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Abstract: This work aims to investigate the effect of process temperature and catalyst content
by pyrolysis and thermal catalytic cracking of (organic matter + paper) fraction from municipal
household solid waste (MHSW) on the yields of reaction products (bio-oil, bio-char, H2O, and gas),
acid value, chemical composition of bio-oils, and characterization of bio-chars in laboratory scale.
The collecting sectors of MHSW in the municipality of Belém-Pará-Brazil were chosen based on
geographic and socio-economic database. The MHSW collected and transported to the segregation
area. The gravimetric analysis of MHSW was carried out and the fractions (Paper, Cardboard, Tetra
Pack, Hard Plastic, Soft Plastic, Metal, Glass, Organic Matter, and Inert) were separated. The selected
organic matter and paper were submitted to pre-treatment of crushing, drying, and sieving. The
experiments carried out at 400, 450, and 475 ◦C and 1.0 atmosphere, and at 475 ◦C and 1.0 atmosphere,
using 5.0, 10.0, and 15.0% (wt.) Ca(OH)2, in batch mode. The bio-oil was characterized for acid value.
The chemical functions present in bio-oil were identified by FT-IR and the composition was identified
by GC-MS. The bio-char was characterized by SEM, FT-IR, and XRD. The variance in mass (wt.%)
for organic fractions of municipal household solid waste (OFMHSW), between 56.21 and 67.45% (wt.),
lies with the interval of 56% (wt.) and 64% (wt.) of OFMHSW for middle- and low-income countries.
The pyrolysis of MHSW fraction (organic matter + paper) shows bio-oil yields between 2.63 and
9.41% (wt.), aqueous phase yields between 28.58 and 35.08% (wt.), solid phase yields between 35.29
and 45.75% (wt.), and gas yields between 16.54 and 26.72% (wt.). The bio-oil yield increases with
pyrolysis temperature. For the catalytic cracking, the bio-oil and gas yields increase slightly with CaO
content, while that of bio-char decreases, and the H2O phase remains constant. The GC-MS of liquid
reaction products identified the presence of hydrocarbons (alkanes, alkenes, alkynes, cycloalkanes,
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and aromatics) and oxygenates (carboxylic acids, ketones, esters, alcohols, phenols, and aldehydes),
as well as compounds containing nitrogen, including amides and amines. The acidity of bio-oil
decreases with increasing process temperature and with aid Ca(OH)2 as a catalyst. The concentration
of hydrocarbons in bio-oil increases with increasing Ca(OH)2-to-OFMHSW fraction ratio due to
the catalytic deoxygenation of fatty acid molecules, by means of decarboxylation/decarbonylation,
producing aliphatic and aromatic hydrocarbons.

Keywords: MHSW; organic fraction from MHSW; thermal processing; bio-char characterization;
bio-oil: liquid hydrocarbons

1. Introduction

In a global consumer society, while the production of household solid wastes has been
increasing in recent years [1], the disposal of municipal household solid wastes (MHSW)
poses a global challenge for medium and large cities as it involves complex logistics,
safety, environment, and energetic aspects for its adequate management [2], not only for
high-income countries but particularly for medium- and low-income countries [3–5].

Among the technologies available for proper treatment and transformation of munici-
pal household solid wastes (MHSW), including biological, physicochemical, and thermal
treatment [6,7], pyrolysis has great potential not only for the thermochemical transforma-
tion of MHSW fractions such as residual biomass [8], thermoplastic polymers [9], plastics
(hard, soft) [10,11], cardboard [12,13], recycled paper [14], non-recycled paper [15], and
organic matter [16,17], but also for MSW [18–29], and the literature reports numerous
studies on the subject [6–29]. The advantages of pyrolysis over bioprocess and other thermo-
chemical processes include the production of liquid-like and charcoal-like fuels, a solid phase with
adsorbent properties, generation of non-condensable gases with combustion properties, and the
process operating at moderate temperature ambient pressure [8,9,21,22,26,27].

Among the catalysts applied by the pyrolysis of MHSW fractions (residual biomass,
thermoplastic polymers, plastics (hard, soft), cardboard, recycled paper, non-recycled paper,
organic matter. Etc.) and MSHW, the most used were zeolite [18,22], Kaolin [21,22], HZSM-
5 [10,26,27], FCC [26,27], Y-zeolite [26,27], β-zeolite [26,27], Al(OH)3 [26,27], Ni-Mo [26,27],
MoO3 [26,27], ZSM-5 [10], NH4ZSM-5 [10], CaO [24,28], ZnO [30], Fe2O3 [30], CuO [30],
Al2O3 [30], calcined calcite (CaO) [31], and calcined dolomite (MgO.CaO) [18,31].

The state of art, progress, new trends, and tendencies on pyrolysis and catalytic
cracking of OFMHSW and MHSW were described in detail in the excellent reviews of
Hasan et al. [25], Chen et al. [32], Sipra et al. [33], and Lu et al. [34]. In addition, the stud-
ies/investigations focused on the yields of reaction products [5,12,13,17–19], bio-char char-
acterization [5,15–17,27,31], bio-oil properties and composition [11,12,17,19,21–28], compo-
sition of the gaseous phase [12,13,18,20,23,24,26,28,31], reaction kinetics [10,12–16,19,30,31],
as well as the reaction mechanism/pathway [17]. The techno-economic and life cycle
assessment of MHSW pyrolysis has been also investigated in recent years [35–42].

The pyrolysis and catalytic cracking of OFMHSW and MHSW have been carried out by
flash pyrolysis [10,16,28,31], as well as by vacuum pyrolysis [19], fixed bed
reactors [5,12–15,17–19,21–24,26,27], and fluidized bed reactors [20], and the experiments
were performed on micro [15], laboratory [10,12–14,16–24,26–28,30,31], and pilot scales [5,8].
The processes operated in batch [5,10,12–19,21–24,26–28,30,31] and continuous modes [20,23],
and only one study operated as a two-stage reactor [31].

The reaction products by pyrolysis and thermal catalytic cracking of MHSW fractions
(residual biomass, thermoplastic polymers, plastics (hard, soft), cardboard, recycled paper,
non-recycled paper, and organic matter) [8–17], and MSHW [18–29,31], includes a bio-oil, an
aqueous acid phase, a gaseous phase, and a solid phase (bio-char) [8,9,11–13,16–24,26–29,31].

The pyrolysis bio-oils from MHSW fractions and MHSW were physicochemically char-
acterized for density [8,9,19,21,22], kinematic viscosity [8,9,19,21,22], flash point [19,21,22],
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pour point [19,22], water content [19,21,22], oil content [19,21,22], solids content [21,22],
ash content [19], sulfur content [19], nitrogen content [19], cetane/octane number [21,22],
HHV [19], acid value [8,19], refractive index [9], and pH [19].

The bio-oil obtained by pyrolysis and catalytic cracking of MHSW fractions and MSHW
were composed by alkanes, alkenes, ring-containing alkanes, ring-containing alkenes, cycle-
alkanes, cycle-alkenes, aromatics, and oxygenates, including phenols, aldehydes, ketones,
sugars, amines, amides, ethers, esters, and alcohols [8,11,12,17,19,21–28].

Beyond the operating mode (batch, continuous), type of pyrolysis process (flash and
slow pyrolysis, and vacuum pyrolysis), type of reactors (fixed bed reactors and fluidized bed
reactors), as well as process schema (two-stage reactor), other process parameters/variables
that may affect the yields and quality of bio-oil by pyrolysis, and catalytic cracking of
MHSW fractions and MSHW are temperature [12–16,18,19,23,24,26,27,30,31], catalyst-to-
MHSW [28], and characteristics of feed material [5,12–15,28].

Despite some studies focusing the effect of temperature and catalyst-to-MHSW ratio on
the yield and chemical composition of bio-oil produced by pyrolysis and catalytic cracking
of MHSW fractions and MSHW performed in micro [15], laboratory [10,12–14,16–24,26–28,30,31],
and pilot scales [5,8], until the moment, no systematic study has investigated the effect of tempera-
ture and catalyst-to-MHSW/fraction ratio on the bio-char morphology and crystalline structure, as
well as on the yield of reaction products, chemical composition, and acidity of bio-oils obtained by
pyrolysis and catalytic cracking of (organic matter + paper) fractions from MHSW fractions in a
laboratory scale with Ca(OH)2 as a catalyst.

The objective of this work was to systematically investigate the effect of temperature
and catalyst-to-MHSW/fraction ratio (0.05, 0.10, 0.15) by pyrolysis and catalytic cracking
of (organic matter + paper) fraction of MHSW at 400, 450, and 475 ◦C and 1.0 atmosphere,
and at 475 ◦C and 1.0 atmosphere, using 5.0, 10.0, and 15.0% (wt.) Ca(OH)2, in batch mode,
laboratory scale, on the yields of reaction products (bio-oil, bio-char, H2O, and gas), acid
value and chemical composition of hydrocarbons (alkanes, alkenes, alkynes, ring contain-
ing alkanes, and aromatics) and oxygenates (carboxylic acids, alcohols, amines, amides,
aldehydes, esters, ketones, phenols, nitrogenous compounds, chlorinated compounds)
present within the bio-oils, as well as on the bio-char morphology and crystalline structure.
The novelty of this work remains the innovative way of choosing a statistical significant
route, the composition of the organic fraction of MHSW, in this case a blend or mixture of
the organic fraction and paper, and the behavior of hydrocarbons and oxygenates in bio-oil
as a function of temperature and catalyst content.

