Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = John W. Nicholson

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 541 KiB  
Review
Stannous Fluoride in Toothpastes: A Review of Its Clinical Effects and Likely Mechanisms of Action
by John W. Nicholson
J. Funct. Biomater. 2025, 16(3), 73; https://doi.org/10.3390/jfb16030073 - 20 Feb 2025
Viewed by 5434
Abstract
This article reviews the topic of stannous fluoride as an anti-caries additive in toothpastes. It is based on a literature survey carried out using Science Direct, supplemented by information from PubMed. The keywords used were stannous fluoride, toothpaste, clinical effects, caries, hypersensitivity, gingival [...] Read more.
This article reviews the topic of stannous fluoride as an anti-caries additive in toothpastes. It is based on a literature survey carried out using Science Direct, supplemented by information from PubMed. The keywords used were stannous fluoride, toothpaste, clinical effects, caries, hypersensitivity, gingival health, structure and aqueous solutions. The initial searches covered the period 2015–2024 and identified 57 references. Older references cited in these papers, and also papers already known to the author, were also included. The information thus obtained shows that stannous fluoride has three main effects, namely, reduction in the viability of the oral biofilm, increase in remineralisation of the hydroxyapatite tooth mineral and occlusion of dentinal tubules leading to reduced hypersensitivity. Stannous fluoride was shown to be the most effective of all the fluoride additives used in toothpastes. In much of the dental literature, this is attributed to the effects of Sn2+ ions. However, as has been shown extensively in the wider scientific literature, free Sn2+ ions do not occur in aqueous systems. Rather, the initial products of the dissolution of SnF2 is undissociated, hydrated SnF2 and SnF+ ions. These gradually exchange fluoride to form Sn(OH)2 and Sn(OH)+. Their likely mechanism of action based on their toxicity towards oral micro-organisms and their interaction with hydroxyapatite is discussed. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Graphical abstract

18 pages, 3369 KiB  
Article
Genomic Analysis of Sindbis Virus Reveals Uncharacterized Diversity within the Australasian Region, and Support for Revised SINV Taxonomy
by Alice Michie, Timo Ernst, Alyssa T. Pyke, Jay Nicholson, John S. Mackenzie, David W. Smith and Allison Imrie
Viruses 2024, 16(1), 7; https://doi.org/10.3390/v16010007 - 20 Dec 2023
Cited by 5 | Viewed by 2228
Abstract
Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have [...] Read more.
Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have characterized six SINV genotypes (G1–G6) based on E2 gene phylogenies, mostly comprising viruses derived from the African–European zoogeographical region and with limited representation of Australasian SINV. In this study, we conducted whole genome sequencing of 66 SINV isolates sampled between 1960 and 2014 from countries of the Australasian region: Australia, Malaysia, and Papua New Guinea. G2 viruses were the most frequently and widely sampled, with three distinct sub-lineages defined. No new G6 SINV were identified, confirming geographic restriction of these viruses to south-western Australia. Comparison with global SINV characterized large-scale nucleotide and amino acid sequence divergence between African–European G1 viruses and viruses that circulate in Australasia (G2 and G3) of up to 26.83% and 14.55%, respectively, divergence that is sufficient for G2/G3 species demarcation. We propose G2 and G3 are collectively a single distinct alphavirus species that we name Argyle virus, supported by the inapparent or mild disease phenotype and the higher evolutionary rate compared with G1. Similarly, we propose G6, with 24.7% and 12.61% nucleotide and amino acid sequence divergence, is a distinct alphavirus species that we name Thomson’s Lake virus. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research)
Show Figures

