Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Solution Properties and Optical Properties
3.2. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, P.; Guhathakurata, S.; Choudhury, A.; Sharma, A.; Tripathy, A.R.; Sachin Kumar, S.; Pancham, P.P.; Das, P.; Mahato, S.S.; Mahata, S.; et al. Flexible BSA MIM Capacitor with Negative Voltage Coefficient for RF Applications. Appl. Phys. Lett. 2020, 116, 171904. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Li, S.-S.; Li, M.-H. A Low Impedance CMOS-MEMS Capacitive Resonator Based on Metal-Insulator-Metal (MIM) Capacitor Structure. IEEE Electron Device Lett. 2021, 42, 1045–1048. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Kao, C.-K.; Chen, B.-Y.; Lin, Y.-S.; Li, M.-Y.; Wu, H.-C. High Density Metal-Insulator-Metal Capacitor Based on ZrO2∕Al2O3∕ZrO2 Laminate Dielectric. Appl. Phys. Lett. 2008, 93, 033511. [Google Scholar] [CrossRef]
- Song, H.; Kim, D.; Kang, S.; Jung, H.; Lim, H.; Yong, K. Al2O3 Blocking Layer Inserted ZrO2 Metal-Insulator-Metal Capacitor for the Improved Electrical and Interfacial Properties. Thin Solid Film. 2020, 713, 138368. [Google Scholar] [CrossRef]
- Toomey, B.; Cherkaoui, K.; Monaghan, S.; Djara, V.; O’Connor, É.; O’Connell, D.; Oberbeck, L.; Tois, E.; Blomberg, T.; Newcomb, S.B.; et al. The Structural and Electrical Characterization of a HfErOx Dielectric for MIM Capacitor DRAM Applications. Microelectron. Eng. 2012, 94, 7–10. [Google Scholar] [CrossRef]
- Dou, W.; Zhu, L.; Jiang, J.; Wan, Q. Flexible Dual-Gate Oxide TFTs Gated by Chitosan Film on Paper Substrates. IEEE Electron Device Lett. 2013, 34, 259–261. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, A.; Liu, G.; Zhu, C.; Meng, Y.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Solution-Processed High-k Magnesium Oxide Dielectrics for Low-Voltage Oxide Thin-Film Transistors. Appl. Phys. Lett. 2016, 109, 183508. [Google Scholar] [CrossRef]
- Jo, J.; Kang, S.; Heo, J.S.; Kim, Y.; Park, S.K. Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chem. Eur. J. 2020, 26, 9126–9156. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Yang, J.; Ding, X.; Zhang, J. Solution-Processed Yttrium-Doped IZTO Semiconductors for High-Stability Thin Film Transistor Applications. IEEE Trans. Electron Devices 2019, 66, 5170–5176. [Google Scholar] [CrossRef]
- Zhao, G.; Song, M.; Chung, H.-S.; Kim, S.M.; Lee, S.-G.; Bae, J.-S.; Bae, T.-S.; Kim, D.; Lee, G.-H.; Han, S.Z.; et al. Optical Transmittance Enhancement of Flexible Copper Film Electrodes with a Wetting Layer for Organic Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 38695–38705. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef]
- Park, S.; Kim, C.-H.; Lee, W.-J.; Sung, S.; Yoon, M.-H. Sol-Gel Metal Oxide Dielectrics for All-Solution-Processed Electronics. Mater. Sci. Eng. R Rep. 2017, 114, 1–22. [Google Scholar] [CrossRef]
- Martinez, V.; Besset, C.; Monsieur, F.; Montès, L.; Ghibaudo, G. Modified Space-Charge Limited Conduction in Tantalum Pentoxide MIM Capacitors. Microelectron. Eng. 2007, 84, 2310–2313. [Google Scholar] [CrossRef]
