Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis
3.2. XRR Analysis
3.3. AFM Analysis
3.4. Optical Characterization
3.5. XPS Analysis
3.6. μ-PCD Analysis
3.7. TFT Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, D.; Kim, Y.; Lee, S.; Kang, M.S.; Kim, D.H.; Lee, H. High Resolution a-IGZO TFT Pixel Circuit for Compensating Threshold Voltage Shifts and OLED Degradations. IEEE J. Electron Devices Soc. 2017, 5, 372–377. [Google Scholar] [CrossRef]
- Xu, W.Y.; Li, H.; Xu, J.B.; Wang, L. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 2018, 10, 25878–25901. [Google Scholar] [CrossRef]
- Natu, K.; Laad, M.; Ghule, B.; Shalu, A. Transparent and flexible zinc oxide-based thin-film diodes and thin-film transistors: A review. J. Appl. Phys. 2023, 134, 27. [Google Scholar] [CrossRef]
- Zhang, G.M.; Xu, Y.C.; Haider, M.; Sun, J.; Zhang, D.K.; Yang, J.L. Printing flexible thin-film transistors. Appl. Phys. Rev. 2023, 10, 44. [Google Scholar] [CrossRef]
- Panca, A.; Panidi, J.; Faber, H.; Stathopoulos, S.; Anthopoulos, T.D.; Prodromakis, T. Flexible Oxide Thin Film Transistors, Memristors, and Their Integration. Adv. Funct. Mater. 2023, 33, 24. [Google Scholar] [CrossRef]
- Park, J.S.; Maeng, W.J.; Kim, H.S.; Park, J.S. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 2012, 520, 1679–1693. [Google Scholar] [CrossRef]
- Yu, X.G.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Guo, Z.; Wang, J.W.; Lu, C.Y.; Wang, M.L.; Wang, T.Y.; Liao, F.X.; Yang, G.H.; Lu, N.D.; Li, L. Tri-Layer Heterostructure Channel of a-IGZO/a-ITZO/a-IGZO Toward Enhancement of Transport and Reliability in Amorphous Oxide Semiconductor Thin Film Transistors. Adv. Electron. Mater. 2024, 9, 2400266. [Google Scholar] [CrossRef]
- Kim, J.; Bang, J.; Nakamura, N.; Hosono, H. Ultra-wide bandgap amorphous oxide semiconductors for NBIS-free thin-film transistors. APL Mater. 2019, 7, 4. [Google Scholar] [CrossRef]
- Wager, J.F.; Yeh, B.; Hoffman, R.L.; Keszler, D.A. An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 2014, 18, 53–61. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, X.; Ye, Q.; Yao, R.; Zhong, J.; Fu, X.; Yang, Y.; Li, M.; Ning, H.; Peng, J. Effect of oxygen defect on the performance of Nd: InZnO high mobility thin-film transistors. Surf. Interfaces 2022, 33, 102184. [Google Scholar] [CrossRef]
- Li, Y.; Yao, R.; Zhong, J.; Yang, Y.; Liang, Z.; Fu, Y.; Zeng, X.; Su, G.; Ning, H.; Peng, J. The Hump Phenomenon and Instability of Oxide TFT Were Eliminated by Interfacial Passivation and UV + Thermal Annealing Treatment. ACS Appl. Electron. Mater. 2023, 5, 4846–4862. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y.; Li, M.; Xu, H.; Xu, M.; Wang, L.; Peng, J. Abnormal Positive Shift of Threshold Voltage in Praseodymium-Doped InZnO-TFTs Under Negative Bias Illumination Temperature Stress. IEEE Trans. Electron Devices 2024, 71, 1951–1956. [Google Scholar] [CrossRef]
