Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Authors = Junbiao Peng

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4572 KiB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 904
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

24 pages, 3881 KiB  
Review
Self-Powered Ultraviolet Photodetectors Based on Conductive Polymers/Ga2O3 Heterojunctions: A Review
by Zerui Xiao, Haoyan Chen, Honglong Ning, Dongxiang Luo, Xuecong Fang, Muyun Li, Guoping Su, Han He, Rihui Yao and Junbiao Peng
Polymers 2025, 17(10), 1384; https://doi.org/10.3390/polym17101384 - 17 May 2025
Viewed by 807
Abstract
Self-powered ultraviolet photodetectors hold significant potential for diverse applications across both military and civilian fields. Owing to its wide bandgap, high electron mobility, and adaptability to various substrates, gallium oxide (Ga2O3) serves as a crucial material for fabricating self-powered [...] Read more.
Self-powered ultraviolet photodetectors hold significant potential for diverse applications across both military and civilian fields. Owing to its wide bandgap, high electron mobility, and adaptability to various substrates, gallium oxide (Ga2O3) serves as a crucial material for fabricating self-powered ultraviolet photodetectors. Photodetectors based on p-n heterojunctions of conductive polymers and gallium oxide have great application potential benefiting from unique advantages of conductive polymers. This review provides an extensive overview of typical ultraviolet photodetectors based on conductive polymer/gallium oxide heterojunctions, focusing on the physical structure, fabrication process, and photoelectric properties of heterojunction devices formed by Ga2O3 with conductive polymers like polythiophene, polyaniline, and polycarbazole, etc. Different conductive polymers yield varying performance improvements in the fabricated devices: polythiophene/Ga2O3 devices exhibit high conductivity and flexible bandgap tuning to meet diverse wavelength detection needs; PANI/Ga2O3 devices feature simple fabrication and low cost, with doping control to enhance charge carrier transport efficiency; polycarbazole/Ga2O3 devices offer high thermal stability and efficient hole transport. Among them, the polythiophene/Ga2O3 device demonstrates the most superior overall performance, making it the ideal choice for high-performance Ga2O3-based photodetectors and a representative of such research. This review identifies the existing technical challenges and provides valuable insights for designing more efficient Ga2O3/conductive polymer heterojunction photodetectors. Full article
(This article belongs to the Special Issue Advanced Electrically Conductive Polymers and Composites)
Show Figures

Figure 1

17 pages, 5706 KiB  
Article
Flexible Piezoresistive Sensor Based on CNT/PVA Composite with Wide Linear Detection Range for Human Motion Monitoring
by Lijun Chen, Yucheng Huang, Honglong Ning, Yuxiang Liu, Huacheng Tang, Rui Zhou, Shaojie Jin, Jiahao Zheng, Rihui Yao and Junbiao Peng
Polymers 2025, 17(10), 1378; https://doi.org/10.3390/polym17101378 - 17 May 2025
Cited by 2 | Viewed by 810
Abstract
In recent years, flexible pressure sensors have attracted significant attention due to their extensive application prospects in wearable devices, healthcare monitoring, and other fields. Herein, we propose a flexible piezoresistive sensor with a broad detection range, utilizing a CNT/PVA composite as the pressure-sensitive [...] Read more.
In recent years, flexible pressure sensors have attracted significant attention due to their extensive application prospects in wearable devices, healthcare monitoring, and other fields. Herein, we propose a flexible piezoresistive sensor with a broad detection range, utilizing a CNT/PVA composite as the pressure-sensitive layer. The effect of the CNT-to-PVA ratio on sensing performance was systematically investigated, revealing that the sensor’s sensitivity initially increases and then decreases with rising CNT content. When the weight percentage of CNTs reaches 11.24 wt%, the sensing film exhibits optimal piezoresistive properties. A resistance model of the composite conductive material was established to elucidate the sensing mechanism associated with CNT content in detail. Furthermore, hill-like microstructures were fabricated on a PDMS substrate using sandpaper as a template to further enhance overall performance. The sensor demonstrates a sensitivity of 0.1377 kPa−1 (<90 kPa), a sensing range of up to 400 kPa, a response time of 160 ms, and maintains excellent stability after 2000 folding cycles. It can accurately detect human joint flexion and muscle activity. This work is expected to provide a feasible solution for flexible electronic devices applied in human motion monitoring and analysis, particularly offering competitive advantages in applications involving wide-range pressure detection. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

