Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Jorge Luiz Costa Castro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2722 KiB  
Article
Depolymerization of PMMA-Based Dental Resin Scraps on Different Production Scales
by Haroldo Jorge da Silva Ribeiro, Armando Costa Ferreira, Caio Campos Ferreira, Lia Martins Pereira, Marcelo Costa Santos, Lauro Henrique Hamoy Guerreiro, Fernanda Paula da Costa Assunção, Sílvio Alex Pereira da Mota, Douglas Alberto Rocha de Castro, Sergio Duvoisin, Luiz Eduardo Pizarro Borges, Nélio Teixeira Machado and Lucas Pinto Bernar
Energies 2024, 17(5), 1196; https://doi.org/10.3390/en17051196 - 2 Mar 2024
Cited by 1 | Viewed by 2121
Abstract
This research explores the depolymerization of waste polymethyl methacrylate (PMMAW) from dental material in fixed bed semi-batch reactors, focusing on three production scales: laboratory, technical and pilot. The study investigates the thermal degradation mechanism and kinetics of PMMAW through thermogravimetric (TG) and differential [...] Read more.
This research explores the depolymerization of waste polymethyl methacrylate (PMMAW) from dental material in fixed bed semi-batch reactors, focusing on three production scales: laboratory, technical and pilot. The study investigates the thermal degradation mechanism and kinetics of PMMAW through thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses, revealing a two-step degradation process. The heat flow during PMMAW decomposition is measured by DSC, providing essential parameters for designing pyrolysis processes. The results demonstrate the potential of DSC for energetic analysis and process design, with attention to standardization challenges. Material balance analysis across the production scales reveals a temperature gradient across the fixed bed negatively impacting liquid yield and methyl methacrylate (MMA) concentration. Reactor load and power load variables are introduced, demonstrating decreased temperature with increased process scale. The study identifies the influence of temperature on MMA concentration in the liquid fraction, emphasizing the importance of controlling temperature for efficient depolymerization. Furthermore, the research highlights the formation of aromatic hydrocarbons from the remaining char, indicating a shift in liquid composition during the depolymerization process. The study concludes that lower temperatures below 450 °C favor liquid fractions rich in MMA, suggesting the benefits of lower temperatures and slower heating rates in semi-batch depolymerization. The findings contribute to a novel approach for analyzing pyrolysis processes, emphasizing reactor design and economic considerations for recycling viability. Future research aims to refine and standardize the analysis and design protocols for pyrolysis and similar processes. Full article
(This article belongs to the Special Issue Advanced Waste-to-Energy Technologies)
Show Figures

Figure 1

13 pages, 1772 KiB  
Article
The Omicron Lineages BA.1 and BA.2 (Betacoronavirus SARS-CoV-2) Have Repeatedly Entered Brazil through a Single Dispersal Hub
by Alessandra P. Lamarca, Ueric José Borges de Souza, Filipe Romero Rebello Moreira, Luiz G. P. de Almeida, Mariane Talon de Menezes, Adrieli Barboza de Souza, Alessandro Clayton de Souza Ferreira, Alexandra L. Gerber, Aline B. de Lima, Ana Paula de C. Guimarães, Andréa Cony Cavalcanti, Aryel B. Paz e Silva, Bruna Israel Lima, Cirley Lobato, Cristiane Gomes Da Silva, Cristiane P. T. B. Mendonça, Daniel Costa Queiroz, Danielle Alves Gomes Zauli, Diego Menezes, Fábio Sossai Possebon, Franciano Dias Pereira Cardoso, Frederico Scott Varella Malta, Isabela Braga-Paz, Joice do Prado Silva, Jorge Gomes Goulart Ferreira, Jucimária Dantas Galvão, Leandro Magalhães de Souza, Leonardo Ferreira, Lia Gonçalves Possuelo, Liliane Tavares de Faria Cavalcante, Luige B. Alvim, Luiz Fellype Alves de Souza, Luiza C. G. de Araújo E Santos, Rillery Calixto Dias, Rutilene Barbosa Souza, Thaís Regina y Castro, Andréia Rosane de Moura Valim, Fabrício Souza Campos, João Pessoa Araujo, Priscila de Arruda Trindade, Renato S. Aguiar, Robson Michael Delai and Ana Tereza R de Vasconcelosadd Show full author list remove Hide full author list
Viruses 2023, 15(4), 888; https://doi.org/10.3390/v15040888 - 30 Mar 2023
Cited by 11 | Viewed by 3802
Abstract
Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this [...] Read more.
Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this work how lineages BA.1 and BA.2 entered and spread in the country by sequencing 2173 new SARS-CoV-2 genomes collected between October 2021 and April 2022 and analyzing them in addition to more than 18,000 publicly available sequences with phylodynamic methods. We registered that Omicron was present in Brazil as early as 16 November 2021 and by January 2022 was already more than 99% of samples. More importantly, we detected that Omicron has been mostly imported through the state of São Paulo, which in turn dispersed the lineages to other states and regions of Brazil. This knowledge can be used to implement more efficient non-pharmaceutical interventions against the introduction of new SARS-CoV variants focused on surveillance of airports and ground transportation. Full article
Show Figures