- Golovina, I.S.; Falmbigl, M.; Plokhikh, A.V.; Bennett-Jackson, A.L.; Ruffino, A.J.; Gutierrez-Perez, A.D.; Johnson, C.L.; Spanier, J.E. Nanocrystalline Polymorphic Oxide Perovskite-Based High-κ Low-Leakage Thin Film Materials. Thin Solid Films 2020, 709, 138123. [Google Scholar] [CrossRef]
- Oluwabi, A.T.; Katerski, A.; Carlos, E.; Branquinho, R.; Mere, A.; Krunks, M.; Fortunato, E.; Pereira, L.; Oja Acik, I. Application of Ultrasonic Sprayed Zirconium Oxide Dielectric in Zinc Tin Oxide-Based Thin Film Transistor. J. Mater. Chem. C 2020, 8, 3730–3739. [Google Scholar] [CrossRef]
- Suárez-Campos, G.; Cabrera-German, D.; Castelo-González, A.O.; Avila-Avendano, C.; Fuentes Ríos, J.L.; Quevedo-López, M.A.; Aceves, R.; Hu, H.; Sotelo-Lerma, M. Characterization of Aluminum Oxide Thin Films Obtained by Chemical Solution Deposition and Annealing for Metal–Insulator–Metal Dielectric Capacitor Applications. Appl. Surf. Sci. 2020, 513, 145879. [Google Scholar] [CrossRef]
- Bermundo, J.P.S.; Kesorn, P.; Yoshida, N.; Safaruddin, A.S.; Uraoka, Y. Temperature Dependence and Functionalization of Solution Processed High-k Hybrid Gate Insulators for High Performance Oxide Thin-Film Transistors. J. Phys. Appl. Phys. 2022, 55, 075102. [Google Scholar] [CrossRef]
- Xu, W.; Long, M.; Zhang, T.; Liang, L.; Cao, H.; Zhu, D.; Xu, J.-B. Fully Solution-Processed Metal Oxide Thin-Film Transistors via a Low-Temperature Aqueous Route. Ceram. Int. 2017, 43, 6130–6137. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Zhu, D.; Cao, P.; Han, S.; Lu, Y.; Fang, M.; Liu, W.; Xu, W. Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors. Nanomaterials 2020, 10, 965. [Google Scholar] [CrossRef]
- Park, J.W.; Kang, B.H.; Kim, H.J. A Review of Low-Temperature Solution-Processed Metal Oxide Thin-Film Transistors for Flexible Electronics. Adv. Funct. Mater. 2020, 30, 1904632. [Google Scholar] [CrossRef]
- Xifeng, L.; Enlong, X.; Jianhua, Z. Low-Temperature Solution-Processed Zirconium Oxide Gate Insulators for Thin-Film Transistors. IEEE Trans. Electron Devices 2013, 60, 3413–3416. [Google Scholar] [CrossRef]
- Peng, J.; Sun, Q.; Wang, S.; Wang, H.-Q.; Ma, W. Low-Temperature Solution-Processed Alumina as Gate Dielectric for Reducing the Operating-Voltage of Organic Field-Effect Transistors. Appl. Phys. Lett. 2013, 103, 061603. [Google Scholar] [CrossRef]
- Woods, K.N.; Chiang, T.-H.; Plassmeyer, P.N.; Kast, M.G.; Lygo, A.C.; Grealish, A.K.; Boettcher, S.W.; Page, C.J. High-κ Lanthanum Zirconium Oxide Thin Film Dielectrics from Aqueous Solution Precursors. ACS Appl. Mater. Interfaces 2017, 9, 10897–10903. [Google Scholar] [CrossRef]
- Huang, L.-T.; Chang, M.-L.; Huang, J.-J.; Lin, H.-C.; Kuo, C.-L.; Lee, M.-H.; Liu, C.W.; Chen, M.-J. Improvement in Electrical Characteristics of HfO2 Gate Dielectrics Treated by Remote NH3 Plasma. Appl. Surf. Sci. 2013, 266, 89–93. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.; Zhu, H.; Meng, Y.; Song, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. A Water-Induced High-k Yttrium Oxide Dielectric for Fully-Solution-Processed Oxide Thin-Film Transistors. Curr. Appl. Phys. 2015, 15, S75–S81. [Google Scholar] [CrossRef]