- He, P.; Xu, H.; Lan, L.; Deng, C.; Wu, Y.; Lin, Y.; Chen, S.; Ding, C.; Li, X.; Xu, M.; et al. The effect of charge transfer transition on the photostability of lanthanide-doped indium oxide thin-film transistors. Commun. Mater. 2021, 2, 86. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, S.J.; Kim, S.-J.; An, T.K.; Jeong, Y.J. The impact of nickel doping on metal-oxide network in solution-processed indium zinc oxide transistors. Mater. Today Commun. 2023, 35, 106221. [Google Scholar] [CrossRef]
- Tarsoly, G.; Lee, J.-Y.; Heo, K.-J.; Kim, S.-J. Doping of Indium Oxide Semiconductor Film Prepared Using an Environmentally Friendly Aqueous Solution Process with Sub-1% Molybdenum to Improve Device Performance and Stability. ACS Appl. Electron. Mater. 2023, 5, 4308–4315. [Google Scholar] [CrossRef]
- Xu, H.; Xu, M.; Li, M.; Chen, Z.; Zou, J.; Wu, W.; Qiao, X.; Tao, H.; Wang, L.; Ning, H.; et al. Trap-Assisted Enhanced Bias Illumination Stability of Oxide Thin Film Transistor by Praseodymium Doping. ACS Appl. Mater. Interfaces 2019, 11, 5232–5239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liang, L.; Wang, X.; Wu, Z.; Cao, H. Praseodymium-Doped In-Sn-Zn-O TFTs With Effective Improvement of Negative-Bias Illumination Stress Stability. IEEE Trans. Electron Devices 2022, 69, 152–155. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, R.; Fu, X.; Cai, W.; Li, Y.; Xu, W.; Wu, Z.; Luo, C.; Ning, H.; Peng, J. UV irradiation assisted low-temperature process for thin film transistor performance improvement of praseodymium-doped indium zinc oxide. J. Phys. D Appl. Phys. 2023, 57, 7. [Google Scholar] [CrossRef]
- Zou, W.; Liang, Z.; Fu, X.; Ning, H.; Zeng, X.; Fu, Y.; Wang, H.; Luo, C.; Yao, R.; Peng, J. Improvement of PrIZO Thin Films by O2 Plasma Treatment Combined With Low-Temperature Annealing for Thin-Film Transistors. IEEE Trans. Electron Devices 2023, 70, 5672–5677. [Google Scholar] [CrossRef]
- Ide, K.; Nomura, K.; Hosono, H.; Kamiya, T. Electronic Defects in Amorphous Oxide Semiconductors: A Review. Phys. Status Solidi A-Appl. Mat. 2019, 216, 1800372. [Google Scholar] [CrossRef]
- Yuqing, Z.; Zhihe, X.; Jiapeng, L.; Yang, S.; Sisi, W.; Lei, L.; Shengdong, Z.; Hoi-Sing, K.; Man, W. Systematic Defect Manipulation in Metal Oxide Semiconductors towards High-Performance Thin-Film Transistors. In Proceedings of the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang, Malaysia, 6–21 April 2020. [Google Scholar] [CrossRef]
- Lee, H.; Jyothi, C.; Baang, S.; Kwon, J.H.; Bae, J.H. Influence of structural defects in solution-processed InZnO semiconductors on the electrical stability of thin-film transistors. J. Korean Phys. Soc. 2016, 69, 1688–1693. [Google Scholar] [CrossRef]
- Pi, T.T.; Xiao, D.Q.; Yang, H.; He, G.; Wu, X.H.; Liu, W.J.; Zhang, D.W.; Ding, S.J. High-Performance a-IGZO TFT Fabricated With Ultralow Thermal Budget via Microwave Annealing. IEEE Trans. Electron Devices 2022, 69, 156–159. [Google Scholar] [CrossRef]
- Kang, C.M.; Kim, H.; Oh, Y.W.; Baek, K.H.; Do, L.M. Pre-Annealing Effect for Low-Temperature, Solution-Processed Indium Oxide Thin-Film Transistors. J. Nanosci. Nanotechnol. 2017, 17, 3293–3297. [Google Scholar] [CrossRef]