Figure 1

30 pages, 10112 KiB  
Article
A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical Processes, and Characterization of Bio-Oils and Bio-Adsorbents
by Fernanda Paula da Costa Assunção, Diogo Oliveira Pereira, Jéssica Cristina Conte da Silva, Jorge Fernando Hungria Ferreira, Kelly Christina Alves Bezerra, Lucas Pinto Bernar, Caio Campos Ferreira, Augusto Fernando de Freitas Costa, Lia Martins Pereira, Simone Patrícia Aranha da Paz, Marcelo Costa Santos, Raise Brenda Pinheiro Ferreira, Beatriz Rocha Coqueiro, Aline Christian Pimentel Almeida, Neyson Martins Mendonça, José Almir Rodrigues Pereira, Sílvio Alex Pereira da Mota, Douglas Alberto Rocha de Castro, Sergio Duvoisin, Antônio Augusto Martins Pereira, Luiz Eduardo Pizarro Borges and Nélio Teixeira Machadoadd Show full author list remove Hide full author list
Energies 2022, 15(21), 7971; https://doi.org/10.3390/en15217971 - 27 Oct 2022
Cited by 6 | Viewed by 2645
Abstract
This work aims to investigate the effect of process temperature and catalyst content by pyrolysis and thermal catalytic cracking of (organic matter + paper) fraction from municipal household solid waste (MHSW) on the yields of reaction products (bio-oil, bio-char, H2O, and [...] Read more.
This work aims to investigate the effect of process temperature and catalyst content by pyrolysis and thermal catalytic cracking of (organic matter + paper) fraction from municipal household solid waste (MHSW) on the yields of reaction products (bio-oil, bio-char, H2O, and gas), acid value, chemical composition of bio-oils, and characterization of bio-chars in laboratory scale. The collecting sectors of MHSW in the municipality of Belém-Pará-Brazil were chosen based on geographic and socio-economic database. The MHSW collected and transported to the segregation area. The gravimetric analysis of MHSW was carried out and the fractions (Paper, Cardboard, Tetra Pack, Hard Plastic, Soft Plastic, Metal, Glass, Organic Matter, and Inert) were separated. The selected organic matter and paper were submitted to pre-treatment of crushing, drying, and sieving. The experiments carried out at 400, 450, and 475 °C and 1.0 atmosphere, and at 475 °C and 1.0 atmosphere, using 5.0, 10.0, and 15.0% (wt.) Ca(OH)2, in batch mode. The bio-oil was characterized for acid value. The chemical functions present in bio-oil were identified by FT-IR and the composition was identified by GC-MS. The bio-char was characterized by SEM, FT-IR, and XRD. The variance in mass (wt.%) for organic fractions of municipal household solid waste (OFMHSW), between 56.21 and 67.45% (wt.), lies with the interval of 56% (wt.) and 64% (wt.) of OFMHSW for middle- and low-income countries. The pyrolysis of MHSW fraction (organic matter + paper) shows bio-oil yields between 2.63 and 9.41% (wt.), aqueous phase yields between 28.58 and 35.08% (wt.), solid phase yields between 35.29 and 45.75% (wt.), and gas yields between 16.54 and 26.72% (wt.). The bio-oil yield increases with pyrolysis temperature. For the catalytic cracking, the bio-oil and gas yields increase slightly with CaO content, while that of bio-char decreases, and the H2O phase remains constant. The GC-MS of liquid reaction products identified the presence of hydrocarbons (alkanes, alkenes, alkynes, cycloalkanes, and aromatics) and oxygenates (carboxylic acids, ketones, esters, alcohols, phenols, and aldehydes), as well as compounds containing nitrogen, including amides and amines. The acidity of bio-oil decreases with increasing process temperature and with aid Ca(OH)2 as a catalyst. The concentration of hydrocarbons in bio-oil increases with increasing Ca(OH)2-to-OFMHSW fraction ratio due to the catalytic deoxygenation of fatty acid molecules, by means of decarboxylation/decarbonylation, producing aliphatic and aromatic hydrocarbons. Full article
Show Figures