- Wang, X.P.; Li, M.-F.; Yu, H.Y.; Yang, J.J.; Chen, J.D.; Zhu, C.X.; Du, A.Y.; Loh, W.Y.; Biesemans, S.; Chin, A.; et al. Widely Tunable Work Function TaN/Ru Stacking Layer on HfLaO Gate Dielectric. IEEE Electron Device Lett. 2008, 29, 50–53. [Google Scholar] [CrossRef]
- Yang, H.; Liang, Z.; Fu, X.; Xu, Z.; Ning, H.; Liu, X.; Lin, J.; Pan, Y.; Yao, R.; Peng, J. Application of Amorphous Zirconium-Yttrium-Aluminum-Magnesium-Oxide Thin Film with a High Relative Dielectric Constant Prepared by Spin-Coating. Membranes 2021, 11, 608. [Google Scholar] [CrossRef]
- Liu, Y.R.; Deng, L.F.; Yao, R.H.; Lai, P.T. Low-Operating-Voltage Polymer Thin-Film Transistors Based on Poly(3-Hexylthiophene) With Hafnium Oxide as the Gate Dielectric. IEEE Trans. Device Mater. Reliab. 2010, 10, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Zhang, Q.; Zhu, C.; Chan, D.S.H.; Li, M.F.; Balasubramanian, N.; Chin, A.; Kwong, D.-L. Alternative Surface Passivation on Germanium for Metal-Oxide-Semiconductor Applications with High-k Gate Dielectric. Appl. Phys. Lett. 2004, 85, 4127–4129. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Ding, S.-J.; Huang, Y.; Huang, Y.-J.; Zhang, D.W.; Wang, L.-K.; Liu, R. High-Temperature Conduction Behaviors of HfO2/TaN-Based Metal-Insulator-Metal Capacitors. J. Appl. Phys. 2007, 102, 073706. [Google Scholar] [CrossRef]
- Jõgi, I.; Kukli, K.; Ritala, M.; Leskelä, M.; Aarik, J.; Aidla, A.; Lu, J. Atomic Layer Deposition of High Capacitance Density Ta2O5–ZrO2 Based Dielectrics for Metal–Insulator–Metal Structures. Microelectron. Eng. 2010, 87, 144–149. [Google Scholar] [CrossRef]
- Zhou, S.; Fang, Z.; Ning, H.; Cai, W.; Zhu, Z.; Wei, J.; Lu, X.; Yuan, W.; Yao, R.; Peng, J. Bias Stability Enhancement in Thin-Film Transistor with a Solution-Processed ZrO2 Dielectric as Gate Insulator. Appl. Sci. 2018, 8, 806. [Google Scholar] [CrossRef] [Green Version]
- Veerapandian, M.; Seo, Y.-T.; Shin, H.; Yun, K.; Lee, M.-H. Functionalized Graphene Oxide for Clinical Glucose Biosensing in Urine and Serum Samples. Int. J. Nanomed. 2012, 7, 6123–6136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yimsiri, P.; Mackley, M.R. Spin and Dip Coating of Light-Emitting Polymer Solutions: Matching Experiment with Modelling. Chem. Eng. Sci. 2006, 61, 3496–3505. [Google Scholar] [CrossRef]
- Lawrence, C.J. The Mechanics of Spin Coating of Polymer Films. Phys. Fluids 1988, 31, 2786. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ray, P. Studies on Surface Tension of Poly(Vinyl Alcohol): Effect of Concentration, Temperature, and Addition of Chaotropic Agents. J. Appl. Polym. Sci. 2004, 93, 122–130. [Google Scholar] [CrossRef]
- Horiuchi, S.; Choda, N.; Takahashi, H.; Sato, T.; Taira, H.; Mukai, K. Application of Three-Dimensionally Printed Probe and Reservoir to Critical Micelle Concentration Determination by Microvolume Surface Tension Measurement. J. Pharm. Sci. 2016, 105, 2349–2354. [Google Scholar] [CrossRef]
- Döbbelin, M.; Tena-Zaera, R.; Marcilla, R.; Iturri, J.; Moya, S.; Pomposo, J.A.; Mecerreyes, D. Multiresponsive PEDOT-Ionic Liquid Materials for the Design of Surfaces with Switchable Wettability. Adv. Funct. Mater. 2009, 19, 3326–3333. [Google Scholar] [CrossRef]
- Larbot, A.; Hours, T.; Bergez, P.; Charpin, J.; Cot, L. Study of Sol-Gel Transition during Hafnium Alkoxide Hydrolysis. J. Non-Cryst. Solids 1992, 147–148, 85–91. [Google Scholar] [CrossRef]