- Tarsoly, G.; Lee, J.Y.; Kim, S.J. Improving the photoswitching performance of a transistor with amorphous metal oxide semiconductor thin film by a gradient annealing approach. Opt. Mater. 2024, 157, 6. [Google Scholar] [CrossRef]
- Rim, Y.S.; Jeong, W.; Ahn, B.D.; Kim, H.J. Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing. Appl. Phys. Lett. 2013, 102, 4. [Google Scholar] [CrossRef]
- Park, M.; Yoo, J.; Lee, H.; Song, H.; Kim, S.; Lim, S.; Park, S.; Jeong, J.H.; Kim, B.; Lee, K.; et al. Rapid Thermal Annealing under O2 Ambient to Recover the Deterioration by Gamma-Ray Irradiation in a-IGZO TFTs. Electron. Mater. Lett. 2024, 10, 1–8. [Google Scholar] [CrossRef]
- Xiao, R.B.; Cheng, J.; Lu, Z.Y.; Sun, Q.; Wang, X.; Fu, X.Y.; Gao, J.N. Impact of In-doping and post-annealing on the properties of SnO2 thin films deposited by magnetron sputtering. Phys. Scr. 2024, 99, 095937. [Google Scholar] [CrossRef]
- Li, M.; Lan, L.F.; Xu, M.; Xu, H.; Luo, D.X.; Xiao, P.; Peng, J.B. Performance improvement of oxide thin-film transistors with a two-step-annealing method. Solid-State Electron. 2014, 91, 9–12. [Google Scholar] [CrossRef]
- Lu, K.; Yao, R.; Wang, Y.; Ning, H.; Guo, D.; Liu, X.; Tao, R.; Xu, M.; Wang, L.; Peng, J. Effects of praseodymium doping on the electrical properties and aging effect of InZnO thin-film transistor. J. Mater. Sci. 2019, 54, 14778–14786. [Google Scholar] [CrossRef]
- Zhang, C.H.; Chen, Y.P.; Hou, C.Y.; Wang, G.; Zhang, Q.H.; Li, Y.G.; Wang, H.Z. Thermal-assisted brush printing of water-based In-Ga-Zn oxide transistors. J. Alloys Compd. 2021, 862, 158001. [Google Scholar] [CrossRef]
- Tang, H.; Lu, K.; Xu, Z.; Ning, H.; Yao, D.; Fu, X.; Yang, H.; Luo, D.; Yao, R.; Peng, J. Effect of Sputtering Oxygen Partial Pressure on the Praseodymium-Doped InZnO Thin Film Transistor Using Microwave Photoconductivity Decay Method. Micromachines 2021, 12, 1044. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.Z.; Xu, L.; Zhang, X.N.; Hao, H.Y.; Zong, S.; Chen, H.M.; Song, Z.C.; Luo, S.J.; Zhu, Z.H. High mobility amorphous InSnO thin film transistors via low-temperature annealing. Appl. Phys. Lett. 2023, 122, 033503. [Google Scholar] [CrossRef]
- Peng, J.W.; Liu, P.C.; Lee, S. Reversible band gap tuning of metal oxide films using hydrogen and oxygen plasmas. Thin Solid Films 2013, 531, 81–87. [Google Scholar] [CrossRef]
- Ali, A.V.M.; Kekuda, D. Thickness and oxygen partial pressure dependence on optical band gap of indium oxide by reactive evaporation method. IOP Conf. Series: Mater. Sci. Eng. 2015, 73, 012027. [Google Scholar] [CrossRef]
- Yasuno, S.; Kita, T.; Morita, S.; Kugimiya, T.; Hayashi, K.; Sumie, S. Transient photoconductivity responses in amorphous In-Ga-Zn-O films. J. Appl. Phys. 2012, 112, 053715. [Google Scholar] [CrossRef]
- Chen, J.; Hu, S.; Ning, H.; Fang, Z.; Tao, R.; Zhou, Y.; Cai, W.; Liu, X.; Yao, R.; Peng, J. Evaluation of Nd–Al doped indium-zinc oxide thin-film transistors by a μ-PCD method. Semicond. Sci. Technol. 2019, 34, 055011. [Google Scholar] [CrossRef]