Figure 1

33 pages, 6890 KiB  
Article
Improving Fuel Properties and Hydrocarbon Content from Residual Fat Pyrolysis Vapors over Activated Red Mud Pellets in Two-Stage Reactor: Optimization of Reaction Time and Catalyst Content
by Caio Campos Ferreira, Lucas Pinto Bernar, Augusto Fernando de Freitas Costa, Haroldo Jorge da Silva Ribeiro, Marcelo Costa Santos, Nathalia Lobato Moraes, Yasmin Santos Costa, Ana Cláudia Fonseca Baia, Neyson Martins Mendonça, Sílvio Alex Pereira da Mota, Fernanda Paula da Costa Assunção, Douglas Alberto Rocha de Castro, Carlos Castro Vieira Quaresma, Sergio Duvoisin, Luiz Eduardo Pizarro Borges and Nélio Teixeira Machado
Energies 2022, 15(15), 5595; https://doi.org/10.3390/en15155595 - 2 Aug 2022
Cited by 9 | Viewed by 2654
Abstract
Catalytic upgrading of vapors from pyrolysis of triglycerides materials is a promising approach to achieve better conversions of hydrocarbons and production of liquid biofuels. Catalytic cracking often shows incomplete conversion due to distillation of initial reaction products and the addition of a second [...] Read more.
Catalytic upgrading of vapors from pyrolysis of triglycerides materials is a promising approach to achieve better conversions of hydrocarbons and production of liquid biofuels. Catalytic cracking often shows incomplete conversion due to distillation of initial reaction products and the addition of a second catalytic reactor, whereas pyrolytic vapors are made in contact to a solid catalyst was applied to improve the physical-chemical properties and quality of bio-oil. This work investigated the effect of catalyst content and reaction time by catalytic upgrading from pyrolysis vapors of residual fat at 450 °C and 1.0 atmosphere, on the yields of reaction products, physicochemical properties (density, kinematic viscosity, refractive index, and acid value), and chemical composition of organic liquid products (OLP), over a catalyst fixed bed reactor, in semi pilot scale. Pellets of red mud chemically activated with 1.0 M HCl were used as catalysts. The thermal catalytic cracking of residual fat show OLP yields from 54.4 to 84.88 (wt.%), aqueous phase yields between 2.21 and 2.80 (wt.%), solid phase yields (coke) between 1.30 and 8.60 (wt.%), and gas yields from 11.61 to 34.22 (wt.%). The yields of OLP increases with catalyst content while those of aqueous, gaseous and solid phase decreases. For all experiments, the density, kinematic viscosity, and acid value of OLP decreases with reaction time. The GC-MS of liquid reaction products identified the presence of hydrocarbons and oxygenates. In addition, the hydrocarbon content in OLP increases with reaction time, while those of oxygenates decrease, reaching concentrations of hydrocarbons up to 95.35% (area.). The best results for the physicochemical properties and the maximum hydrocarbon content in OLP were obtained at 450 °C and 1.0 atmosphere, using a catalyst fixed bed reactor, with 5.0% (wt.) red mud pellets activated with 1.0 M HCl as catalyst. Full article
(This article belongs to the Special Issue Advances in Biodiesel for Application in Diesel Engines)
Show Figures