2. Materials and Methods
2.1. Strategy and Methodology

The process flowsheet illustrated in Figure 1 summarizes the applied strategy, as
well as the process methodology, described as a logical sequence of ideas, methods, and
procedures to sustainable disposal and thermal treatment of Municipal Solid Wastes (MSW)
into activated carbon and bio-oil by pyrolysis and catalytic cracking in laboratory scale.
First, based on geographic and socio-economic database (IBGE 2010), the collecting sectors
of MSW in the municipality of Belém-Pará-Brazil were chosen. Then, the MHSW collected
and transported to the segregation area. Afterwards, the gravimetric analysis of MSW
was carried out and the material (Paper, Cardboard, Tetra Pack, Hard Plastic, Soft Plastic,
Metal, Glass, Organic Matter, and Inert) were separated. Afterwards, the selected organic
matter was submitted to drying. Then, the selected paper was crushed together with dried
organic matter. The crushed material was sieved and conditioned in a freezer. Before
the thermal processing, the feezed material was dried again. The thermal transformation
experiments were carried out in laboratory scale. The effects of temperature and catalysts
(organic matter + paper) were analyzed. The density, acidity, and composition of bio-oil
were determined. The solid phase (bio-adsorbent) was characterized.
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Figure 1. Process flowsheet by collecting, classification/segregation, and pre-treatment of MHSW
and thermal processing of pre-treated (organic matter + paper) at 400, 450, and 475 ◦C, 1.0 atm, 0.0,
5.0, 10.0, and 15.0% (wt.) of Ca(OH)2, in laboratory scale.

2.2. Conceptual Design

The plan of action applied to systematically study the sustainable disposal and ther-
mal treatment of Municipal Household Solid Wastes (MHSW) was designed conceptually
as a logical sequence of ideas, concepts, and methods, including the choice of a statisti-
cally representative route (socio-economic and geographic database), simulation of a statistically
representative collected mass of a MHSR route, application of a realistic and/or real sampling of
MHSW, as the MSW is collected door-to-door, transport of MHSW residues to a special segre-
gation place, selection/classification of MHSR according to the class of materials (metal, glass,
polymers, carbohydrates + lipids + proteins + fibers = organic matter, textiles, aluminum foil
+ plastic layers + cardboard + plastic caps + bioplastics = tetra pack, paper, cardboard, paper
tissue + masks + disposal diapers + pads = sanitary household waste), centesimal characterization
of organic matter, pre-treatment of organic matter/paper (drying, crushing, sieving, freezing,
drying), thermochemical processing (pyrolysis, catalytic cracking), and characterization of
reaction products (bio-oil, bio-adsorbent).

2.2.1. Selection of Routes

The strategy applied for the selection of collecting routes in the municipality of Belém-
Pará-Brazil is described synthetically as follows. The company Terraplena Ltd. (Belém-
Pará-Brazil) collects urban solid waste in the Metropolitan Region of Belém-Pará-Brazil,
with a total of 37 routes. In order to reduce the size of the sample collection space, route
1202 was chosen, corresponding to the neighborhoods of Cremação and Guamá. These
neighborhoods have socio-economic and demographic characteristics stratified into Class D
and E, respectively, according to IBGE in 2010 [43], shown in Table 1. Furthermore, adding
the average per capita family income of the Classes D and E of all the neighborhoods of
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Belém gives 85.71%. In addition, adding the population of all the neighborhoods in the
municipality of Belém, including classes D and E, gives a population percentage of 92.01%,
as shown in Table 2. In this sense, based on the facts described above, route 1202 was
chosen in order to significantly represent the gravimetric analysis of urban solid waste in
the municipality of Belém-Pará-Brazil.

Table 1. Socio-economic classification in the municipality of Belém-Pará-Brazil based on minimum
salary [IBGE,2012].

Socio-Economic Classification

Classes Family Income (Minimum/Basic Salary)

A over 20 salaries

B from 10 to 20 salaries

C from 10 to 20 salaries

D from 10 to 20 salaries

E up to 02 salaries

Table 2. Socio-economic classification, population, and average family income in reais (R$) of all the
neighborhoods in the municipality of Belém-Pará-Brazil [IBGE,2012].

Neighborhood Average Family
Income (R$) Population Socio-Economic

Classes

Aura 354.51 1.827 E

Águas Lindas 344.47 17.520 E

Curió-Utinga 708.53 16.642 E

Guanabara 381.58 1.588 E

Castanheira 748.87 24.424 E

Souza 1291.02 13.190 D

Marco 1326.37 65.844 D

Canudos 821.81 13.804 E

Terra Firme 414.65 61.439 E

Guamá 525.80 94.610 E

Condor 483.06 42.758 E

Jurunas 633.08 64.478 E

Fátima 656.14 12.385 E

Umarizal 1991.17 30.090 D

São Brás 1971.37 19.936 D

Cremação 1093.94 31.264 D

Batista Campos 2537.63 19.136 C

Nazaré 3036.30 20.504 C

Reduto 2964.30 6.373 C

Campina 2035.60 6.156 D

Cidade Velha 1235.27 12.128 D

Total - 576.096 -

The Cremação neighborhood is located in the developed urban center and borders
the neighborhoods of Nazaré, São Brás, and Batista Campos. It has a population of
31,264 inhabitants with a per capita income of R$1093.90, according to IBGE in 2010 [43],
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therefore, it belongs to the socio-economic Class D. Its area includes fairs, shops, schools,
residential buildings, and houses. The Guamá neighborhood is the most populous in
the municipality of Belém-Pará-Brazil, with 94,610 inhabitants, as well as an average per
capita income of R$525.80, belonging to the socio-economic Class E. Its area is diversified,
containing a commercial sector, a fair, as well as schools and residential houses.

The collecting points (green circles) of municipal household solid wastes (MHSW)
are described in Figure 2 and the spatial coordinates (Longitude-X, Latitude-Y) of each
point are described in Supplementary Table S1. The collection points, twenty-seven in total,
were randomly selected in order to diversify the sampling of MHSW in each neighborhood,
based on the methodology described in the literature by Nunes (2015) [44].
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2.2.2. Simulation of Sample Mass of MHSR

In order to compute the statistically representative sample volume of MHSW, a sim-
ulation was performed, aided by the software StatDisk 13.0. The simulation was based
on the volume collected by route using a collector truck of 15 m3, assuming that average
density of MHSW was that of liquid water. The significance and confidence levels were set
equal to 5% and 95%, respectively, with a margin of error of 10%, giving as result a sample of
mass ≈ 100 kg [45].

2.2.3. Sampling, Transport, and Segregation of MHSW

In order preserve the original characteristics of MHSW, that is, the MHSW before
mixing and compaction, which not only causes loss mass by dewatering but also a rapid
degradation of organic matter, as well as production of leachate with huge loads of contam-
inants, the collecting of MHSW samples were carried out door-to-door. The collections of
MHSW on route 1202 were carried out on the 18th, 20th, 27th, and 29th of October 2021.
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The samples were packed in plastic bags with a capacity of 200 kg and transported using an
appropriate vehicle to prevent the material from being compacted. Afterwards, the plastic
bags of MHSW were placed over a waterproofed surface inside the UFPA’s Sludge and
Composting Experimental Laboratory. Finally, the HHSW were selected/classified manually
and weighed using a digital balance (Welmy, São Paulo-Brazil, Model: W200/50).

2.3. Materials
2.3.1. Mixture of Organic Matter and Papers

The organic matter, a mixture of carbohydrates, lipids, proteins, and fibers, selected from
municipal household solid waste (MHSW), was submitted to pre-treatment (drying, crush-
ing, sieving) and conditionate in a freezer to avoid physicochemical and microbiologic degradation.

2.3.2. Pre-Treatment of Organic Matter and Papers

First, the selected/classified organic matter was submitted to drying at 105 ◦C for
24 h using an analogic controlled oven (DeLeo, Porto Alegre, Brazil, Model:). Then, the
selected/segregated papers from MHSW were dried at 105 ◦C for 24 h using an analogic
controlled oven (DeLeo, Brazil, Model:). Afterwards, the dried organic matter was crushed
together with the dried paper using a grain/straw knife mill (TRAPP, Jaraguá do Sul, Brazil,
Model: TRF 600). Then, the milled/crushed mixture of organic matter and paper was
sieved using a series of sieves (4.0, 6.0, 12, and 14 mesh) and conditioned in a freezer. A
total of four batches of pre-treated organic matter + paper, one for each MHSW collecting,
was carried out. The pre-treated mixture of organic matter and paper used as feed material
by thermal processing is shown in Figure 3.
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2.3.3. Centesimal and Physicochemical Characterization of Organic Matter and Papers

The dried, crushed and sieved organic matter was subjected to centesimal characteri-
zation for lipids, proteins, moisture, and ash according to official methods AOCS 963.15,
AOCS 991.20, AOCS 935.29, and ASTM D 3174-04 [8,46]. In addition, pH and electrical
conductivity were also measured according to ASTM D1293-18 and ASTM D 1125-14 [47].

2.4. Experimental Apparatus and Procedures
2.4.1. Experimental Apparatus

The schematic diagram of borosilicate glass reactor in a laboratory scale is shown in
Figure 4. The experimental apparatus contains a cylindrical reactor of 200 mL, a Liebig glass
condenser, a ceramic heating system of 800 W, and a digital temperature control (Therma,
San Jose, CA, USA, Model: TH90DP202-000), as described in detail elsewhere [8,48,49].
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Figure 4. Schema of laboratory scale borosilicate glass reactor.

2.4.2. Experimental Procedures

By the pyrolysis of pre-treated solid mixture of organic matter + paper, approximately
50.0 g was weighed using a semi-analytical balance (Marte, São-Paulo-Brazil, Model:
AL500). After sealing the reactor, the experimental apparatus was set up. Then, the cooling
system was turned on and the water temperature was set at 10 ◦C. Afterwards, the desired
heating rate (10 ◦C/min) and temperature (400, 450, and 475 ◦C) were set up. The reactor
temperature was recorded every 10 min. The mass of liquid phase and coke were collected
and weighed, and the mass of gas was computed by difference. The bio-oil was separated
from aqueous phase by decantation inside the separation funnel. Afterwards, the bio-oil
physicochemical was characterized by density and acidity.