- Goto, H.; Tao, H.; Morita, S.; Takanashi, Y.; Hino, A.; Kishi, T.; Ochi, M.; Hayashi, K.; Kugimiya, T. In-line Process Monitoring for Amorphous Oxide Semiconductor TFT Fabrication using Microwave-detected Photoconductivity Decay Technique. IEICE Trans. Electron. 2014, E97.C, 1055–1062. [Google Scholar] [CrossRef]
- Cai, W.S.; Park, S.; Zhang, J.W.; Wilson, J.; Li, Y.P.; Xin, Q.; Majewski, L.; Song, A.M. One-Volt IGZO Thin-Film Transistors With Ultra-Thin, Solution-Processed AlxOy Gate Dielectric. IEEE Electron Device Lett. 2018, 39, 375–378. [Google Scholar] [CrossRef]
- Bang, J.; Matsuishi, S.; Hosono, H. Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications. Appl. Phys. Lett. 2017, 110, 232105. [Google Scholar] [CrossRef]
- Sheng, J.; Jeong, H.-J.; Han, K.L.; Hong, T.H.; Park, J.S. Review of recent advances in flexible oxide semiconductor thin-film transistors. J. Inf. Disp. 2017, 18, 159–172. [Google Scholar] [CrossRef]
Annealing Progress | Peak (mV) | Tau2 (µs) |
---|---|---|
Untreated | 112.9 | 2.18 |
200 °C in air | 147.7 | 3.10 |
250 °C in air | 347.6 | 2.17 |
300 °C in air | 245.2 | 3.97 |
Temperature | μsat (cm2·V−1·s−1) | SS (V·dec−1) | Dit (cm−2·eV−1) | Ion/Ioff | Vth (V) |
---|---|---|---|---|---|
200 °C | 2.80 ± 0.26 | 0.34 ± 0.04 | (1.11 ± 0.16) × 1012 | (1.10 ± 0.28) × 107 | 1.35 ± 0.12 |
250 °C | 14.26 ± 0.31 | 0.14 ± 0.02 | (3.17 ± 0.79) × 1011 | (1.83 ± 0.35) × 108 | −1.15 ± 0.14 |
300 °C | / | 2.98 ± 0.12 | (1.16 ± 0.05) × 1013 | (4.17 ± 0.65) × 102 | / |
Radius | μsat (cm2·V−1·s−1) | SS (V·dec−1) | Dit (cm−2·eV−1) | Ion/Ioff | Vth (V) |
---|---|---|---|---|---|
Plane on glass | 14.26 ± 0.31 | 0.14 ± 0.02 | (3.17 ± 0.79) × 1011 | (1.83 ± 0.35) × 108 | −1.15 ± 0.14 |
Plane on PI | 12.48 ± 0.40 | 0.22 ± 0.04 | (6.34 ± 1.58) × 1011 | (4.45 ± 1.56) × 107 | 5.54 ± 0.56 |
R = 30 mm | 11.23 ± 0.30 | 0.26 ± 0.03 | (7.93 ± 1.19) × 1011 | (5.66 ± 1.73) × 107 | 3.43 ± 0.33 |
R = 20 mm | 10.86 ± 0.33 | 0.25 ± 0.04 | (7.53 ± 1.58) × 1011 | (5.37 ± 1.33) × 107 | 5.04 ± 0.41 |
R = 10 mm | 10.85 ± 0.25 | 0.24 ± 0.03 | (7.13 ± 1.19) × 1011 | (6.78 ± 2.12) × 107 | 4.50 ± 0.32 |
R = 5 mm | 10.87 ± 0.28 | 0.21 ± 0.05 | (5.95 ± 1.98) × 1011 | (5.29 ± 1.08) × 107 | 4.57 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Ning, H.; Li, H.; Wei, X.; Luo, D.; Yuan, D.; Liang, Z.; Su, G.; Yao, R.; Peng, J. Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices. Micromachines 2025, 16, 17. https://doi.org/10.3390/mi16010017
Wu Z, Ning H, Li H, Wei X, Luo D, Yuan D, Liang Z, Su G, Yao R, Peng J. Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices. Micromachines. 2025; 16(1):17. https://doi.org/10.3390/mi16010017
Chicago/Turabian StyleWu, Zhenyu, Honglong Ning, Han Li, Xiaoqin Wei, Dongxiang Luo, Dong Yuan, Zhihao Liang, Guoping Su, Rihui Yao, and Junbiao Peng. 2025. "Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices" Micromachines 16, no. 1: 17. https://doi.org/10.3390/mi16010017
APA StyleWu, Z., Ning, H., Li, H., Wei, X., Luo, D., Yuan, D., Liang, Z., Su, G., Yao, R., & Peng, J. (2025). Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices. Micromachines, 16(1), 17. https://doi.org/10.3390/mi16010017