13 pages, 6926 KiB  
Article
Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices
by Zhenyu Wu, Honglong Ning, Han Li, Xiaoqin Wei, Dongxiang Luo, Dong Yuan, Zhihao Liang, Guoping Su, Rihui Yao and Junbiao Peng
Micromachines 2025, 16(1), 17; https://doi.org/10.3390/mi16010017 - 26 Dec 2024
Cited by 2 | Viewed by 1161
Abstract
The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. [...] Read more.
The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate. As the annealing temperature rises, the film tends to be denser and obtains a lower surface roughness, a narrower optical-band gap and less oxygen-vacancy content. However, the μ-PCD test shows the 250 °C-annealed film obtains the least defects. And the PrIZO TFT annealed at 250 °C exhibited a desired performance with a saturation mobility (μsat) of 14.26 cm2·V−1·s−1, a subthreshold swing (SS) of 0.14 V·dec−1, an interface trap density (Dit) of 3.17 × 1011, an Ion/Ioff ratio of 1.83 × 108 and a threshold voltage (Vth) of −1.15 V. The flexible devices were prepared using the optimized parameters on the Polyimide (PI) substrate and subjected to static bending tests. After bending at a radius of 5 mm, the mobility of devices decreases slightly from 12.48 to 10.87 cm2·V−1·s−1, demonstrating the great potential of PrIZO for flexible displays. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

13 pages, 4456 KiB  
Article
Preparation of High-Performance Transparent Al2O3 Dielectric Films via Self-Exothermic Reaction Based on Solution Method and Applications
by Xuecong Fang, Honglong Ning, Zihan Zhang, Rihui Yao, Yucheng Huang, Yonglin Yang, Weixin Cheng, Shaojie Jin, Dongxiang Luo and Junbiao Peng
Micromachines 2024, 15(9), 1140; https://doi.org/10.3390/mi15091140 - 11 Sep 2024
Cited by 2 | Viewed by 1716
Abstract
As the competition intensifies in enhancing the integration and performance of integrated circuits, in accordance with the famous Moore’s Law, higher performance and smaller size requirements are imposed on the dielectric layers in electronic devices. Compared to vacuum methods, the production cost of [...] Read more.
As the competition intensifies in enhancing the integration and performance of integrated circuits, in accordance with the famous Moore’s Law, higher performance and smaller size requirements are imposed on the dielectric layers in electronic devices. Compared to vacuum methods, the production cost of preparing dielectric layers via solution methods is lower, and the preparation cycle is shorter. This paper utilizes a low-temperature self-exothermic reaction based on the solution method to prepare high-performance Al2O3 dielectric thin films that are compatible with flexible substrates. In this paper, we first established two non-self-exothermic systems: one with pure aluminum nitrate and one with pure aluminum acetylacetonate. Additionally, we set up one self-exothermic system where aluminum nitrate and aluminum acetylacetonate were mixed in a 1:1 ratio. Tests revealed that the leakage current density and dielectric constant of the self-exothermic system devices were significantly optimized compared to the two non-self-exothermic system devices, indicating that the self-exothermic reaction can effectively improve the quality of the dielectric film. This paper further established two self-exothermic systems with aluminum nitrate and aluminum acetylacetonate mixed in 2:1 and 1:2 ratios, respectively, for comparison. The results indicate that as the proportion of aluminum nitrate increases, the overall dielectric performance of the devices improves. The best overall performance occurs when aluminum nitrate and aluminum acetylacetonate are mixed in a ratio of 2:1: The film surface is smooth without cracks; the surface roughness is 0.747 ± 0.045 nm; the visible light transmittance reaches up to 98%; on the basis of this film, MIM devices were fabricated, with tested leakage current density as low as 1.08 × 10−8 A/cm2 @1 MV and a relative dielectric constant as high as 8.61 ± 0.06, demonstrating excellent electrical performance. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