By the thermal catalytic cracking experiments, calcium hydroxide (Ca(OH)2) was
mixed with pre-treated organic matter + paper using a glass Becker of 250 mL. The thermal
catalytic cracking experiments were carried out with 5.0, 10.0, and 15.0% (wt.) Ca(OH)2.
Afterwards, the mixture was placed inside the reactor, as depicted in Figure 5. Then,
the desired heating rate (10 ◦C/min) and temperature (475 ◦C) were set up. The reactor
temperature was recorded every 10 min. The mass of liquid phase and coke were collected
and weighed, and the mass of gas was computed by difference. The bio-oil was separated
from aqueous phase by decantation inside the separation funnel. Afterwards, the bio-oil
physicochemical was characterized by density and acidity.

2.5. Physicochemical and Chemical Composition of Bio-Oil
2.5.1. Physicochemical Characterization of Bio-Oil and Aqueous Phase

The bio-oil and the aqueous phase were characterized in terms of acidity according to
the AOCS Cd 3d-63 method, as described elsewhere [8,48–51].

2.5.2. Chemical Composition of Bio-Oil and Aqueous Phase

The chemical composition of bio-oil and aqueous phase were determined by GC-MS
and the equipment and procedure were described in detail by Castro et al. [8,52,53]. The
concentrations were expressed in area, as no internal standard was injected for comparison
in the peak areas. In addition, a qualitative analysis of the bio-oil was performed by
FT-IR [8,48–50].
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2.6. Characterization of Bio-Char
2.6.1. SEM and EDS Analysis

The morphological characterization of bio-char was obtained by thermal catalytic
cracking with 5.0, 10.0, and 15.0% (wt.) Ca(OH)2) of organic matter + paper, performed by
scanning electron microscopy using a microscope (Tescan GmbH, Brno, Czech Republic,
Model: Vega 3). The samples were covered with a thin layer of gold using a Sputter Coater
(Leica Biosystems, Nußloch, Germany, Model: Balzers SCD 050). Elemental analysis and
mapping were carried out by energy dispersive X-ray spectroscopy (Oxford instruments,
Abingdon, UK, Model: Aztec 4.3) [52,53].

2.6.2. XRD Analysis

The crystalline characterization of bio-char obtained by thermal processing (pyrol-
ysis and thermal catalytic cracking with 5.0, 10.0, and 15.0% (wt.) Ca(OH)2) of organic
matter + paper performed by x-ray diffraction using a diffractometer (Rigaku, Tokyo, Japan,
Model: MiniFlex600) at the Laboratory of Structural Characterization (FEMAT/UNIFESSPA)
and the equipment specifications described as follows: generator (maximum power: 600 W;
tube voltage: 40 kV; tube current: 15 mA; X-ray tube: Cu), optics (fixed divergence, scatter-
ing and receiving slit; filter; Kβ sheet; monochromator: graphite; soller slit: 5.0◦), goniometer
(model: vertical, radius: 150 mm, scanning range: –3 A, 145◦ (2θ); scanning speed: 0.01 to
100◦/min (2θ); accuracy: ±0.02◦), and detector (high-speed silicone tape) [52,53].

2.7. Mass Balances by Catalytic of Organic Matter and Paper

The application of mass conservation principle in the form of an overall mass balance
within the pyrolysis/catalytic reactor, operating in a batch mode open thermodynamic
system, yields the following equations [53].

.
min,pyrolysis/catalytic −

.
mout,pyrolysis/catalytic =

dmFeed
dτ

(1)

.
min,pyrolysis/catalytic = 0 (2)

− .
mout,pyrolysis/catalytic =

dmFeed
dτ

(3)

− .
mout,pyrolysis/catalytic =

.
mvapors,pyrolysis/catalytic (4)

where
.

min,pyrolysis/catalytic is the mass flow rate entering the glass reactor,
.

mout,pyrolysis/catalytic

is the mass flow rate leaving the glass reactor, dmFeed
dτ is the time rate variation of feed mass in-
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side the glass reactor, and
.

mvapors,pyrolysis/catalytic is the mass flow rate of pyrolysis/catalytic
cracking vapors leaving the glass reactor and entering the condenser. By applying an
overall steady state mass balance within the condenser, this yields Equation (5).

.
mvapors,pyrolysis/catalyst =

.
mgas +

.
mbio−oil (5)

where
.

mgas is the mass flow rate of non-condensable gases leaving the condenser, computed
by difference, and

.
mboi−oil is the mass flow rate of bio-oil collected inside the separation

funnel. The mass of solid remaining in the reactor is
.

msolid. By performing a steady state
global mass balance within the control volume consisting of glass reactors, condenser, and
separation funnel, this yields Equation (6).

.
mFeed =

.
msolid + mgas +

.
mbio−oil (6)

The process performance evaluated by computing the yields of bio-oil, solid (coke),
and gas defined by Equations (7) and (8), and the yield of gas by difference, using
Equation (9).

Ybio−oil [%] =
Mbio−oil
MFeed

× 100 (7)

Ysolids[%] =
Msolids
MFeed

× 100 (8)

Ygas[%] = 100− (Ybio−oil + Ysolids) (9)

2.8. Methods of Statistical Analysis

In the statistical analysis of the gravimetric data of the four samples collected, the
analysis of variance method (ANOVA) and the Tukey test were applied using Minitab
software. The populations analyzed are the different fractions of MHSW materials of the
gravimetric analysis and the responses are the percentages of each MHSW fraction material
in relation to the total mass of the sample. The ANOVA investigated the hypothesis that the
population means can be considered equal, and the Tukey test showed how the different
fractions of MHSW materials are grouped according to their mass percentages.

3. Results
3.1. Centesimal Characterization of (Organic Matter + Paper) Fraction of MHSW

The dried, crushed, and sieved fraction of MHSW (organic matter + paper) was
subjected to centesimal characterization for lipids, proteins, moisture, ash, pH, and electrical
conductivity according to official methods AOCS 963.15, AOCS 991.20, AOCS 935.29, ASTM
D 3174-04, ASTM D1293-18, and ASTM D 1125-14 [8,46], and the results are depicted in
Table 3, compared with similar data reported in the literature [15,54]. The results show
that ash and moisture content are close to similar data for proximate analysis of MHSW
reported in the literature [15,54].

Table 3. Centesimal characterization for lipids, proteins, moisture, ash, pH, and electrical conductivity
of dried, crushed, and sieved fraction of MHSW (organic matter + paper).

Centesimal Characterization (wt.%) [15] [54]

Lipids 10.41 - -

Proteins 11.33 - -

Moisture 28.74 22.48 -

Ash 6.73 7.36 9.91
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Table 3. Cont.

Centesimal Characterization (wt.%) [15] [54]

Volatile matter - - -

Fixed carbon - - -

Physicochemical characterization

pH, 27.0 ◦C (-) 5.77 - -

Conductivity, 27.2 ◦C (µS/m) 15.31 - -

3.2. Characterization of Bio-Char
3.2.1. SEM Analysis

The microscopies, without the pre-treatment of metallization, of bio-char obtained by
catalytic cracking of (organic matter + paper) at 475 ◦C, 1.0 atmosphere, with 5.0% (wt.)
Ca(OH)2 depicted in Figure 6a show a carbonized surface (black colored) and granules
(white colored) of different sizes scatter over the surface. The carbonized surface (black
colored) is due to the thermochemical transformation of (organic matter + paper) fraction
of MHSW, while the white colored surface is due to the Ca(OH)2 used as catalysts. The
granules (white colored) of different sizes scatter over the surface being are similar to
SEM images of CaCO3 (calcite) reported by Cabrera-Penna et al. [55], as well as the SEM
images of Ca(OH)2 reported by Hassani et al. [56], and SEM images of bio-char obtained
by pyrolysis of MSW reported by Gopu et al. [57].
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Figure 6. SEM of bio-char obtained by thermal catalytic cracking of (organic matter + paper) fraction
of MHSW at 475 ◦C, 1.0 atmosphere, with 5.0% (wt.) Ca(OH)2 [MAG: 5999× (a); MAG: 3000× (b);
MAG: 11,999× (c)].

By increasing the Ca(OH)2 content to 10 and 15% (wt.), one observes that the granules
(white colored) of different sizes spread over the surface, covering the carbonized surface,
as shown in Figures 7a and 8a. The higher the Ca(OH)2 content by catalytic cracking of
(organic matter + paper) at 475 ◦C, 1.0 atmosphere, the higher the surface of carbonized
surface (black colored) covered by the granules (white colored).
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The microscopies, with the pre-treatment of metallization, of bio-char obtained by
pyrolysis of (organic matter + paper) fraction of MHSW at 450 ◦C, 1.0 atmosphere, and by
catalytic cracking of (organic matter + paper) fraction of MHSW at 475 ◦C, 1.0 atmosphere,
with 10.0% (wt.) Ca(OH)2, in laboratory scale, illustrated in Figure 9. The SEM images of bio-
char by pyrolysis of (organic matter + paper) fraction of MHSW at 450 ◦C, 1.0 atmosphere,
illustrated in Figure 9a, show the formation of a porous structure similar to a beehive,
proving that pyrolysis has drastically changed the morphological structure of (organic
matter + paper) fraction of MHSW. In addition, the appearance of granules has not been
seen. On the other hand, the SEM images of bio-char by catalytic cracking of (organic matter
+ paper) fraction of MHSW at 475 ◦C, 1.0 atmosphere, with 10.0% (wt.) Ca(OH)2, shows the
formation of cavities over the carbonized structure of bio-char, as well as the appearance of
granules (white) on the carbonized structure of bio-char. This is likely due to the Ca(OH)2
being used as catalysts. The granules (white colored) of different sizes scattered over the
surface are similar to SEM images of CaCO3 (calcite) reported by Cabrera-Penna et al. [55],
as well as the SEM images of Ca(OH)2 reported by Hassani et al. [56], and SEM images of
bio-char obtained by pyrolysis of MSW reported by Gopu et al. [57].
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Figure 9. SEM of bio-chars obtained by pyrolysis of (organic matter + paper) fraction of MHSW at
450 ◦C, 1.0 atmosphere (a), and catalytic cracking of (organic matter + paper) fraction of MHSW at
475 ◦C, 1.0 atmosphere, with 10.0% (wt.) Ca(OH)2 (b) [MAG: 100× (a); MAG: 100× (b)].