Figure 1

11 pages, 578 KiB  
Review
Ytterbium (III) Fluoride in Dental Materials
by John W. Nicholson
Inorganics 2023, 11(12), 449; https://doi.org/10.3390/inorganics11120449 - 21 Nov 2023
Cited by 4 | Viewed by 3295
Abstract
(1) Background: The compound ytterbium trifluoride is used as a component of several dental materials, and this is reviewed in the current article. (2) Methods: Published articles on this substance were identified initially from PubMed, and then from Science Direct and Google Scholar. [...] Read more.
(1) Background: The compound ytterbium trifluoride is used as a component of several dental materials, and this is reviewed in the current article. (2) Methods: Published articles on this substance were identified initially from PubMed, and then from Science Direct and Google Scholar. The publications identified in this way showed that ytterbium trifluoride has been included in a variety of dental restorative materials, including composite resins, glass polyalkenoate cements, and calcium trisilicate cements. (3) Results: Ytterbium trifluoride is reported to be insoluble in water. Despite this, its presence is associated with fluoride release from dental materials. There is evidence that it reacts with the components of calcium trisilicate cements to form small amounts of a variety of compounds, including ytterbium oxide, Yb2O3, and calcium–ytterbium fluoride, CaYbF5. In nanoparticulate form, it has been shown to reinforce glass polyalkenoates and it also provides high contrast in X-ray images. (4) Conclusions: Ytterbium trifluoride is a useful component of dental materials, though some of the published findings suggest that there are aspects of its chemistry which are poorly understood. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

11 pages, 2724 KiB  
Article
Biological Evaluation of Zinc Phosphate Cement for Potential Bone Contact Applications
by Arun K. Kotha, John W. Nicholson and Samantha E. Booth
Biomedicines 2023, 11(2), 250; https://doi.org/10.3390/biomedicines11020250 - 18 Jan 2023
Cited by 8 | Viewed by 3372
Abstract
Zinc phosphate cement is used in dentistry to lute crowns and bridges. So far, its biocompatibility for other applications has not been studied. This paper reports the biocompatibility of zinc phosphate towards MG63 cells, testing both the material (discs; 3 mm diameter × [...] Read more.
Zinc phosphate cement is used in dentistry to lute crowns and bridges. So far, its biocompatibility for other applications has not been studied. This paper reports the biocompatibility of zinc phosphate towards MG63 cells, testing both the material (discs; 3 mm diameter × 1 mm thick) and leachate from the cement. Cell viability was determined using an MTT assay, and cytotoxicity from the effects of leachate, studied in triplicate. Microscopy (optical and scanning electron) determined the morphology and proliferation of cells attached to zinc phosphate. ICP-OES measured element release into leachate, and anti-microbial behaviour was determined against Streptococcus pyrogenes cultured on a Brain Heart Infusion agar using cement discs (3 mm diameter × 1 mm thick). Zones of inhibition were measured after 72 h. MG63 cells proliferated on zinc phosphate surfaces and retained their morphology. The cells were healthy and viable as shown by an MTT assay, both on cement and in leachate. High levels of phosphorus but low levels of zinc were released into leachate. The cement showed minimal antimicrobial activity against S. pyogenes, probably due to the long maturation times used. Zinc phosphate cement was found to be biocompatible towards MG63 cells, which indicates that it may be capable of use in bone contact applications. Full article
(This article belongs to the Collection Feature Papers in Biomedical Materials)
Show Figures