Figure 1

26 pages, 7210 KiB  
Article
Catalytic Upgrading of Residual Fat Pyrolysis Vapors over Activated Carbon Pellets into Hydrocarbons-like Fuels in a Two-Stage Reactor: Analysis of Hydrocarbons Composition and Physical-Chemistry Properties
by Lucas Pinto Bernar, Caio Campos Ferreira, Augusto Fernando de Freitas Costa, Haroldo Jorge da Silva Ribeiro, Wenderson Gomes dos Santos, Lia Martins Pereira, Anderson Mathias Pereira, Nathalia Lobato Moraes, Fernanda Paula da Costa Assunção, Sílvio Alex Pereira da Mota, Douglas Alberto Rocha de Castro, Marcelo Costa Santos, Neyson Martins Mendonça, Sergio Duvoisin, Luiz Eduardo Pizarro Borges and Nélio Teixeira Machado
Energies 2022, 15(13), 4587; https://doi.org/10.3390/en15134587 - 23 Jun 2022
Cited by 9 | Viewed by 2269
Abstract
This work investigated the influence of the reaction time and catalyst-to-residual fat ratio by catalytic upgrading from pyrolysis vapors of residual fat at 400 °C and 1.0 atmosphere, on the yields of reaction products, physicochemical properties (density, kinematic viscosity, and acid value) and [...] Read more.
This work investigated the influence of the reaction time and catalyst-to-residual fat ratio by catalytic upgrading from pyrolysis vapors of residual fat at 400 °C and 1.0 atmosphere, on the yields of reaction products, physicochemical properties (density, kinematic viscosity, and acid value) and chemical composition of bio-oils, over a catalyst fixed-bed reactor of activated carbon pellets impregnated with 10.0 M NaOH, in semi-pilot scale. The experiments were carried out at 400 °C and 1.0 atmosphere, using a process schema consisting of a thermal cracking reactor of 2.0 L coupled to a catalyst fixed-bed reactor of 53 mL, without catalyst and using 5.0%, 7.5%, and 10.0% (wt.) activated carbon pellets impregnated with 10.0 M NaOH, in batch mode. Results show yields of bio-oil decreasing with increasing catalyst-to-tallow ratio. The GC-MS of liquid reaction products identified the presence of hydrocarbons (alkanes, alkenes, ring-containing alkanes, ring-containing alkenes, and aromatics) and oxygenates (carboxylic acids, ketones, esters, alcohols, and aldehydes). For all the pyrolysis and catalytic cracking experiments, the hydrocarbon selectivity in bio-oil increases with increasing reaction time, while those of oxygenates decrease, reaching concentrations of hydrocarbons up to 95.35% (area). Full article
(This article belongs to the Special Issue Biomass and Waste as Feedstocks for Biofuel Production)
Show Figures