8 pages, 1993 KiB  
Communication
Optimization of Pulsed Laser Energy Density for the Preparation of MoS2 Film and Its Device by Pulsed Laser Deposition
by Wei Cai, Yuxiang Liu, Rihui Yao, Weijian Yuan, Honglong Ning, Yucheng Huang, Shaojie Jin, Xuecong Fang, Ruhai Guo and Junbiao Peng
Micromachines 2024, 15(8), 945; https://doi.org/10.3390/mi15080945 - 24 Jul 2024
Cited by 3 | Viewed by 1504
Abstract
This article aims to explore the most optimal pulsed laser energy density when using the pulsed laser deposition (PLD) process to prepare the MoS2 films. We gradually increased the pulsed laser energy density from 70 mJ·cm−2 to 110 mJ·cm−2 and [...] Read more.
This article aims to explore the most optimal pulsed laser energy density when using the pulsed laser deposition (PLD) process to prepare the MoS2 films. We gradually increased the pulsed laser energy density from 70 mJ·cm−2 to 110 mJ·cm−2 and finally determined that 100 mJ·cm−2 was the best-pulsed laser energy density for MoS2 films by PLD. The surface morphology and crystallization of the MoS2 films prepared under this condition are the best. The films consist of a high-crystallized 2H-MoS2 phase with strong (002) preferential orientation, and their direct optical band gap (Eg) is 1.614 eV. At the same time, the Si/MoS2 heterojunction prepared under the optimal pulsed laser energy density shows an opening voltage of 0.61 V and a rectification ratio of 457.0. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

21 pages, 10710 KiB  
Article
Effects of Laser Treatment of Terbium-Doped Indium Oxide Thin Films and Transistors
by Rihui Yao, Dingrong Liu, Nanhong Chen, Honglong Ning, Guoping Su, Yuexin Yang, Dongxiang Luo, Xianzhe Liu, Haoyan Chen, Muyun Li and Junbiao Peng
Nanomaterials 2024, 14(11), 908; https://doi.org/10.3390/nano14110908 - 22 May 2024
Cited by 2 | Viewed by 1693
Abstract
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination [...] Read more.
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10−11 A vs. 1.66 × 10−12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = −10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V). Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

12 pages, 3070 KiB  
Article
The Mechanism of the Photostability Enhancement of Thin-Film Transistors Based on Solution-Processed Oxide Semiconductors Doped with Tetravalent Lanthanides
by Linfeng Lan, Chunchun Ding, Penghui He, Huimin Su, Bo Huang, Jintao Xu, Shuguang Zhang and Junbiao Peng
Nanomaterials 2022, 12(21), 3902; https://doi.org/10.3390/nano12213902 - 4 Nov 2022
Cited by 13 | Viewed by 2119
Abstract
The applications of thin-film transistors (TFTs) based on oxide semiconductors are limited due to instability under negative bias illumination stress (NBIS). Here, we report TFTs based on solution-processed In2O3 semiconductors doped with Pr4+ or Tb4+, which can [...] Read more.
The applications of thin-film transistors (TFTs) based on oxide semiconductors are limited due to instability under negative bias illumination stress (NBIS). Here, we report TFTs based on solution-processed In2O3 semiconductors doped with Pr4+ or Tb4+, which can effectively improve the NBIS stability. The differences between the Pr4+-doped In2O3 (Pr:In2O3) and Tb4+-doped In2O3 (Tb:In2O3) are investigated in detail. The undoped In2O3 TFTs with different annealing temperatures exhibit poor NBIS stability with serious turn-on voltage shift (ΔVon). After doping with Pr4+/Tb4+, the TFTs show greatly improved NBIS stability. As the annealing temperature increases, the Pr:In2O3 TFTs have poorer NBIS stability (ΔVon are −3.2, −4.8, and −4.8 V for annealing temperature of 300, 350, and 400 °C, respectively), while the Tb:In2O3 TFTs have better NBIS stability (ΔVon are −3.6, −3.6, and −1.2 V for annealing temperature of 300, 350, and 400 ℃, respectively). Further studies reveal that the improvement of the NBIS stability of the Pr4+/Tb4+:In2O3 TFTs is attributed to the absorption of the illuminated light by the Pr/Tb4fn—O2p6 to Pr/Tb 4fn+1—O2p5 charge transfer (CT) transition and downconversion of the light to nonradiative transition with a relatively short relaxation time compared to the ionization process of the oxygen vacancies. The higher NBIS stability of Tb:In2O3 TFTs compared to Pr:In2O3 TFTs is ascribed to the smaller ion radius of Tb4+ and the lower energy level of Tb 4f7 with a isotropic half-full configuration compared to that of Pr 4f1, which would make it easier for the Tb4+ to absorb the visible light than the Pr4+. Full article
(This article belongs to the Special Issue Nanoscale Thin Film Transistors and Application Exploration)
Show Figures