Figure 1

16 pages, 324 KiB  
Review
Periodontal Therapy Using Bioactive Glasses: A Review
by John W. Nicholson
Prosthesis 2022, 4(4), 648-663; https://doi.org/10.3390/prosthesis4040052 - 10 Nov 2022
Cited by 13 | Viewed by 3368
Abstract
This paper reviews the use of bioactive glasses as materials for periodontal repair. Periodontal disease causes bone loss, resulting in tooth loosening and eventual tooth loss. However, it can be reversed using bioactive glass, typically the original 45S5 formulation (Bioglass®) at [...] Read more.
This paper reviews the use of bioactive glasses as materials for periodontal repair. Periodontal disease causes bone loss, resulting in tooth loosening and eventual tooth loss. However, it can be reversed using bioactive glass, typically the original 45S5 formulation (Bioglass®) at the defect site. This is done either by plcing bioactive glass granules or a bioactive glass putty at the defect. This stimulates bone repair and causes the defect to disappear. Another use of bioactive glass in periodontics is to repair so-called furcation defects, i.e., bone loss due to infection at the intersection of the roots in multi-rooted teeth. This treatment also gives good clinical outcomes. Finally, bioactive glass has been used to improve outcomes with metallic implants. This involves either placing bioactive glass granules into the defect prior to inserting the metal implant, or coating the implant with bioactive glass to improve the likelihood of osseointegration. This needs the glass to be formulated so that it does not crack or debond from the metal. This approach has been very successful, and bioactive glass coatings perform better than those made from hydroxyapatite. Full article
(This article belongs to the Special Issue Bioactive Materials for Dental and Maxillofacial Repair)
20 pages, 5822 KiB  
Article
Optimal Selection of Short- and Long-Term Mitigation Strategies for Buildings within Communities under Flooding Hazard
by Himadri Sen Gupta, Omar M. Nofal, Andrés D. González, Charles D. Nicholson and John W. van de Lindt
Sustainability 2022, 14(16), 9812; https://doi.org/10.3390/su14169812 - 9 Aug 2022
Cited by 8 | Viewed by 4929
Abstract
Every year, floods cause substantial economic losses worldwide with devastating impacts on buildings and physical infrastructures throughout communities. Techniques are available to mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect to their benefits from a community [...] Read more.
Every year, floods cause substantial economic losses worldwide with devastating impacts on buildings and physical infrastructures throughout communities. Techniques are available to mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect to their benefits from a community resilience perspective is limited in the literature. Investing in flood mitigation is critical for communities to protect the physical and socioeconomic systems that depend on them. While there are multiple mitigation options to implement at the building level, this paper focuses on determining the optimal flood mitigation strategy for buildings to minimize flood losses within a community. In this research, a mixed integer linear programming model is proposed for studying the effects and trade-offs associated with pre-event short-term and long-term mitigation strategies to minimize the expected economic losses associated with floods. The capabilities of the proposed model are illustrated for Lumberton, North Carolina (NC), a small, socially diverse inland community on the Lumber River. The mathematically optimal building-level flood mitigation plan is provided based on the available budget, which can significantly minimize the total expected direct economic loss of the community. The results reveal important correlations among investment quantity, building-level short- and long-term mitigation measures, flood depths of various locations, and buildings’ structure. Additionally, this study shows the trade-offs between short- and long-term mitigation measures based on available budget by providing decision support to building owners regarding mitigation measures for their buildings. Full article
(This article belongs to the Special Issue Innovations in Flood Risk Mitigation)
Show Figures