Figure 1

37 pages, 3800 KiB  
Review
Diagnosis, Prognosis and Treatment of Canine Cutaneous and Subcutaneous Mast Cell Tumors
by Andrigo Barboza de Nardi, Rodrigo dos Santos Horta, Carlos Eduardo Fonseca-Alves, Felipe Noleto de Paiva, Laís Calazans Menescal Linhares, Bruna Fernanda Firmo, Felipe Augusto Ruiz Sueiro, Krishna Duro de Oliveira, Silvia Vanessa Lourenço, Ricardo De Francisco Strefezzi, Carlos Henrique Maciel Brunner, Marcelo Monte Mor Rangel, Paulo Cesar Jark, Jorge Luiz Costa Castro, Rodrigo Ubukata, Karen Batschinski, Renata Afonso Sobral, Natália Oyafuso da Cruz, Adriana Tomoko Nishiya, Simone Crestoni Fernandes, Simone Carvalho dos Santos Cunha, Daniel Guimarães Gerardi, Guilherme Sellera Godoy Challoub, Luiz Roberto Biondi, Renee Laufer-Amorim, Paulo Ricardo de Oliveira Paes, Gleidice Eunice Lavalle, Rafael Ricardo Huppes, Fabrizio Grandi, Carmen Helena de Carvalho Vasconcellos, Denner Santos dos Anjos, Ângela Cristina Malheiros Luzo, Julia Maria Matera, Miluse Vozdova and Maria Lucia Zaidan Dagliadd Show full author list remove Hide full author list
Cells 2022, 11(4), 618; https://doi.org/10.3390/cells11040618 - 10 Feb 2022
Cited by 50 | Viewed by 41389
Abstract
Mast cell tumors (MCTs) are hematopoietic neoplasms composed of mast cells. It is highly common in dogs and is extremely important in the veterinary oncology field. It represents the third most common tumor subtype, and is the most common malignant skin tumor in [...] Read more.
Mast cell tumors (MCTs) are hematopoietic neoplasms composed of mast cells. It is highly common in dogs and is extremely important in the veterinary oncology field. It represents the third most common tumor subtype, and is the most common malignant skin tumor in dogs, corresponding to 11% of skin cancer cases. The objective of this critical review was to present the report of the 2nd Consensus meeting on the Diagnosis, Prognosis, and Treatment of Canine Cutaneous and Subcutaneous Mast Cell Tumors, which was organized by the Brazilian Association of Veterinary Oncology (ABROVET) in August 2021. The most recent information on cutaneous and subcutaneous mast cell tumors in dogs is presented and discussed. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

27 pages, 4773 KiB  
Article
Process Analysis of PMMA-Based Dental Resins Residues Depolymerization: Optimization of Reaction Time and Temperature
by Paulo Bisi dos Santos, Haroldo Jorge da Silva Ribeiro, Armando Costa Ferreira, Caio Campos Ferreira, Lucas Pinto Bernar, Fernanda Paula da Costa Assunção, Douglas Alberto Rocha de Castro, Marcelo Costa Santos, Sergio Duvoisin, Luiz Eduardo Pizarro Borges and Nélio Teixeira Machado
Energies 2022, 15(1), 91; https://doi.org/10.3390/en15010091 - 23 Dec 2021
Cited by 8 | Viewed by 4281
Abstract
This work aims to optimize the recovery of methyl methacrylate (MMA) by depolymerization of polymethyl methacrylate (PMMA) dental resins fragments/residues. In order to pilot the experiments at technical scale, the PMMA dental resins scraps were submitted by thermogravimetric analysis (TG/DTG/DTA). The experiments were [...] Read more.
This work aims to optimize the recovery of methyl methacrylate (MMA) by depolymerization of polymethyl methacrylate (PMMA) dental resins fragments/residues. In order to pilot the experiments at technical scale, the PMMA dental resins scraps were submitted by thermogravimetric analysis (TG/DTG/DTA). The experiments were conducted at 345, 405, and 420 °C, atmospheric pressure, using a pilot scale reactor of 143 L. The liquid phase products obtained at 420 °C, atmospheric pressure, were subjected to fractional distillation using a pilot scale column at 105 °C. The physicochemical properties (density, kinematic viscosity, and refractive index) of reaction liquid products, obtained at 345 °C, atmospheric pressure, were determined experimentally. The compositional analysis of reaction liquid products at 345 °C, 30, 40, 50, 60, 70, 80, and 110 min, at 405 °C, 50, 70, and 130 min, and at 420 °C, 40, 50, 80, 100, 110, and 130 min were determined by GC-MS. The morphology of PMMA dental resins fragments before and after depolymerization was performed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The experiments show that liquid phase yields were 55.50%, 48.73%, and 48.20% (wt.), at 345, 405, and 420 °C, respectively, showing a first order exponential decay behavior, decreasing with increasing temperature, while that of gas phase were 31.69%, 36.60%, and 40.13% (wt.), respectively, showing a first order exponential growth, increasing with temperature. By comparing the density, kinematic viscosity, and refractive index of pure MMA at 20 °C with those of liquid reaction products after distillation, one may compute percent errors of 1.41, 2.83, and 0.14%, respectively. SEM analysis showed that all the polymeric material was carbonized. Oxygenated compounds including esters of carboxylic acids, alcohols, ketones, and aromatics were detected by gas chromatography/mass spectrometry (GC-MS) in the liquid products at 345, 405, and 420 °C, atmosphere pressure. By the depolymerization of PMMA dental resins scraps, concentrations of methyl methacrylate between 83.454 and 98.975% (area.) were achieved. For all the depolymerization experiments, liquid phases with MMA purities above 98% (area.) were obtained between the time interval of 30 and 80 min. However, after 100 min, a sharp decline in the concentrations of methyl methacrylate in the liquid phase was observed. The optimum operating conditions to achieve high MMA concentrations, as well as elevated yields of liquid reaction products were 345 °C and 80 min. Full article
(This article belongs to the Special Issue Advanced Technologies on Biomass Conversion)
Show Figures