Figure 1

18 pages, 5213 KiB  
Review
From Traditional to Novel Printed Electrochromic Devices: Material, Structure and Device
by Qingyue Cai, Haoyang Yan, Rihui Yao, Dongxiang Luo, Muyun Li, Jinyao Zhong, Yuexin Yang, Tian Qiu, Honglong Ning and Junbiao Peng
Membranes 2022, 12(11), 1039; https://doi.org/10.3390/membranes12111039 - 25 Oct 2022
Cited by 11 | Viewed by 3615
Abstract
Electrochromic materials have been considered as a new way to achieve energy savings in the building sector due to their potential applications in smart windows, cars, aircrafts, etc. However, the high cost of manufacturing ECDs using the conventional manufacturing methods has limited its [...] Read more.
Electrochromic materials have been considered as a new way to achieve energy savings in the building sector due to their potential applications in smart windows, cars, aircrafts, etc. However, the high cost of manufacturing ECDs using the conventional manufacturing methods has limited its commercialization. It is the advantages of low cost as well as resource saving, green environment protection, flexibility and large area production that make printing electronic technology fit for manufacturing electrochromic devices. This paper reviews the progress of research on printed electrochromic devices (ECDs), detailing the preparation of ECDs by screen printing, inkjet printing and 3D printing, using the scientific properties of discrete definition printing method. Up to now, screen printing holds the largest share in the electrochromic industry due to its low cost and large ink output nature, which makes it suitable especially for printing on large surfaces. Though inkjet printing has the advantages of high precision and the highest coloration efficiency (CE) can be up to 542 ± 10 cm2C–1, it has developed smoothly, and has not shown rigid needs. Inkjet printing is suitable for the personalized printing production of high precision and small batch electronic devices. Since 3D printing is a new manufacturing technology in the 21st century, with the characteristics of integrated molding and being highly controllable, which make it suitable for customized printing of complex devices, such as all kinds of sensors, it has gained increasing attention in the past decade. Finally, the possibility of combining screen printing with inkjet printing to produce high performance ECDs is discussed. Full article
(This article belongs to the Special Issue Microfluidics and MEMS Technology for Membranes II)
Show Figures

Figure 1

24 pages, 6778 KiB  
Review
Recent Advances in Flexible Resistive Random Access Memory
by Peng Tang, Junlong Chen, Tian Qiu, Honglong Ning, Xiao Fu, Muyun Li, Zuohui Xu, Dongxiang Luo, Rihui Yao and Junbiao Peng
Appl. Syst. Innov. 2022, 5(5), 91; https://doi.org/10.3390/asi5050091 - 21 Sep 2022
Cited by 13 | Viewed by 4452
Abstract
Flexible electronic devices have received great attention in the fields of foldable electronic devices, wearable electronic devices, displays, actuators, synaptic bionics and so on. Among them, high-performance flexible memory for information storage and processing is an important part. Due to its simple structure [...] Read more.
Flexible electronic devices have received great attention in the fields of foldable electronic devices, wearable electronic devices, displays, actuators, synaptic bionics and so on. Among them, high-performance flexible memory for information storage and processing is an important part. Due to its simple structure and non-volatile characteristics, flexible resistive random access memory (RRAM) is the most likely flexible memory to achieve full commercialization. At present, the minimum bending radius of flexible RRAM can reach 2 mm and the maximum ON/OFF ratio (storage window) can reach 108. However, there are some defects in reliability and durability. In the bending process, the cracks are the main cause of device failure. The charge trap sites provided by appropriate doping or the use of amorphous nanostructures can make the conductive filaments of flexible RRAM steadier. Flexible electrodes with high conductivity and flexible dielectric with stable storage properties are the main development directions of flexible RRAM materials in the future. Full article
(This article belongs to the Section Industrial and Manufacturing Engineering)
Show Figures

Figure 1

31 pages, 9403 KiB  
Review
Research Progresses in Microstructure Designs of Flexible Pressure Sensors
by Hao Huang, Jinyao Zhong, Yongliang Ye, Renxu Wu, Bin Luo, Honglong Ning, Tian Qiu, Dongxiang Luo, Rihui Yao and Junbiao Peng
Polymers 2022, 14(17), 3670; https://doi.org/10.3390/polym14173670 - 4 Sep 2022
Cited by 29 | Viewed by 6540
Abstract
Flexible electronic technology is one of the research hotspots, and numerous wearable devices have been widely used in our daily life. As an important part of wearable devices, flexible sensors can effectively detect various stimuli related to specific environments or biological species, having [...] Read more.
Flexible electronic technology is one of the research hotspots, and numerous wearable devices have been widely used in our daily life. As an important part of wearable devices, flexible sensors can effectively detect various stimuli related to specific environments or biological species, having a very bright development prospect. Therefore, there has been lots of studies devoted to developing high-performance flexible pressure sensors. In addition to developing a variety of materials with excellent performances, the microstructure designs of materials can also effectively improve the performances of sensors, which has brought new ideas to scientists and attracted their attention increasingly. This paper will summarize the flexible pressure sensors based on material microstructure designs in recent years. The paper will mainly discuss the processing methods and characteristics of various sensors with different microstructures, and compare the advantages, disadvantages, and application scenarios of them. At the same time, the main application fields of flexible pressure sensors based on microstructure designs will be listed, and their future development and challenges will be discussed. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Sensors)
Show Figures