Figure 1

20 pages, 3336 KiB  
Article
Phylogenetic and Timescale Analysis of Barmah Forest Virus as Inferred from Genome Sequence Analysis
by Alice Michie, Timo Ernst, I-Ly Joanna Chua, Michael D. A. Lindsay, Peter J. Neville, Jay Nicholson, Andrew Jardine, John S. Mackenzie, David W. Smith and Allison Imrie
Viruses 2020, 12(7), 732; https://doi.org/10.3390/v12070732 - 6 Jul 2020
Cited by 12 | Viewed by 4761
Abstract
Barmah Forest virus (BFV) is a medically important mosquito-borne alphavirus endemic to Australia. Symptomatic disease can be a major cause of morbidity, associated with fever, rash, and debilitating arthralgia. BFV disease is similar to that caused by Ross River virus (RRV), the other [...] Read more.
Barmah Forest virus (BFV) is a medically important mosquito-borne alphavirus endemic to Australia. Symptomatic disease can be a major cause of morbidity, associated with fever, rash, and debilitating arthralgia. BFV disease is similar to that caused by Ross River virus (RRV), the other major Australian alphavirus. Currently, just four BFV whole-genome sequences are available with no genome-scale phylogeny in existence to robustly characterise genetic diversity. Thirty novel genome sequences were derived for this study, for a final 34-taxon dataset sampled over a 44 year period. Three distinct BFV genotypes were characterised (G1–3) that have circulated in Australia and Papua New Guinea (PNG). Evidence of spatio-temporal co-circulation of G2 and G3 within regions of Australia was noted, including in the South West region of Western Australia (WA) during the first reported disease outbreaks in the state’s history. Compared with RRV, the BFV population appeared more stable with less frequent emergence of novel lineages. Preliminary in vitro assessment of RRV and BFV replication kinetics found that RRV replicates at a significantly faster rate and to a higher, more persistent titre compared with BFV, perhaps indicating mosquitoes may be infectious with RRV for longer than with BFV. This investigation resolved a greater diversity of BFV, and a greater understanding of the evolutionary dynamics and history was attained. Full article
(This article belongs to the Special Issue Viral Molecular Epidemiology)
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
The Diversity and Distribution of Viruses Associated with Culex annulirostris Mosquitoes from the Kimberley Region of Western Australia
by Simon H. Williams, Avram Levy, Rachel A. Yates, Nilusha Somaweera, Peter J. Neville, Jay Nicholson, Michael D. A. Lindsay, John S. Mackenzie, Komal Jain, Allison Imrie, David W. Smith and W. Ian Lipkin
Viruses 2020, 12(7), 717; https://doi.org/10.3390/v12070717 - 2 Jul 2020
Cited by 18 | Viewed by 3886
Abstract
Metagenomics revealed an impressive breadth of previously unrecognized viruses. Here, we report the virome of the Culex annulirostris Skuse mosquito, an important vector of pathogenic arboviruses in Australia. Mosquitoes were collected from three sites in the Kimberley region of Western Australia. Unbiased high-throughput [...] Read more.
Metagenomics revealed an impressive breadth of previously unrecognized viruses. Here, we report the virome of the Culex annulirostris Skuse mosquito, an important vector of pathogenic arboviruses in Australia. Mosquitoes were collected from three sites in the Kimberley region of Western Australia. Unbiased high-throughput sequencing (HTS) revealed the presence of 16 novel viral sequences that share less than 90% identity with known viruses. None were closely related to pathogenic arboviruses. Viruses were distributed unevenly across sites, indicating a heterogeneous Cx. annulirostris virome. Polymerase chain reaction assays confirmed HTS data and identified marked variation between the virus prevalence identified at each site. Full article
Show Figures