- Li, C.Q.; Zhan, Y.L.; Lei, S.; Li, W. Preparations of Superhydrophobic Surfaces Using the One-Step Spin Coating Method and Characterizations of Their Anti-Icing Behavior. Int. J. Mater. Res. 2019, 110, 1135–1141. [Google Scholar] [CrossRef]
- Wilson, S.K.; Hunt, R.; Duffy, B.R. The Rate of Spreading in Spin Coating. J. Fluid Mech. 2000, 413, 65–88. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Duan, L.; Dong, G.; Zhang, D.; Qiu, Y. High-Mobility Solution-Processed Tin Oxide Thin-Film Transistors with High-κ Alumina Dielectric Working in Enhancement Mode. ACS Appl. Mater. Interfaces 2014, 6, 20786–20794. [Google Scholar] [CrossRef]
- Kim, M.-G.; Kim, H.S.; Ha, Y.-G.; He, J.; Kanatzidis, M.G.; Facchetti, A.; Marks, T.J. High-Performance Solution-Processed Amorphous Zinc−Indium−Tin Oxide Thin-Film Transistors. J. Am. Chem. Soc. 2010, 132, 10352–10364. [Google Scholar] [CrossRef]
- Yang, W.; Song, K.; Jung, Y.; Jeong, S.; Moon, J. Solution-Deposited Zr-Doped AlOx Gate Dielectrics Enabling High-Performance Flexible Transparent Thin Film Transistors. J. Mater. Chem. C 2013, 1, 4275. [Google Scholar] [CrossRef]
- Han, S.W.; Lee, K.H.; Yoo, Y.B.; Park, J.H.; Song, K.M.; Baik, H.K. Surface-Tension-Tailored Aqueous Ink for Low-Temperature Deposition of High- k HfO 2 Thin Film. Jpn. J. Appl. Phys. 2016, 55, 080310. [Google Scholar] [CrossRef]
- Zhao, Y.-P.; Wang, G.-C.; Lu, T.-M.; Palasantzas, G.; De Hosson, J.T.M. Surface-Roughness Effect on Capacitance and Leakage Current of an Insulating Film. Phys. Rev. B 1999, 60, 9157–9164. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-B.; Tak, Y.-H.; Han, Y.-S.; Baik, K.-H.; Yoon, M.-H.; Lee, M.-H. Relationship between Surface Roughness of Indium Tin Oxide and Leakage Current of Organic Light-Emitting Diode. Jpn. J. Appl. Phys. 2003, 42, L438–L440. [Google Scholar] [CrossRef]
- Jegert, G.; Kersch, A.; Weinreich, W.; Lugli, P. Ultimate Scaling of TiN/ZrO2/TiN Capacitors: Leakage Currents and Limitations Due to Electrode Roughness. J. Appl. Phys. 2011, 109, 014504. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, X.; Zhou, S.; Ning, H.; Wang, Y.; Guo, D.; Cai, W.; Liang, Z.; Yao, R.; Peng, J. The Effect of Zirconium Doping on Solution-Processed Indium Oxide Thin Films Measured by a Novel Nondestructive Testing Method (Microwave Photoconductivity Decay). Coatings 2019, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, G.; Krishnamoorthy, K.; Kim, S.-J. An Investigation on High-Temperature Electrical Transport Properties of Graphene-Oxide Nano-Thinfilms. Appl. Surf. Sci. 2013, 280, 903–908. [Google Scholar] [CrossRef]
- Rebelo, L.P.N.; Canongia Lopes, J.N.; Esperança, J.M.S.S.; Filipe, E. On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids. J. Phys. Chem. B 2005, 109, 6040–6043. [Google Scholar] [CrossRef]
- Wanjun, T.; Donghua, C. Mechanism of Thermal Decomposition of Cobalt Acetate Tetrahydrate. Chem. Pap. 2007, 61, 329–332. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Kuo, D.-H. The Improvement in Ferroelectric Performance of (Bi3.15Nd0.85)4Ti3O12 Films by the Addition of Hydrogen Peroxide in a Spin-Coating Solution. Thin Solid Films 2006, 515, 1683–1687. [Google Scholar] [CrossRef]