Figure 1

16 pages, 3241 KiB  
Review
Application of Tungsten-Oxide-Based Electrochromic Devices for Supercapacitors
by Muyun Li, Haoyang Yan, Honglong Ning, Xinglin Li, Jinyao Zhong, Xiao Fu, Tian Qiu, Dongxiang Luo, Rihui Yao and Junbiao Peng
Appl. Syst. Innov. 2022, 5(4), 60; https://doi.org/10.3390/asi5040060 - 23 Jun 2022
Cited by 11 | Viewed by 4314
Abstract
For making full use of the discoloration function of electrochromic (EC) devices and better show the charge and discharge states of supercapacitors (SCs), electrochromic supercapacitors (ECSCs) have attracted much attention and expectations in recent years. The research progress of tungsten-oxide-based electrochromic supercapacitors (ECSCs) [...] Read more.
For making full use of the discoloration function of electrochromic (EC) devices and better show the charge and discharge states of supercapacitors (SCs), electrochromic supercapacitors (ECSCs) have attracted much attention and expectations in recent years. The research progress of tungsten-oxide-based electrochromic supercapacitors (ECSCs) in recent years is reviewed in this paper. Nanostructured tungsten oxide is widely used to facilitate ion implantation/extraction and increase the porosity of the electrode. The low-dimensional nanostructured tungsten oxide was compared in four respects: material scale, electrode life, coloring efficiency, and specific capacitance. Due to the mechanics and ductility of nano-tungsten oxide electrodes, they are very suitable for the preparation of flexible ECSCs. With the application of an organic protective layer and metal nanowire conductive electrode, the device has higher coloring efficiency and a lower activation voltage. Finally, this paper indicates that in the future, WO3-based ECSCs will develop in the direction of self-supporting power supply to meet the needs of use. Full article
Show Figures

Figure 1

18 pages, 5515 KiB  
Article
Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films
by Yaru Pan, Xihui Liang, Zhihao Liang, Rihui Yao, Honglong Ning, Jinyao Zhong, Nanhong Chen, Tian Qiu, Xiaoqin Wei and Junbiao Peng
Membranes 2022, 12(7), 641; https://doi.org/10.3390/membranes12070641 - 22 Jun 2022
Cited by 1 | Viewed by 2141
Abstract
Capacitors play an increasingly important role in hybrid integrated circuits, while the MIM capacitors with high capacitance density and small thickness can meet the needs of high integration. Generally speaking, the films prepared with a single metal oxide dielectric often achieve a breakthrough [...] Read more.
Capacitors play an increasingly important role in hybrid integrated circuits, while the MIM capacitors with high capacitance density and small thickness can meet the needs of high integration. Generally speaking, the films prepared with a single metal oxide dielectric often achieve a breakthrough in one aspect of performance, but dielectric layers are required to be improved to get better performance in leakage current, capacitance density, and transmittance simultaneously in modern electronic devices. Therefore, we optimized the performance of the dielectric layers by using multiple metal oxides. We combined zirconia, yttria, magnesium oxide, alumina, and hafnium oxide with the solution method to find the best combination of these five metal oxides. The physical properties of the multi-component films were measured by atomic force microscopy (AFM), ultraviolet-visible spectrophotometer, and other instruments. The results show that the films prepared by multi-component metal oxides have good transmittance and low roughness. The thicknesses of all films in our experiment are less than 100 nm. Then, metal–insulator–metal (MIM) devices were fabricated. In addition, we characterized the electrical properties of MIM devices. We find that multi-component oxide films can achieve good performances in several aspects. The aluminum-magnesium-yttrium-zirconium-oxide (AMYZOx) group of 0.6 M has the lowest leakage current density, which is 5.03 × 10−8 A/cm2 @ 1.0 MV/cm. The hafnium-magnesium-yttrium-zirconium-oxide (HMYZOx) group of 0.8 M has a maximum capacitance density of 208 nF/cm2. The films with a small thickness and a high capacitance density are very conducive to high integration. Therefore, we believe that multi-component films have potential in the process of dielectric layers and great application prospects in highly integrated electronic devices. Full article
Show Figures