Figure 1

17 pages, 284 KiB  
Review
Titanium Alloys for Dental Implants: A Review
by John W. Nicholson
Prosthesis 2020, 2(2), 100-116; https://doi.org/10.3390/prosthesis2020011 - 15 Jun 2020
Cited by 315 | Viewed by 38928
Abstract
The topic of titanium alloys for dental implants has been reviewed. The basis of the review was a search using PubMed, with the large number of references identified being reduced to a manageable number by concentrating on more recent articles and reports of [...] Read more.
The topic of titanium alloys for dental implants has been reviewed. The basis of the review was a search using PubMed, with the large number of references identified being reduced to a manageable number by concentrating on more recent articles and reports of biocompatibility and of implant durability. Implants made mainly from titanium have been used for the fabrication of dental implants since around 1981. The main alloys are so-called commercially pure titanium (cpTi) and Ti-6Al-4V, both of which give clinical success rates of up to 99% at 10 years. Both alloys are biocompatible in contact with bone and the gingival tissues, and are capable of undergoing osseointegration. Investigations of novel titanium alloys developed for orthopaedics show that they offer few advantages as dental implants. The main findings of this review are that the alloys cpTi and Ti-6Al-4V are highly satisfactory materials, and that there is little scope for improvement as far as dentistry is concerned. The conclusion is that these materials will continue to be used for dental implants well into the foreseeable future. Full article
(This article belongs to the Special Issue Prosthesis and Prosthetic Materials)
14 pages, 310 KiB  
Review
Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review
by John W. Nicholson, Sharanbir K. Sidhu and Beata Czarnecka
Materials 2020, 13(11), 2510; https://doi.org/10.3390/ma13112510 - 31 May 2020
Cited by 95 | Viewed by 8538
Abstract
This paper reviews the strategies that have been reported in the literature to attempt to reinforce glass-ionomer dental cements, both conventional and resin-modified. These cements are widely used in current clinical practice, but their use is limited to regions where loading is not [...] Read more.
This paper reviews the strategies that have been reported in the literature to attempt to reinforce glass-ionomer dental cements, both conventional and resin-modified. These cements are widely used in current clinical practice, but their use is limited to regions where loading is not high. Reinforcement might extend these applications, particularly to the posterior dentition. A variety of strategies have been identified, including the use of fibres, nanoparticles, and larger particle additives. One problem revealed by the literature survey is the limited extent to which researchers have used International Standard test methods. This makes comparison of results very difficult. However, it does seem possible to draw conclusions from this substantial body of work and these are (1) that powders with conventional particle sizes do not reinforce glass-ionomer cements, (2) certain fibres and certain nanoparticles give distinct improvements in strength, and (3) in the case of the nanoparticles these improvements are associated with differences in the morphology of the cement matrix, in particular, a reduction in the porosity. Despite these improvements, none of the developments has yet been translated into clinical use. Full article
12 pages, 6307 KiB  
Article
Assessment of the Impact of the Addition of Nanoparticles on the Properties of Glass–Ionomer Cements
by Elizabeta Gjorgievska, John W. Nicholson, Dragana Gabrić, Zeynep Asli Guclu, Ivana Miletić and Nichola J. Coleman
Materials 2020, 13(2), 276; https://doi.org/10.3390/ma13020276 - 8 Jan 2020
Cited by 34 | Viewed by 4079
Abstract
The aim of the study was to evaluate the effects of incorporation of Al2O3, ZrO2 and TiO2 nanoparticles into glass–ionomer cements (GICs). Two different GICs were used in the study. Four groups were prepared for each material: [...] Read more.
The aim of the study was to evaluate the effects of incorporation of Al2O3, ZrO2 and TiO2 nanoparticles into glass–ionomer cements (GICs). Two different GICs were used in the study. Four groups were prepared for each material: the control group (without nanoparticles) and three groups modified by the incorporation of nanoparticles at 2, 5 or 10 wt %, respectively. Cements were mixed and placed in moulds (4 mm × 6 mm); after setting, the samples were stored in saline (one day and one week). Compressive strengths were measured and the morphology of the fractured surfaces was analyzed by scanning electron microscopy. The elements released into the storage solutions were determined by Inductively coupled plasma-optical emission spectrometry (ICP-OES). Addition of nanoparticles was found to alter the appearance of cements as examined by scanning electron microscopy. Compressive strength increased with the addition of ZrO2 and especially TiO2 nanoparticles, whereas the addition of Al2O3 nanoparticles generally weakened the cements. The ion release profile of the modified cements was the same in all cases. The addition of Al2O3, ZrO2 and TiO2 nanoparticles into GICs is beneficial, since it leads to reduction of the microscopic voids in the set cement. Of these, the use of ZrO2 and TiO2 nanoparticles also led to increased compressive strength. Nanoparticles did not release detectable levels of ions (Al, Zr or Ti), which makes them suitable for clinical use. Full article
Show Figures

Figure 1

15 pages, 516 KiB  
Review
A Review of Glass-Ionomer Cements for Clinical Dentistry
by Sharanbir K. Sidhu and John W. Nicholson
J. Funct. Biomater. 2016, 7(3), 16; https://doi.org/10.3390/jfb7030016 - 28 Jun 2016
Cited by 390 | Viewed by 38569
Abstract
This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base [...] Read more.
This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2–3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature. Full article
(This article belongs to the Collection Biocements for Medical/Dental Purposes)
Show Figures

Figure 1

Back to TopTop