- Pandiarajan, S.; Umadevi, M.; Sasirekha, V.; Rajaram, R.K.; Ramakrishnan, V. FT-IR and FT-Raman Spectral Studies of Bis(L-Proline) Hydrogen Nitrate and Bis(L-Proline) Hydrogen Perchlorate. J. Raman Spectrosc. 2005, 36, 950–961. [Google Scholar] [CrossRef]
- Liu, X.-D.; Hagihala, M.; Zheng, X.-G.; Meng, D.-D.; Guo, Q.-X. Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl. Chin. Phys. Lett. 2011, 28, 087805. [Google Scholar] [CrossRef]
- Won, S.-J.; Huh, M.S.; Park, S.; Suh, S.; Park, T.J.; Kim, J.H.; Hwang, C.S.; Kim, H.J. Capacitance and Interface Analysis of Transparent Analog Capacitor Using Indium Tin Oxide Electrodes and High-k Dielectrics. J. Electrochem. Soc. 2010, 157, G170. [Google Scholar] [CrossRef]
- Yoo, Y.B.; Park, J.H.; Lee, K.H.; Lee, H.W.; Song, K.M.; Lee, S.J.; Baik, H.K. Solution-Processed High-k HfO2 Gate Dielectric Processed under Softening Temperature of Polymer Substrates. J. Mater. Chem. C 2013, 1, 1651. [Google Scholar] [CrossRef]
- Banger, K.; Warwick, C.; Lang, J.; Broch, K.; Halpert, J.E.; Socratous, J.; Brown, A.; Leedham, T.; Sirringhaus, H. Identification of Dipole Disorder in Low Temperature Solution Processed Oxides: Its Utility and Suppression for Transparent High Performance Solution-Processed Hybrid Electronics. Chem. Sci. 2016, 7, 6337–6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantoudis, V.; Patsis, G.P.; Gogolides, E. Fractals and Device Performance Variability: The Key Role of Roughness in Micro and Nanofabrication. Microelectron. Eng. 2012, 90, 121–125. [Google Scholar] [CrossRef]
- Jung, L.; Damiano, J.; Zaman, J.R.; Batra, S.; Manning, M.; Banerjee, S.K. A Leakage Current Model for Sub-Micron Lightly-Doped Drain-Offset Polysilicon TFTs. Solid-State Electron. 1995, 38, 2069–2073. [Google Scholar] [CrossRef]
- Simoen, E.; Gonzalez, M.B.; Vissouvanadin, B.; Chowdhury, M.K.; Verheyen, P.; Hikavyy, A.; Bender, H.; Loo, R.; Claeys, C.; Machkaoutsan, V.; et al. Factors Influencing the Leakage Current in Embedded SiGe Source/Drain Junctions. IEEE Trans. Electron Devices 2008, 55, 925–930. [Google Scholar] [CrossRef]
- Jeong, S.; Ha, Y.-G.; Moon, J.; Facchetti, A.; Marks, T.J. Role of Gallium Doping in Dramatically Lowering Amorphous-Oxide Processing Temperatures for Solution-Derived Indium Zinc Oxide Thin-Film Transistors. Adv. Mater. 2010, 22, 1346–1350. [Google Scholar] [CrossRef]
- Wu, W.J.; Yao, R.H.; Li, S.H.; Hu, Y.F.; Deng, W.L.; Zheng, X.R. A Compact Model for Polysilicon TFTs Leakage Current Including the Poole–Frenkel Effect. IEEE Trans. Electron Devices 2007, 54, 2975–2983. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, G.; Duan, L.; Qiao, J.; Zhang, D.; Wang, L.; Qiu, Y. Impacts of Sn Precursors on Solution-Processed Amorphous Zinc–Tin Oxide Films and Their Transistors. RSC Adv. 2012, 2, 5307. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamaguchi, T.; Fukushima, N.; Koyama, M. LaAlO3 Gate Dielectric with Ultrathin Equivalent Oxide Thickness and Ultralow Leakage Current Directly Deposited on Si Substrate. J. Appl. Phys. 2008, 103, 034118. [Google Scholar] [CrossRef]