Figure 1

14 pages, 5092 KiB  
Article
Solution-Processed Silicon Doped Tin Oxide Thin Films and Thin-Film Transistors Based on Tetraethyl Orthosilicate
by Ziyan He, Xu Zhang, Xiaoqin Wei, Dongxiang Luo, Honglong Ning, Qiannan Ye, Renxu Wu, Yao Guo, Rihui Yao and Junbiao Peng
Membranes 2022, 12(6), 590; https://doi.org/10.3390/membranes12060590 - 1 Jun 2022
Cited by 6 | Viewed by 3301
Abstract
Recently, tin oxide (SnO2) has been the preferred thin film material for semiconductor devices such as thin-film transistors (TFTs) due to its low cost, non-toxicity, and superior electrical performance. However, the high oxygen vacancy (VO) concentration leads to poor [...] Read more.
Recently, tin oxide (SnO2) has been the preferred thin film material for semiconductor devices such as thin-film transistors (TFTs) due to its low cost, non-toxicity, and superior electrical performance. However, the high oxygen vacancy (VO) concentration leads to poor performance of SnO2 thin films and devices. In this paper, with tetraethyl orthosilicate (TEOS) as the Si source, which can decompose to release heat and supply energy when annealing, Si doped SnO2 (STO) films and inverted staggered STO TFTs were successfully fabricated by a solution method. An XPS analysis showed that Si doping can effectively inhibit the formation of VO, thus reducing the carrier concentration and improving the quality of SnO2 films. In addition, the heat released from TEOS can modestly lower the preparation temperature of STO films. By optimizing the annealing temperature and Si doping content, 350 °C annealed STO TFTs with 5 at.% Si exhibited the best device performance: Ioff was as low as 10−10 A, Ion/Ioff reached a magnitude of 104, and Von was 1.51 V. Utilizing TEOS as an Si source has a certain reference significance for solution-processed metal oxide thin films in the future. Full article
(This article belongs to the Special Issue Microfluidics and MEMS Technology for Membranes II)
Show Figures

Figure 1

12 pages, 5446 KiB  
Article
A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing
by Hongfu Liang, Rihui Yao, Guanguang Zhang, Xu Zhang, Zhihao Liang, Yuexin Yang, Honglong Ning, Jinyao Zhong, Tian Qiu and Junbiao Peng
Membranes 2022, 12(2), 141; https://doi.org/10.3390/membranes12020141 - 24 Jan 2022
Cited by 6 | Viewed by 5129
Abstract
Over the past few decades, electrohydrodynamic (EHD) printing has proved to be an environmentally friendly, cost-effective and powerful tool in manufacturing electronic devices with a wire width of less than 50 μm. In particular, EHD printing is highly valued for the printing of [...] Read more.
Over the past few decades, electrohydrodynamic (EHD) printing has proved to be an environmentally friendly, cost-effective and powerful tool in manufacturing electronic devices with a wire width of less than 50 μm. In particular, EHD printing is highly valued for the printing of ultrafine wire-width silver electrodes, which is important in manufacturing large-area, high-resolution micron-scale or even nanoscale structures. In this paper, we compare two methods of surface modification of glass substrate: UV treatment and oxygen plasma treatment. We found that oxygen plasma was better than UV treatment in terms of wettability and uniformity. Secondly, we optimized the annealing temperature parameter, and found that the conductivity of the electrode was the highest at 200 °C due to the smoothing silver electrode and the oxidation-free internal microstructure. Thirdly, we used EHD printing to fabricate silver electrodes on the glass substrate. Due to the decrease of conductivity as a result of the skin effect and the decrease of silver content, we found that driving voltage dropped, line width decreased, and the conductivity of silver line decreased. After the optimization of the EHD printing process, Ag electrode line width and conductivity reached 19.42 ± 0.24 μm and 6.01 × 106 S/m, demonstrating the potential of electro-hydraulic printing in the manufacturing of flexible, wearable, high-density, low-power-consumption electronics. Full article
(This article belongs to the Special Issue Microfluidics and MEMS Technology for Membranes)
Show Figures

Figure 1

Back to TopTop