3.2.2. EDS Analysis

The results of elemental analysis performed by energy dispersive x-ray spectroscopy
at a point for bio-chars obtained by pyrolysis of (organic matter + paper) fraction of MHSW
at 450 ◦C, 1.0 atmosphere and by catalytic cracking of (organic matter + paper) fraction
of MHSW at 475 ◦C, 1.0 atmosphere, with 10.0% (wt.) Ca(OH)2 as catalyst, in laboratory
scale, are shown in Table 4. The content of carbon in bio-char obtained by catalytic cracking
of (organic matter + paper) fraction of MHSW at 475 ◦C, 1.0 atmosphere, with 10.0%
(wt.) Ca(OH)2 as catalyst decreases, while those of oxygen and calcium increase. This
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is probably due to the reaction of metal oxides present in the (organic matter + paper)
fraction of MHSW by thermochemical decomposition at 475 ◦C, 1.0 atmosphere, with
Ca(OH)2, forming CaCO3 (calcite) as proposed by Kumagai et al. [58], for the thermal
degradation of PET, a fraction of MSW, in the presence of Ca(OH)2. The CaCO3 (calcite) in
the form of granules of different sizes are scattered over the carbonized surface of bio-char
during the catalytic cracking of (organic matter + paper) fraction of MHSW at 475 ◦C,
1.0 atmosphere, decreasing the specific reaction area, and thus making the carbonization
of (organic matter + paper) fraction of MHSW difficult. A decrease on the carbon content
in the solid phase (carbonaceous residue) by pyrolysis of PET in the presence of Ca(OH)2
was also observed/reported by Kumagai et al. [58]. The oxygen content increases due
to the formation of CaCO3 (calcite) by decarboxylation of pyrolysis vapor by CaO, an
intermediate reaction product obtained by hydrolysis of Ca(OH)2 [58]. Finally, the calcium
content is increased by the addition of 10.0% (wt.) Ca(OH)2 as catalyst.

Table 4. Percentages in mass and atomic mass of bio-chars obtained by pyrolysis of (organic
matter + paper) fraction of MHSW at 450 ◦C, 1.0 atmosphere, and by catalytic cracking of (organic
matter + paper) fraction of MHSW at 475 ◦C, 1.0 atmosphere, with 10.0% (wt.) Ca(OH)2 as catalyst,
in laboratory scale.

Chemical
Elements

Catalyst

Bio-Char, Pyrolysis at 450 ◦C Bio-Char, Catalytic Cracking with
10% (wt.) Ca(OH)2

Mass
[wt.%]

Atomic Mass
[wt.%] SD Mass

[wt.%]
Atomic Mass

[wt.%] SD

C 58.32 77.36 3.00 42.76 60.07 3.83

Ca 12.16 4.84 0.18 21.95 9.24 0.50

Cl 10.24 4.60 0.17 6.07 2.89 0.18

K 8.87 3.62 0.14 3.12 1.35 0.10

O 8.61 8.57 0.62 23.08 24.35 2.30

Na 0.71 0.50 0.05 2.42 1.77 0.14

Fe 0.41 0.12 0.04 - - -

Mg 0.33 0.22 0.03 0.01 0.00 0.03

S 0.19 0.10 0.03 0.08 0.04 0.03

Si 0.09 0.05 0.03 0.01 0.01 0.03

Al 0.06 0.03 0.03 0.10 0.06 0.03

P - - - 0.40 0.22 0.04

SD = Standard Deviation.

3.2.3. XRD Analysis

The XRD analysis of bio-char obtained by pyrolysis of (organic matter + paper) a
fraction of MHSW at 400 ◦C, 1.0 atmosphere, is shown in Figure 10. The XRD shows the
presence of three peaks associated with the crystalline phase CaCO3 (Calcite), one of high
intensity on the position 2θ: 29.5 (100%), another of medium intensity on the position 2θ:
20.8 (50%), and a third of low intensity on the position 2θ: 36.6 (16.2%). This is according
to the position 2θ: 29.4 (100%), characteristic of CaCO3 rhombohedral phase (PDF 83-
1762) [59,60]. According to Ghavanati et al. [61], the organic fraction of municipal household
solid waste contains 4.6 ± 0.6% (wt.) calcium (Ca) on its centesimal composition. Calcium
reacts with oxygen to form calcium oxide (2Ca + O2→ 2CaO). During the pyrolysis reaction
of organic fractions of municipal household solid waste (OFMHSW), carbon dioxide (CO2)
is the major gaseous reaction product formed [26]. Calcite (CaCO3) is formed by the
carbonation of calcium oxide (CaO) with CO2 at high temperatures [62]. According to
Kumagai et al. [58], calcite (CaCO3) is formed by decarboxylation of OFMHSW pyrolysis
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vapor compounds containing carboxyl groups, such as carboxylic acids, by CaO [58]. Two
peaks were associated with the crystalline phase graphite, a peak of high intensity observed
on the position 2θ: 26.7 (100%), while a peak of low intensity was identified on the position
2θ: 42.5 (6.7%).
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Figure 10. XRD of solid phase products by pyrolysis of (organic matter + paper) fraction of MHSW at
400 ◦C, 1.0 atmosphere, using a borosilicate glass reactor of 125 mL, in laboratory scale.

The XRD analysis of bio-char obtained by pyrolysis of (organic matter + paper) frac-
tion of MHSW at 450 ◦C, 1.0 atmosphere, shown in Figure 11, identified the presence of
two crystalline phase, CaCO3 (Calcite) and graphite (C). The XRD shows the presence of
three peaks associated with the crystalline phase CaCO3 (Calcite), one of high intensity on
the position 2θ: 29.5 (100%), another of medium intensity on the position 2θ: 20.8 (50.7%),
and a third of low intensity on the position 2θ: 36.6 (16%). Three peaks were associated
with the crystalline phase graphite (C), one peak of high intensity observed on the position
2θ: 26.7 (100%), and two peaks of low intensity identified on the positions 2θ: 42.5 (6.7%)
and 2θ: 60.0 (15%).
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Figure 11. XRD of solid phase products by pyrolysis of (organic matter + paper) fraction of MHSW at
450 ◦C, 1.0 atm, using a borosilicate glass reactor of 125 mL, in laboratory scale.

The XRD analysis of bio-char obtained by pyrolysis of (organic matter + paper) frac-
tion of MHSW at 475 ◦C, 1.0 atmosphere, shown in Figure 12, identified the presence of
two crystalline phase, CaCO3 (Calcite) and graphite (C). The XRD shows the presence of
four peaks associated with the crystalline phase CaCO3 (Calcite), one of high intensity on
the position 2θ: 50.3 (100%), one of medium intensity on the position 2θ: 69.2 (48.9%), and
two of low intensity on the positions 2θ: 21.1 (22.2%) and 2θ: 29.6 (38.1%). One peak of
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high intensity is associated with the crystalline phase graphite, observed on the position 2θ:
26.6 (100%).
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Figure 12. XRD of solid phase products by pyrolysis of (organic matter + paper) fraction of MHSW at
475 ◦C, 1.0 atm, using a borosilicate glass reactor of 125 mL, in laboratory scale.

The XRD analysis of bio-char obtained by catalytic cracking of (organic matter + paper)
fraction of MHSW at 475 ◦C, 1.0 atmosphere, with 5% (wt.) Ca(OH)2, shown in Figure 13,
identified the presence of two crystalline phases: CaCO3 (Calcite) and graphite (C). Three
peaks are associated with the crystalline phase CaCO3 (Calcite), one of high intensity on
the position 2θ: 29.7 (100%), two of low intensity on the positions 2θ: 20.8 (50.7%), and a
third of low intensity on the position 2θ: 39.8 (13.3%) and 2θ: 42.7 (19.4%). Two peaks were
associated with the crystalline phase graphite (C), one peak of high intensity observed on
the position 2θ: 26.9 (100%), and the other of low intensity on the positions 2θ: 50.4 (19.5%).
One observes an increase on the peak intensity of CaCO3 (Calcite) due to the use of Ca(OH)2
as a catalyst. In fact, Ca(OH)2 reacts at high temperatures, losing a H2O molecule (Ca(OH)2
→ CaO + H2O) [58], and CaCO3 is formed by decarboxylation of OFMHSW pyrolysis
vapor compounds containing carboxyl groups, such as carboxylic acids, by CaO [58].
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Figure 13. XRD of solid phase products by catalytic cracking of (organic matter + paper) fraction of
MHSW at 475 ◦C, 1.0 atm, with 5.0% (wt.) Ca(OH)2, using a borosilicate glass reactor of 125 mL, in
laboratory scale.

The XRD analysis of bio-char obtained by catalytic cracking of (organic matter + paper)
fraction of MHSW at 475 ◦C, 1.0 atmosphere, with 10% (wt.) Ca(OH)2, shown in Figure 14,
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identified the presence of three crystalline phase, CaCO3 (Calcite), graphite (C), and quartz
(SiO2). The occurrence of quartz (SiO2) is probably due to the presence of small particles
of sand within OFMHSW. Four peaks are associated with the crystalline phase CaCO3
(Calcite), one of high intensity on the position 2θ: 29.5 (100%), and three of low intensity
on the positions 2θ: 20.9 (31.6%), 2θ: 36.6 (33.3%), and 2θ: 39.5 (16%). One peak of high
intensity is associated with the crystalline phase graphite (C) on the position 2θ: 26.8 (100%).
One peak of medium intensity is associated with the crystalline phase quartz (SiO2) on
the position 2θ: 77.8 (56.8%). In addition, by analyzing the XRD, one observes the high
intensity of CaCO3 (Calcite) peaks, proving that higher Ca(OH)2 content leads to a higher
intensity of CaCO3 (Calcite) peaks. This causes a decrease on the carbonization degree, that
is, the carbon content in bio-char, according to the findings reported by Kumagai et al. [58].
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Figure 14. XRD of solid phase products by catalytic cracking of (organic matter + paper) fraction of
MHSW at 475 ◦C, 1.0 atm, with 10.0% (wt.) Ca(OH)2, using a borosilicate glass reactor of 125 mL in
laboratory scale.