- Nakhmedov, E.P.; Nadimi, E.; Bouhassoune, M.; Radehaus, C.; Wieczorek, K. First-Principles Calculations of the Band Gap of HfxSi1−xO2 and ZrxSi1−xO2 Alloys. Phys. Rev. B 2007, 75, 115204. [Google Scholar] [CrossRef]
- Watanabe, H.; Takagi, S. Effects of Incomplete Ionization of Impurities in Poly-Si Gate and Band Gap Narrowing on Direct Tunneling Gate Leakage Current. J. Appl. Phys. 2001, 90, 1600–1607. [Google Scholar] [CrossRef]
- Swain, R.; Jena, K.; Lenka, T.R. Modeling of Forward Gate Leakage Current in MOSHEMT Using Trap-Assisted Tunneling and Poole–Frenkel Emission. IEEE Trans. Electron Devices 2016, 63, 2346–2352. [Google Scholar] [CrossRef]
- Turuvekere, S.; Rawal, D.S.; DasGupta, A.; DasGupta, N. Evidence of Fowler–Nordheim Tunneling in Gate Leakage Current of AlGaN/GaN HEMTs at Room Temperature. IEEE Trans. Electron Devices 2014, 61, 4. [Google Scholar] [CrossRef]
- Numata, K. Justification of the Schottky Emission Model at the Interface of a Precious Metal and a Perovskite Oxide with Dilute Oxygen Vacancies. Thin Solid Films 2006, 515, 2635–2643. [Google Scholar] [CrossRef]
- Mao, L.; Tan, C.; Xu, M. Thickness Measurements for Ultrathin-Film Insulator Metal–Oxide–Semiconductor Structures Using Fowler–Nordheim Tunneling Current Oscillations. J. Appl. Phys. 2000, 88, 6560–6563. [Google Scholar] [CrossRef]
- Perkins, C.K.; Jenkins, M.A.; Chiang, T.-H.; Mansergh, R.H.; Gouliouk, V.; Kenane, N.; Wager, J.F.; Conley, J.F., Jr.; Keszler, D.A. Demonstration of Fowler-Nordheim Tunneling in Simple Solution-Processed Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 36082–36087. [Google Scholar] [CrossRef]
Sample Names | Composition of Metal Oxides |
---|---|
AHMYO | Aluminum-Hafnium-Magnesium-Yttrium-Oxide |
AHMZO | Aluminum-Hafnium-Magnesium-Zirconium-Oxide |
AHYZO | Aluminum-Hafnium-Yttrium-Zirconium-Oxide |
AMYZO | Aluminum-Magnesium-Yttrium-Zirconium-Oxide |
HMYZO | Hafnium-Magnesium-Yttrium-Zirconium-Oxide |
AHMYZO | Aluminum-Hafnium-Magnesium-Yttrium-Zirconium-Oxide |
AHMYO | AHMZO | AHYZO | AMYZO | HMYZO | AHMYZO | |
---|---|---|---|---|---|---|
0.6 M | 116 | 111 | 119 | 140 | 104 | 135 |
0.8 M | 173 | 128 | 131 | 208 | 167 | 144 |
1.0 M | 156 | 104 | 102 | 133 | 109 | 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Liang, X.; Liang, Z.; Yao, R.; Ning, H.; Zhong, J.; Chen, N.; Qiu, T.; Wei, X.; Peng, J. Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films. Membranes 2022, 12, 641. https://doi.org/10.3390/membranes12070641
Pan Y, Liang X, Liang Z, Yao R, Ning H, Zhong J, Chen N, Qiu T, Wei X, Peng J. Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films. Membranes. 2022; 12(7):641. https://doi.org/10.3390/membranes12070641
Chicago/Turabian StylePan, Yaru, Xihui Liang, Zhihao Liang, Rihui Yao, Honglong Ning, Jinyao Zhong, Nanhong Chen, Tian Qiu, Xiaoqin Wei, and Junbiao Peng. 2022. "Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films" Membranes 12, no. 7: 641. https://doi.org/10.3390/membranes12070641
APA StylePan, Y., Liang, X., Liang, Z., Yao, R., Ning, H., Zhong, J., Chen, N., Qiu, T., Wei, X., & Peng, J. (2022). Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films. Membranes, 12(7), 641. https://doi.org/10.3390/membranes12070641