation regime, has not been well investigated. To decipher which of (and how) the specific mmonia-oxidizing bacterial species drive the greenhouse gas CH4 and N2O emissions, a field experiment with varying nitrogen application and irrigation regimes was initiated to investigate the succession of key bacterial consortia associated with GHG emissions. The results showed that water-saving irrigation (AWD) significantly increased NO3-N and NH4+-N concentrations, compared with conventional irrigation (FDF), whereas (total nitrogen) TN was little higher in FDF (1.38 g kg−1) compared with the AWD (1.36 g kg−1). During the rice-growing season, CH4 emissions ascended speedily, and emissions peaked at maximum values of 3.32 and 4.41 ug mg−2 h−1 on day 5 in FDF and AWD irrigation regimes, respectively, and then they rapidly decreased during the midseason period, maintaining a relatively low emission rate until the rice was harvested. The patterns of N2O emission fluxes had the same tendencies with N fertilization. Putative key taxa, such as Flavobacterium, Massilia, Arenimonas, Novosphingobium, Pseudomonas, exhibited significant positive relationships with higher GHG emissions, suggesting that they make particularly obvious contributions to N2O emissions. These putative taxa should be considered when designing a high nitrogen application and irrigation strategy. As such, the nitrogen application of N180, and the irrigation regimes of water-saving irrigation, are recommended methods for N conservation and the mitigation of greenhouse gas emissions in rice paddies. Full article
Show Figures

Figure 1

11 pages, 1662 KiB  
Article
Nearly 20 Years of Genetic Diversity and Evolution of Porcine Circovirus-like Virus P1 from China
by Libin Wen, Lihong Yin, Jiaping Zhu, Heran Li, Fengxi Zhang, Qun Hu, Qi Xiao, Jianping Xie and Kongwang He
Viruses 2022, 14(4), 696; https://doi.org/10.3390/v14040696 - 28 Mar 2022
Cited by 4 | Viewed by 2512
Abstract
Porcine circovirus-like virus P1 can infect many kinds of animals and mainly causes postweaning multisystemic wasting syndrome. In China, the genetic diversity, variation, and evolutionary processes of this virus have not been described yet. To improve our knowledge of its genetic diversity, evolution, [...] Read more.
Porcine circovirus-like virus P1 can infect many kinds of animals and mainly causes postweaning multisystemic wasting syndrome. In China, the genetic diversity, variation, and evolutionary processes of this virus have not been described yet. To improve our knowledge of its genetic diversity, evolution, and gene flow, we performed a bioinformatics analysis using the available nucleotide sequences of the P1 virus; among them, 12 nucleotide sequences were from ten pig farms in Jiangsu Province in this epidemiological survey, and 84 sequences were downloaded from GenBank. The P1 sequences showed a rich composition of AT nucleotides. Analyses of the complete genomic sequences were polymorphic and revealed high haplotype (gene) diversity and nucleotide diversity. A phylogenetic analysis based on the NJ method showed that all P1 virus sequences formed two distinct groups: A and B. High genetic differentiation was observed between strains from groups A and B. The codon usage pattern of P1 was affected by dinucleotide compositions. Dinucleotide UU/CC was overrepresented, and dinucleotide CG was underrepresented. The mean evolutionary rate of the P1 virus was estimated to be 3.64 × 10−4 nucleotide substitutions per site per year (subs/site/year). The neutrality tests showed negative values. The purifying selection and recombination events may play a major driving role in generating the genetic diversity of the P1 population. The information from this research may be helpful to obtain new insights into the evolution of P1. Full article
(This article belongs to the Special Issue State-of-the-Art Porcine Virus Research in China)
Show Figures

Figure 1

Back to TopTop