The XRD analysis of bio-char obtained by catalytic cracking of (organic matter + paper)
fraction of MHSW at 475 ◦C, 1.0 atmosphere, with 15% (wt.) Ca(OH)2, shown in Figure 15,
identified the presence of three crystalline phase, CaCO3 (Calcite), graphite (C), and quartz
(SiO2). The occurrence of quartz (SiO2) is probably due to the presence of small particles
of sand within OFMHSW. Three peaks are associated with the crystalline phase CaCO3
(Calcite), one of high intensity on the position 2θ: 29.5 (100%), and two of low intensity on
the positions 2θ: 43.3 (12.1%) and 2θ: 36.1 (9%). One peak of high intensity associated with
the crystalline phase graphite (C) on the position 2θ: 26.8 (100%). One peak of low intensity
associated with the crystalline phase quartz (SiO2) on the position 2θ: 39.6 (30%).
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Figure 15. XRD of solid phase products by catalytic cracking of (organic matter + paper) fraction of
MHSW at 475 ◦C, 1.0 atm, with 15.0% (wt.) Ca(OH)2, using a borosilicate glass reactor of 125 mL, in
laboratory scale.
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3.3. Gravimetric Analysis of Municipal Household Solid Waste (MHSW)
Route Number, Date, Collecting Time, Mass of MHSW, Percentage of Class of Materials

Table 5 shows the results of gravimetric analysis of MHSW in the city of Belém-Pará-
Brazil in the period from 18 October 2021 to 29 October 2021, according to ABNT NBR
1007 [63]. In addition, Table 5 includes the route number, date, collecting time, mass of
MHSW, and percentage of MHSW fractions (metal, glass, polymers, carbohydrates + lipids +
proteins + fibers = organic matter, textiles, aluminum foil + plastic layers + cardboard + plastic
caps + bioplastics = tetra pack, paper, cardboard, paper tissue + masks + disposal diapers + pads =
sanitary household waste). By analyzing the data in Table 5, one observes the heterogeneity
of MHSW, and hence, the difference on percentage of the different MHSW fractions on
different days of collection. As for the variance in mass (wt.%) of each MHSW fraction, the
organic matter fraction was higher compared to the other MHSW fractions, as it composes
more than half of all other MHSW fractions for all the samples, and the percentage in
weight varies between 54.44 and 71.91% (wt.). In the first sampling, 54.44% was obtained
(wt.), in the second 65.84% (wt.), and third and fourth samples obtained 58.73% and 71.91%
(wt.), respectively. By comparing the results illustrated in Table 5, for the organic fraction
of MHSW, with similar data reported in the literature [30,64–68], described in Table 6, one
observes that the variance in mass (wt.%) for organic fraction of municipal household solid
waste is according to those reported in the literature [65–68]. In addition, the variance in
mass (wt.%) for organic fraction of municipal household solid waste, between 56.21 and
67.45% (wt.), lies between the interval of 56% (wt.) and 64% (wt.) of OFMHSW for middle-
and low-income countries [69], which is the case for population income stratus of the
neighborhoods of Cremação and Guamá in the city of Belém-Pará-Brazil.

Table 5. Gravimetric analysis of Municipal Household Solid Waste (MHSW) in the city of Belém-
Pará-Brazil on 18 October 2021, 20 October 2021, 27 October 2021, and 29 October 2021 according
to ABNT NBR 1007 [63], route number, date, collecting time, mass of MSW, and percentage of class
of materials (metal, glass, polymers, carbohydrates + lipids + proteins + fibers = organic matter, textiles,
aluminum foil + plastic layers + cardboard + plastic caps + bioplastics = tetra pack, paper, cardboard, paper
tissue + masks + disposal diapers + pads = sanitary household waste).

Route: 1202 1202 1202 1202

Date: 18 October
2021 Time 20 October

2021 Time 27 October
2021 Time 29 October

2021 Time

Mass of
MHSW 102.00 07:30 106.50 07:30 107.25 07:30 113.50 07:30

Class of
MHSW

Mass
(kg) (wt.%) Mass

(kg) (wt.%) Mass
(kg) (wt.%) Mass

(kg) (wt.%) Mean
(wt.%)

Deviation
(wt.%)

Paper 1.00 0.98 2.70 2.54 4.70 4.40 3.70 3.27 2.80 ±1.24

Cardboard 2.05 2.01 2.60 2.45 3.60 3.37 2.90 2.56 2.60 ±0.49

Tetra Pak 1.10 1.08 1.10 1.04 2.05 1.92 0.30 0.26 1.08 ±0.59

Hard
Plastic 4.75 4.66 10.25 9.65 2.40 2.25 7.95 6.76 5.83 ±2.72

Soft Plastic 9.65 9.47 4.30 4.05 5.90 5.53 11.15 9.85 7.23 ±2.49

Metal 4.80 4.71 1.75 1.65 5.50 5.16 1.60 1.41 3.23 ±1.71

Organic
Matter 55.50 54.44 69.95 65.84 62.40 58.50 76.40 68.52 61.83 ±5.62

Glass 9.80 9.61 1.60 1.51 1.90 1.78 0.35 0.33 3.31 ±3.68

Inert 13.30 13.05 12.00 11.29 18.20 17.06 8.80 7.77 12.29 ±3.35

Total 101.95 100.00 106.25 100.00 106.65 100.0 113.15 100.00
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Table 6. Gravimetric analysis of Municipal Household Solid Waste (MHSW) reported in the literature
[30,64–68], and percentage of class of materials (metal, steel, aluminum, glass, sand, plastic films + rigid
plastics = polymers/plastics, carbohydrates + lipids + proteins + fibers = organic matter, wood, textiles,
rubber, leather, aluminum foil + plastic layers + cardboard + plastic caps + bioplastics = tetrapak, paper,
cardboard, paper tissue + masks + disposal diapers + pads = sanitary household waste, others).

[64] [65] [66] [30] [67] [68]

MHSW MHSW (wt.%) MHSW (wt.%) MHSW (wt.%) MHSW (wt.%) MHSW (wt.%)

Food/Yard 38.79 Food 50.60 Garbage 68.67 Paper 5.45 Food 55.86 Metal 2.90

Sanitary/
Diapers 10.80 Plastic 17.40 Plastic 11.45 Plastic 8.80 Wood 2.94 Steel 2.30

Plastic 14.77 Paper 12.00 Glass 1.41 Rubber 11.35 Paper 8.52 Aluminum 0.60

Paper 11.12 Cardboard 6.60 Paper/
Cardboard 6.43 Textiles 5.45 Textiles 3.16

Paper/
Cardboard/

Tetrapak
13.10

Textile 8.94 Textile 1.93 Metals 2.71 Wood 25.29 Plastic 11.15 Plastic Film 8.90

Glass/Metal/
Sand 15.58 Wood 2.00 Textile 1.50 Food 39.71 Rubber 0.84 Rigid Plastic 4.60

- Leather 0.13 Others 7.83 Metal 0.10 Metal/
Glass/Sand 18.36 Glass 2.40

- Glass 2.90 - - Sand 3.85 - - Organic
Matter 51.40

- Metal 2.71 - - - - - - Others 16.70

- Others 3.73 - - - - - - - -

Total 100.00 Total 100.00 100.00 100.00 100.0 100.00 100.0 100.00 100.0 100.00

Table 7 shows the results of ANOVA applied to the percentages of each MHSW fraction
material in relation to the total mass of the sample.

Table 7. ANOVA applied to the percentages of each MHSW fraction material in relation to the total
mass of the sample for the gravimetric analysis of MHSW.

- FD * SQ-Seq * Contribution SQ [Aj.] * QM [Aj.] * F-Value p-Value F-Critical

Factor 8 11,926.3 97.54 11,926.3 1490.79 134.08 0.000 2.305
Error 27 300.2 2.46 300.2 11.12 - - -
Total 35 12,226.5 100.00 - - - - -

* FD = Degree of Freedom, SQ-Seq = Sum of sequential squares, SQ [Aj.] = Sum of adjusted squares,
QM [Aj.] = Mean square adjusted.

The F-value (134.08) was higher than the critical F-value (2.305), meaning that the
null hypothesis, that is, that all population means of the samples are equal, was rejected.
Thus, the materials of MHSW present considerable variation from the averages of their
individual percentage values. In addition, as the analysis used a 95% confidence level, the
fact that the P-value is less than 0.05 demonstrates that the type of material is significant,
that is, it effects the percentage values of MHSW fraction materials in relation to the total
mass of the samples.

In Figure 16, it can be seen that the residuals behave similarly to a bell-shaped normal
curve. Figure 17 shows the values of the residuals that fall along an approximately straight
line, which contributes to the statement that the residuals are normally distributed. Fur-
thermore, the value of the coefficient of determination (R2) was 97.54%, indicating that the
percentage values in relation to the total mass of the sample are strongly explained by the
variable “MHSW fraction materials”.
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Figure 17. Percentage of MHSW fraction materials x residuals for the statistical analysis of gravimetric
data of MHSW in the city of Belém-Pará-Brazil on 18 October 2021, 20 October 2021, 27 October 2021,
and 29 October 2021.