Figure 1

27 pages, 6892 KiB  
Article
Production of Fuel-Like Fractions by Fractional Distillation of Bio-Oil from Açaí (Euterpe oleracea Mart.) Seeds Pyrolysis
by Douglas Alberto Rocha de Castro, Haroldo Jorge da Silva Ribeiro, Lauro Henrique Hamoy Guerreiro, Lucas Pinto Bernar, Sami Jonatan Bremer, Marcelo Costa Santo, Hélio da Silva Almeida, Sergio Duvoisin, Luiz Eduardo Pizarro Borges and Nélio Teixeira Machado
Energies 2021, 14(13), 3713; https://doi.org/10.3390/en14133713 - 22 Jun 2021
Cited by 22 | Viewed by 5222
Abstract
This work investigates the effect of production scales (laboratory, bench, and pilot) by pyrolysis of Açaí (Euterpe oleracea Mart.) seeds at 450 °C and 1.0 atmosphere, on the yields of reaction products and acid value of bio-oils. The experiments were carried out [...] Read more.
This work investigates the effect of production scales (laboratory, bench, and pilot) by pyrolysis of Açaí (Euterpe oleracea Mart.) seeds at 450 °C and 1.0 atmosphere, on the yields of reaction products and acid value of bio-oils. The experiments were carried out in batch mode using a laboratory scale reactor of 143 mL, a bench scale reactor of 1.5 L, and a pilot scale reactor of 143 L (≈1:10:1000). The bio-oil was obtained in pilot scale, fractionated by distillation to produce biofuel-like fractions. The distillation of bio-oil was carried out in a laboratory column. The physical-chemistry properties (density, kinematic viscosity, acid value, and refractive index) of bio-oils and distillation fractions were determined. The qualitative analysis was determined by FT-IR and the chemical composition by GC-MS. The pyrolysis showed bio-oil yields from 4.37 to 13.09 (wt.%), decreasing with reactor volume. The acid value of bio-oils varied from 68.31 to 70.26 mg KOH/g. The distillation of bio-oil produced gasoline, light kerosene, and kerosene-like fuel fractions, and the yields were 16.16, 19.56, and 41.89 (wt.%), respectively. The physical-chemistry properties of distillation fractions increase with temperature. The FT-IR analysis of bio-oils and distillation fractions identified the presence of functional groups characteristic of hydrocarbons (alkenes, alkanes, aromatics, and aromatics rings) and oxygenates (carboxylic acids, ketones, esters, ethers, alcohols, phenols). The GC-MS identified 48.24 (area.%) hydrocarbons and 51.76 (area.%) oxygenates in the bio-oil produced in bench scale and 21.52 (area.%) hydrocarbons and 78.48 (area.%) oxygenates in the bio-oil produced in pilot scale. The gasoline-like fraction was composed by 64.0 (area.%) hydrocarbons and 36.0 (area.%) oxygenates, light kerosene-like fraction by 66.67 (area.%) hydrocarbons and 33.33 (area.%) oxygenates, and kerosene-like fraction by 19.87 (area.%) hydrocarbons and 81.13 (area.%) oxygenates. Full article
(This article belongs to the Special Issue Advanced Technologies for Biomass)
Show Figures

Graphical abstract

Back to TopTop