In Table 8, the result of the Tukey test is presented, demonstrating that the averages
of the percentage values of MHSW fraction materials are not the same, grouping them
in different sets. The Tukey test generated 3 different groups, group A composed only of
organic-base materials, having the highest average percentage (61.83%), followed by group
B, composed of inert materials (12.29%), light (7.22%), and heavy plastics (5.83%). Group
C, on the other hand, is composed of materials with the lowest percentage representation
in relation to the total mass of the sample for the gravimetric analysis of MHSW, ranging
from 1.08% to 7.22%. It can be observed that light and heavy plastics were part of groups
B and C because they are at the intersection of the elements of sets formed by groups
B and C. Figure 18 shows the mass percentage of MHSW fraction materials in a 95%
confidence interval.

Table 8. TURKEY test applied to the percentages of each MHSW fraction material in relation to the
total mass of the sample for the gravimetric analysis of MHSW.

MHSW Fraction Materials N * M * Groups

Organic Matter 4 61.83 A
Inert 4 12.29 B

Soft Plastic 4 7.22 B C
Hard Plastic 4 5.83 B C
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Table 8. Cont.

MHSW Fraction Materials N * M * Groups

Glass 4 3.31 C
Metal 4 3.23 C
Paper 4 2.80 C

Cardboard 4 2.60 C
Tetra Pak 4 1.08 C

* N = Number of samples, M = Mean of the percentage values of MHSW fraction materials, Groups = Groups of
MHSW fraction materials.
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3.4. Pyrolysis of MHSW Fraction (Organic Matter + Paper) in Fixed Bed Reactor
3.4.1. Process Conditions, Mass Balances, and Yields of Reaction Products
Influence of Pyrolysis Temperature

The process parameters, mass balances, and yields of reaction products (liquids, solids,
H2O, and gas) by pyrolysis of MHSW fraction (organic matter + paper) at 400, 450, and
475 ◦C, 1.0 atmosphere, in laboratory scale, are illustrated in Table 9 and Figure 19. With
the results described, it was possible that the highest yield among the thermal experiments
performed was for the formation of bio-char, 45.75% (wt.) at 400 ◦C, consequently having a
decrease in the yield of bio-oil that obtained value of 2.63% (weight). For the formation
of bio-oil, the highest yield among the experiments was 9.41% (wt.) at a temperature of
475 ◦C. Furthermore, there was significant formation for the aqueous and gas phase of
35.08% (wt.) and 26.72% (wt.) for temperatures of 400 ◦C and 475 ◦C, respectively. The
bio-oil yield increases with pyrolysis temperature, as more energy is available to promote
the fragmentation of strong organic chemical bonds. Temperature has a great effect on the
distribution of reaction products.

Table 9. Process parameters, mass balances, and yields of reaction products (liquids, solids, H2O, and
gas) by pyrolysis of MHSW fraction (organic matter + paper) at 400, 450, and 475 ◦C, 1.0 atmosphere,
in laboratory scale.

Process Parameters
Temperature

400 ◦C 450 ◦C 475 ◦C

Mass of OFMHSW (g) 50.14 50.29 50.49

Cracking time (min) 70 100 70

Initial cracking temperature (◦C) 397 348 318
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Table 9. Cont.

Process Parameters
Temperature

400 ◦C 450 ◦C 475 ◦C

Mass of solid (Coke) (kg) 22.94 19.07 17.82

Mass of liquid (Bio-oil) (kg) 1.32 3.74 4.75

Mass of H2O (kg) 17.59 17.10 14.43

Mass of gas (kg) 8.29 10.09 13.49

Yield of Bio-oil (wt.%) 2.63 7.43 9.41

Yield of H2O (wt.%) 35.08 34.00 28.58

Yield of Coke (wt.%) 45.75 37.92 35.29

Yield of Gas (wt.%) 16.54 20.65 26.72
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Figure 19. Effect of pyrolysis temperature on the yields of reaction products (bio-oil, aqueous phase,
bio-char, and gas) by pyrolysis of MHSW fraction (organic matter + paper) at 400, 450, and 475 ◦C,
1.0 atmosphere, in laboratory scale.

The yield behavior of bio-oil is according to similar studies reported in the literature
for pyrolysis of MSW [8,12,13,19,23,24,26,27,31]. In all the studies, the yield of bio-oil
increases with temperature between 350 and 600 ◦C, decreasing after 600 ◦C, while that
of bio-char decreases [8,12,13,19,23,24,26,27,31]. In addition, the yield of gas increases
continuously [8,12,13,23,24,26,27,31]. Song et al. [24] reported, for the pyrolysis of MSW,
that the yield of bio-char increases between 400 and 600 ◦C, reaching a maximum at 600 ◦C
and decreasing after 600 ◦C, while that of bio-char decreases almost exponentially, and the
gas yield increases continuously, according to the yields of reaction products as a function
of temperature plotted in Figure 19.

Influence of Catalyst-to-MHSW Fraction

Table 10 illustrates the process parameters, mass balances, and yields of reaction
products (liquids, solids, H2O, and gas) by catalytic cracking of MHSW fraction (organic
matter + paper) at 475 ◦C, 1.0 atmosphere, with 5.0, 10.0, and 15.0% (wt.) Ca(OH)2 as
catalyst, in laboratory scale. The catalytic cracking experiments show bio-oil yields between
5.52 and 7.0% (wt.), aqueous phase yields between 34.30 and 35.37% (wt.), solid phase yields
between 30.40 and 35.27% (wt.), and gas yields between 23.82 and 27.37% (wt.). The bio-oil
and gas yields increase slightly with Ca(OH)2 content, while that of bio-char decreases, and
the H2O phase remains constant, according to the yields of reaction products as a function
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of Ca(OH)2 content plotted in Figure 20. Regarding the influence of the Ca(OH)2 catalyst
content at 475 ◦C, the results could show that its addition to the process decreased the
bio-oil yield, at the same time as the Ca(OH)2 concentrations increased the bio-oil yield
varied between 2.21% (wt.) and 3.16% (wt.). The results are according to Song et al. [24],
who studied the catalytic cracking of MSW with CaO as catalyst, reporting that increasing
the content of CaO between 0.0 and 7.0% (wt.), the yields of H2O phase and bio-char remain
constant, while that of gas increases slightly, and the yield of bio-oil decreases. In fact,
according to Kumagai et al. [58], calcium oxide (CaO) is transformed into calcite (CaCO3)
due to decarboxylation of OFMHSW pyrolysis vapor compounds containing carboxyl
groups, such as carboxylic acids, by CaO [58]. In this context, it is expected that bio-oils
formed by catalytic cracking of OFMHSW using CaO as catalysts not only to be enriched
in hydrocarbons but also contains lower acidity, as CaCO3 is a stronger alkali compared
to CaO.

Table 10. Process parameters, mass balances, and yields of reaction products (liquids, solids, H2O,
and gas) by thermal catalytic cracking of MHSW fraction (organic matter + paper) at 475 ◦C, 1.0 atm,
5.0, 10.0, and 15.0% (wt.) Ca(OH)2, in laboratory scale.

Process Parameters

475 (◦C)

0.0
(wt.)

5.0
(wt.)

10.0
(wt.)

15.0
(wt.)

Mass of OFMHSW (g) 50.49 40.0 40.0 40.0

Cracking time (min) 70 75 70 70

Initial cracking temperature (◦C) 318 220 206 268

Mechanical system stirring speed (rpm) 0 0 0 0

Mass of solid (Coke) (kg) 17.82 14.11 13.56 12.16

Mass of liquid (Bio-oil) (kg) 4.75 2.21 2.27 3.16

Mass of H2O (kg) 14.43 14.15 13.72 13.73

Mass of gas (kg) 13.49 9.53 10.45 10.95

Yield of Bio-oil (wt.%) 9.41 5.52 5.67 7.90

Yield of H2O (wt.%) 28.58 35.37 34.30 34.32

Yield of Coke (wt.%) 35.29 35.27 33.90 30.40

Yield of Gas (wt.%) 26.72 23.82 26.12 27.37

3.4.2. Physicochemical and Compositional Characterization of Bio-Oil
Acidity of Bio-Oil

Table 11 shows the effect of temperature on the acidity of bio-oil by pyrolysis of
MHSW fraction (organic matter + paper) at 400, 450, and 475 ◦C, 1.0 atm, in laboratory
scale. The acidity of bio-oil decreases with increasing process temperature, while that of
aqueous phase increases. The acidity of bio-oil obtained at 475 ◦C, 1.0 atm, in laboratory
scale is close to that of bio-oil (70.25 ± 1.0 mg KOH/g) obtained by pyrolysis of açaí
(Euterpe oleraceae, Mart) seeds at 450 ◦C, 1.0 atm, in laboratory scale. As described in
Section 3.2.3, higher temperatures promote the formation calcite (CaCO3), a strong alkali,
by carbonation of calcium oxide (CaO) with CO2 at high temperatures [62], as well as by
decarboxylation of OFMHSW pyrolysis vapor compounds containing carboxyl groups,
such as carboxylic acids, by CaO [58], and decarboxylation of carboxylic acids produces
bio-oils with lower acidity.
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Figure 20. Effect of Ca(OH)2-to-MHSW ratio on the yield of bio-oil, bio-char, aqueous, and gas phases
by thermal catalytic cracking of MHSW fraction (organic matter + paper) at 475 ◦C, 1.0 atm, 5.0, 10.0,
and 15.0% (wt.) Ca(OH)2, in laboratory scale.

Table 11. Effect of temperature on the acid index of bio-oils and aqueous phase by pyrolysis of
MHSW fraction (organic matter + paper) at 400, 450, and 475 ◦C, 1.0 atm, in laboratory scale.

Physicochemical Property Temperature

Acid Index 400 ◦C 450 ◦C 475 ◦C

I.ABio-Oil [mg KOH/g] 113.15 97.78 71.24

I.AAqueous Phase [mg KOH/g] 45.55 53.88 67.05

Table 12 shows the effect of Ca(OH)2 content on the acidity of bio-oil by catalytic
cracking of MHSW fraction (organic matter + paper) at 475 ◦C, 1.0 atm, with 5.0, 10.0,
and 15.0% (wt.) Ca(OH)2, in laboratory scale. The addition of Ca(OH)2 causes a drastic
diminution on the acidity of bio-oil, as calcite is a strong alkali. However, by increasing the
Ca(OH)2 content, the acidity of both bio-oil and aqueous phase remains almost constant,
that is, Ca(OH)2 content has little or almost no effect on the acidity of bio-oils. This is
probably due to the reaction mechanism of decarboxylation [70]. If the reaction mechanism
produces H+ as an intermediate, an increase on the Ca(OH)2-to-MHSW fraction ratio, that
is, an increase on the concentration of alkalis has a limited effect [70].

Table 12. Effect of Ca(OH)2 content on the acid index of bio-oils and aqueous phase by catalytic
cracking of MHSW fraction (organic matter + paper) at 475 ◦C, 1.0 atm, 5.0, 10.0, and 15.0% (wt.)
Ca(OH)2, in laboratory scale.

Physicochemical Property
475 ◦C

Ca(OH)2

Acid Index 5.0% (wt.) 10.0% (wt.) 15.0% (wt.)

I.ABio-Oil [mg KOH/g] 36.26 34.43 37.52

I.AAqueous Phase [mg KOH/g] 43.56 43.42 43.42

FT-IR of Bio-Oil

The FT-IR qualitative analysis of chemical functions present in the bio-oils obtained by
pyrolysis of MHSW fraction (organic matter + paper) at 400, 450, and 475 ◦C, 1.0 atm, in
laboratory scale, is shown in Figure 21. A wide vibration band between 3600–3200 cm−1 is
observed, characteristic of the O–H angular deformation, associated with the presence of
H2O. The bands close to 2922 and 2854 cm−1 refer to the aliphatic axial deformations of
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the C-H bonds of the methylene (CH2) and methyl (CH3) groups. The peak of 1707 cm−1

indicates the presence of carbonyls of oxygenated compounds. The 1456 cm−1 band can be
attributed to CH2 bond stretches, and the 1377 cm−1 band is attributed to CH3 (methyl)
stretches. The peak of asymmetric angular strain outside the plane of the C-H bond of the
methylene group is observed at 725 cm−1.
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Figure 21. FT-IR of bio-oil obtained by pyrolysis of MHSW fraction (organic matter + paper) at 400,
450, and 475 ◦C, 1.0 atmosphere, in laboratory scale.

The FT-IR qualitative analysis of chemical functions present in the bio-oils obtained by
catalytic cracking of MHSW fraction (organic matter + paper) at 475 ◦C, 1.0 atm, 5.0, 10.0,
and 15.0% (wt.) Ca(OH)2, in laboratory scale, is shown in Figure 22.
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Figure 22. FT-IR of bio-oil obtained by catalytic cracking of MHSW fraction (organic matter + paper)
at 475 ◦C, 1.0 atm, 5.0, 10.0, and 15.0% (wt.) Ca(OH)2, in laboratory scale.

A wide vibration band was observed between 3600–3200 cm−1, characteristic of the
O–H angular deformation, associated with the presence of H2O. The bands close to 2922
and 2854 cm−1 refer to the aliphatic axial deformations of the C-H bonds of the methy-
lene (CH2) and methyl (CH3) groups. It can also be observed that a stretch that occurs
at 1660–1600 cm−1, and the conjugation moves the C=C stretch to lower frequencies and
increases the intensity. The band of 1447 cm−1 can be attributed to the stretching of CH2
bonds. The FT-IT is characteristic of aliphatic hydrocarbons as well as oxygenates, associ-
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ated with the presence of a carboxyl group, characteristics of carboxylic acids, according to
similar analyses of bio-oils by FT-IR reported elsewhere [48–51,71].

Chemical Composition of Bio-Oil

Table 13 and Figure 23 show the effect of temperature on the content of hydrocarbons
and oxygenates in bio-oil obtained by pyrolysis of MHSW fraction (organic matter + paper)
at 400, 450, and 475 ◦C, 1.0 atmosphere, in laboratory scale. The chemical functions (alkanes,
alkenes, alkynes, aromatics, carboxylic acids, esters, alcohols, phenols, amines, amides,
aldehydes, nitrogenates, and ketones), sum of peak areas, CAS numbers, and retention
times of all the molecules identified in bio-oil by GC-MS, are illustrated in Supplementary
Tables S2–S4. The concentration of hydrocarbons in bio-oil has a maximum at 450 ◦C. This
is according to the acidity of bio-oils illustrated in Table 11, where the bio-oil obtained by
catalytic cracking of MHSW fraction (organic matter + paper) at 475 ◦C, 1.0 atm, 10.0% (wt.)
Ca(OH)2 presents its lower acid value.

Table 13. Effect of temperature on the chemical composition, expressed as hydrocarbons and oxy-
genates/nitrogenates, of bio-oils obtained by pyrolysis of MHSW fraction (organic matter + paper) at
400, 450, and 475 ◦C, 1.0 atm, in laboratory scale.

Temperature [◦C]
Concentration [%area.]

Hydrocarbons Oxygenates/Nitrogenates

400 23.74 76.26

450 37.54 62.50

475 20.81 79.81
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Figure 23. Effect of temperature on the chemical composition, expressed as hydrocarbons and oxy-
genates/nitrogenates, of bio-oils obtained by pyrolysis of MHSW fraction (organic matter + paper)
at 400, 450, and 475 ◦C, 1.0 atm, in laboratory scale.

Figure 24 and Tables S5–S7 show the effect of Ca(OH)2-to-MHSW fraction ratio on the
content of hydrocarbons and oxygenates in bio-oil obtained by catalytic cracking of MHSW
fraction (organic matter + paper) at 475 ◦C, 1.0 atm, 5.0, 10.0, and 15.0% (wt.) Ca(OH)2,
in laboratory scale. The chemical functions (alkanes, alkenes, alkynes, aromatics, esters,
carboxylic acids, phenols, aldehydes, alcohols, amines, amides, nitrogenates, and ketones),
sum of peak areas, CAS numbers, and retention times of all the molecules identified
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in bio-oil by GC-MS, are illustrated in Supplementary Tables S5–S7. The concentration
of hydrocarbons in bio-oil increases exponentially with increasing Ca(OH)2-to-MHSW
fraction ratio due to the catalytic deoxygenation of fatty acids molecules, by means of
decarboxylation/decarbonylation, producing aliphatic and aromatic hydrocarbons, as
reported in the literature [53], while that of oxygenates decreases exponentially. The
bio-oils compositions described in Tables S2–S7 is according to those described in the
literature for bio-oils obtained by pyrolysis of MHSW [8,11,12,17,19,21–24,26,28,72,73]. The
occurrence of compounds containing nitrogen is likely due to the presence of nitrogen
in OFMHSW determined by elemental analysis, as reported by AlDayyat et al. [20] and
by Ghavanati et al. [61]. Regarding the influence of the catalyst content on the chemical
composition, Figure 24 illustrates that increasing the catalyst content causes a decrease in
the concentration of oxygenates and an increase in the concentration of hydrocarbons.
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Figure 24. Effect of Ca(OH)2-to-MHSW ratio on the content of oxygenates and hydrocarbons in
bio-oil obtained by catalytic cracking of MHSW fraction (organic matter + paper) at 475 ◦C, 1.0 atm,
5.0, 10.0, and 15.0% (wt.) Ca(OH)2, in laboratory scale.

4. Conclusions

The SEM images of bio-char produced by pyrolysis of (organic matter + paper) fraction
of MHSW at 450 ◦C, 1.0 atmosphere, show the formation of porous structure similar to
a beehive, proving that pyrolysis has drastically changed the morphological structure of
(organic matter + paper) fraction of MHSW.

The XRD analysis of bio-char, obtained by catalytic cracking of (organic matter + paper)
fraction of MHSW at 450 ◦C, 1.0 atmosphere, and at 475 ◦C, 1.0 atmosphere, with 5, 10, and
15% (wt.) Ca(OH)2, identified the presence of the crystalline phases CaCO3 (Calcite) and
graphite (C).

The pyrolysis of MHSW fraction (organic matter + paper) produces a bio-oil with
yields between 2.63 and 9.41% (wt.). The bio-oil yield increases with pyrolysis temperature.
For the catalytic cracking, the bio-oil and gas yields increase slightly with CaO content,
while that of bio-char decreases, and the H2O phase remains constant.

The acidity of bio-oil decreases with increasing process temperature and with aid
Ca(OH)2 as catalyst. The concentration of hydrocarbons in bio-oil increases with in-
creasing Ca(OH)2-to-MHSW fraction ratio due to the catalytic deoxygenation of fatty
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acid molecules by means of decarboxylation/decarbonylation, producing aliphatic and
aromatic hydrocarbons.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15217971/s1, Table S1. Coordinates (Longitude-X, Latitude-Y)
of each collecting points (green circles) (Longitude-X, Latitude-Y) of municipal household solid waste
(MHSW) in the neighborhoods of Cremação and Guamá in the city of Belém-Pará-Brazil on 18/10/2021,
20/10/2021, 27/10/2021, and 29/10/2021, Table S2: Classes of compounds, summation of peak
areas, CAS number, and retention times of chemical compounds identified by GC-MS in bio-oil by
pyrolysis of (organic matter + paper) fraction from MHSW at 400 ◦C, 1.0 atm, in laboratory scale,
Table S3: Classes of compounds, summation of peak areas, CAS number, and retention times of
chemical compounds identified by CG-MS in bio-oil by pyrolysis of (organic matter + paper) fraction
from MHSW at 450 ◦C, 1.0 atm, in laboratory scale, Table S4: Classes of compounds, summation
of peak areas, CAS number, and retention times of chemical compounds identified by CG-MS in
bio-oil by pyrolysis of (organic matter + paper) fraction from MHSW at 475 ◦C, 1.0 atm, in laboratory
scale, Table S5: Classes of compounds, summation of peak areas, CAS number, and retention times of
chemical compounds identified by CG-MS in bio-oil by thermal catalytic cracking of (organic matter
+ paper) fraction from MHSW at 475 ◦C, 1.0 atm, 5.0% (wt.) of Ca(OH)2, in laboratory scale, Table
S6: Classes of compounds, summation of peak areas, CAS number, and retention times of chemical
compounds identified by CG-MS in bio-oil by thermal catalytic cracking of (organic matter + paper)
fraction from MHSW at 475 ◦C, 1.0 atm, 10.0% (wt.) of Ca(OH)2, in laboratory scale, Table S7: Classes
of compounds, summation of peak areas, CAS number, and retention times of chemical compounds
identified by CG-MS in bio-oil by thermal catalytic cracking of (organic matter + paper) fraction from
MHSW at 475 ◦C, 1.0 atm, 5.0% (wt.) of Ca(OH)2, in laboratory scale.

Author Contributions: The individual contributions of all the co-authors are provided as follows:
F.P.d.C.A. contributed with formal analysis and writing original draft preparation, investigation and
methodology, D.O.P. contributed with formal analysis, investigation and methodology, J.C.C.d.S.
contributed with formal analysis, investigation and methodology, J.F.H.F. contributed with formal
analysis, investigation and methodology, K.C.A.B. contributed with investigation and methodology,
L.P.B. contributed with investigation and methodology, C.C.F. contributed with investigation and
methodology, A.F.d.F.C. contributed with investigation and methodology, L.M.P. contributed with
investigation and methodology, S.P.A.d.P. contributed with resources, chemical analysis, R.B.P.F.
contributed with collecting and sampling, B.R.C. contributed with collecting and sampling, S.A.P.d.M.
contributed with formal analysis, investigation and methodology, A.C.P.A. contributed with SIG
analysis, D.A.R.d.C. contributed with investigation and methodology, M.C.S. contributed with formal
analysis, investigation and methodology, N.M.M. contributed with formal analysis, investigation and
methodology, S.D.J. contributed with resources, chemical analysis, A.A.M.P.J. contributed with chem-
ical analysis and formal analysis, L.E.P.B. with co-supervision, and resources, J.A.R.P. contributed
with supervision, conceptualization, and data curation, and N.T.M. contributed with supervision,
conceptualization, and data curation. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: I would like to acknowledge and dedicate this research in memory to Hélio da
Silva Almeida, he used to work at the Faculty of Sanitary and Environmental Engineering/UFPa,
and passed away on 13 March 2021. His contagious joy, dedication, intelligence, honesty, seriousness,
and kindness will always be remembered in our hearts.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/en15217971/s1
https://www.mdpi.com/article/10.3390/en15217971/s1


Energies 2022, 15, 7971 28 of 30

References
1. Mia, S.; Uddin, E.; Kader, A.; Ahsan, A.; Mannan, M.; Hossain, M.M.; Solaiman, Z.M. Pyrolysis and co-composting of municipal

organic waste in Bangladesh: A quantitative estimate of recyclable nutrients, greenhouse gas emissions, and economic benefits.
Waste Manag. 2018, 75, 503–513. [CrossRef]

2. Balcazar, J.G.C.; Dias, R.A.; Balestieri, J.A.P. Analysis of hybrid waste-to-energy for medium-sized cities. Energy 2013, 55, 728–741.
[CrossRef]

3. Srivastava, V.; Ismail, S.A.; Singh, P.; Singh, R.P. Urban solid waste management in the developing world with emphasis on India:
Challenges and opportunities. Rev. Environ. Sci. Bio/Technol. 2014, 14, 317–337. [CrossRef]

4. Lohri, C.R.; Rajabu, H.M.; Sweeney, D.J.; Zurbrügg, C. Char fuel production in developing countries—A review of urban biowaste
carbonization. Renew. Sustain. Energy Rev. 2016, 59, 1514–1530. [CrossRef]

5. Lohri, C.R.; Faraji, A.; Ephata, E.; Rajabu, H.M.; Zurbrügg, C. Urban biowaste for solid fuel production: Waste suitability
assessment and experimental carbonization in Dar es Salaam, Tanzania. Waste Manag. Res. J. A Sustain. Circ. Econ. 2015,
33, 175–182. [CrossRef]

6. Lohri, C.R.; Diener, S.; Zabaleta, I.; Mertenat, A.; Zurbrügg, C. Treatment technologies for urban solid biowaste to create value
products: A review with focus on low- and middle-income settings. Rev. Environ. Sci. Bio/Technol. 2017, 16, 81–130. [CrossRef]

7. Ding, Y.; Zhao, J.; Liu, J.-W.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, Ç.; Pan, B.; Li, X.; et al. A review of China’s municipal solid
waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. J.
Clean. Prod. 2021, 293, 126144. [CrossRef]

8. de Castro, D.R.; Ribeiro, H.D.S.; Guerreiro, L.H.; Bernar, L.P.; Bremer, S.J.; Santo, M.C.; Almeida, H.D.S.; Duvoisin, S.; Borges, L.P.;
Machado, N.T. Production of Fuel-Like Fractions by Fractional Distillation of Bio-Oil from Açaí (Euterpe oleracea Mart.) Seeds
Pyrolysis. Energies 2021, 14, 3713. [CrossRef]

9. dos Santos, P.B.; Ribeiro, H.J.D.S.; Ferreira, A.C.; Ferreira, C.C.; Bernar, L.P.; Assunção, F.P.D.C.; de Castro, D.A.R.; Santos, M.C.;
Duvoisin, S.; Borges, L.E.P.; et al. Process Analysis of PMMA-Based Dental Resins Residues Depolymerization: Optimization of
Reaction Time and Temperature. Energies 2021, 15, 91. [CrossRef]

10. Paula, T.P.; Marques, M.F.V.; Marques, M.R.D.C. Influence of mesoporous structure ZSM-5 zeolite on the degradation of Urban
plastics waste. J. Therm. Anal. 2019, 138, 3689–3699. [CrossRef]

11. Quesada, L.; Calero, M.; Martín-Lara, M.A.; Pérez, A.; Blázquez, G. Characterization of fuel produced by pyrolysis of plastic film
obtained of municipal solid waste. Energy 2019, 186, 115874. [CrossRef]

12. Phan, A.N.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. Characterisation of slow pyrolysis products from segregated wastes for energy
production. J. Anal. Appl. Pyrolysis 2008, 81, 65–71. [CrossRef]

13. Bin Yang, Y.; Phan, A.N.; Ryu, C.; Sharifi, V.; Swithenbank, J. Mathematical modelling of slow pyrolysis of segregated solid wastes
in a packed-bed pyrolyser. Fuel 2006, 86, 169–180. [CrossRef]

14. Sørum, L.; Grønli, M.G.; Hustad, J.E. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 2001, 80, 1217–1227.
[CrossRef]

15. Shi, H.; Mahinpey, N.; Aqsha, A.; Silbermann, R. Characterization, thermochemical conversion studies, and heating value
modeling of municipal solid waste. Waste Manag. 2016, 48, 34–47. [CrossRef] [PubMed]

16. Vakalis, S.; Sotiropoulos, A.; Moustakas, K.; Malamis, D.; Vekkos, K.; Baratieri, M. Thermochemical valorization and characteriza-
tion of household biowaste. J. Environ. Manag. 2017, 203, 648–654. [CrossRef] [PubMed]

17. Peng, C.; Feng, W.; Zhang, Y.; Guo, S.; Yang, Z.; Liu, X.; Wang, T.; Zhai, Y. Low temperature co-pyrolysis of food waste with
PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading. Energy 2020, 219, 119670.
[CrossRef]

18. Tursunov, O. A comparison of catalysts zeolite and calcined dolomite for gas production from pyrolysis of municipal solid waste
(MSW). Ecol. Eng. 2014, 69, 237–243. [CrossRef]

19. Islam, M.S.; Miah, M.Y.; Ismail, M.; Jamal, M.S.; Banik, S.K.; Saha, M. Production of Bio-Oil from Municipal Solid Waste by
Pyrolysis. Bangladesh J. Sci. Ind. Res. 1970, 45, 91–94. [CrossRef]

20. AlDayyat, E.; Saidan, M.; Al-Hamamre, Z.; Al-Addous, M.; Alkasrawi, M. Pyrolysis of Solid Waste for Bio-Oil and Char
Production in Refugees’ Camp: A Case Study. Energies 2021, 14, 3861. [CrossRef]

21. Gandidi, I.M.; Susila, M.D.; Pambudi, N.A. Co-cracking of real MSW into bio-oil over natural kaolin. IOP Conf. Ser. Earth Environ.
Sci. 2017, 60, 012019. [CrossRef]

22. Gandidi, I.M.; Susila, M.D.; Rustamaji, H. Effect of natural zeolite and kaolin as a catalyst in the isothermal-catalytic cracking of
real municipal solid waste (MSW) for bio-oil production. IOP Conf. Ser. Earth Environ. Sci. 2018, 160, 012018. [CrossRef]

23. Velghe, I.; Carleer, R.; Yperman, J.; Schreurs, S. Study of the pyrolysis of municipal solid waste for the production of valuable
products. J. Anal. Appl. Pyrolysis 2011, 92, 366–375. [CrossRef]

24. Song, Q.; Zhao, H.-Y.; Xing, W.-L.; Song, L.-H.; Yang, L.; Yang, D.; Shu, X. Effects of various additives on the pyrolysis
characteristics of municipal solid waste. Waste Manag. 2018, 78, 621–629. [CrossRef]

25. Hasan, M.; Rasul, M.; Khan, M.; Ashwath, N.; Jahirul, M. Energy recovery from municipal solid waste using pyrolysis technology:
A review on current status and developments. Renew. Sustain. Energy Rev. 2021, 145, 111073. [CrossRef]
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