Titanium Alloys for Dental Implants: A Review
Abstract
:1. Introduction
2. Titanium-Based Dental Implants
2.1. Titanium and its Alloys
2.2. Surface Chemistry
3. Biocompatibility of Titanium for Dental Implants
4. Binary Alloys of Titanium
5. Multi-Component Alloys of Titanium
6. Surface Modification of Titanium Alloys
7. Conclusions
Funding
Conflicts of Interest
References
- Hong, D.G.K.; Oh, J.-H. Recent advances in dental implants. Maxillofac. Plast. Reconstr. Surg. 2017, 39, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shemtov-Yona, K.; Rittel, D. An overview of the mechanical integrity of dental implants. Biomed. Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCracken, M. Dental implant materials: Commercially pure titanium and titanium alloys. J. Prosthodont. 1999, 8, 40–43. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Tsoi, J.K.H.; Matinlinna, J.K. Binary titanium alloys as dental implant Materials—A review. Regen. Biomater. 2017, 4, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Chen, L.-Y. A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 2019, 21. [Google Scholar] [CrossRef] [Green Version]
- Niiomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef]
- Elias, C.N.; Fernandes, D.J.; De Souza, F.M.; Monteiro, E.D.S.; De Biasi, R.S. Mechanical and clinical properties of titanium and Titanium-Based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications. J. Mater. Res. Technol. 2019, 8, 1060–1069. [Google Scholar] [CrossRef]
- Klein, G.L. Aluminium toxicity to bone: A Multi-System effect? Osteoporos. Sarcopenia 2019, 5, 2–5. [Google Scholar] [CrossRef]
- Thyssen, J.; Jakobsen, S.S.; Engkilde, K.; Johansen, J.D.; Søballe, K.; Menné, T. The association between metal allergy, total hip arthroplasty, and revision. Acta Orthop. 2009, 80, 646–652. [Google Scholar] [CrossRef]
- Bodelón, O.G.; De Arriba, C.C.; Alobera, M.A.; Aguado-Henche, S.; Escudero, M.; García-Alonso, M. Osseointegration of TI6Al4V dental implants modified by thermal oxidation in osteoporotic rabbits. Int. J. Implant Dent. 2016, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K. Implant biomaterials: A comprehensive review. World J. Clin. Cases 2015, 3, 52–57. [Google Scholar] [CrossRef]
- Jorge, J.R.P.; Barão, V.A.R.; Delben, J.; Faverani, L.P.; Queiroz, T.P.; Assunção, W.G. Titanium in dentistry: Historical development, state of the art and future perspectives. J. Indian Prosthodont. Soc. 2012, 13, 71–77. [Google Scholar] [CrossRef]
- Sidambe, A.T. Biocompatibility of advanced manufactured titanium Implants—A review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef] [Green Version]
- Naderi, N.J.; Semyari, H.; Elahinia, Z. The impact of smoking on gingiva: A histopathological study. Iran. J. Pathol. 2015, 10, 214–220. [Google Scholar]
- Pye, A.; Lockhart, D.; Dawson, M.; Murray, C.; Smith, A. A review of dental implants and infection. J. Hosp. Infect. 2009, 72, 104–110. [Google Scholar] [CrossRef]
- Nicholson, J.W. The Chemistry of Medical and Dental Materials, 4th ed.; RSC: Cambridge, UK, 2002; pp. 107–147. [Google Scholar]
- Ameen, A.P.; Short, R.D.; Douglas, C.W.I.; Johns, R.; Ballet, B. A critical investigation of some of the procedures employed in the surgical use of titanium. J. Mater. Sci. Mater. Electron. 1996, 7, 195–199. [Google Scholar] [CrossRef]
- Buser, D.; Janner, S.F.M.; Wittneben, J.-G.; Bragger, U.; Ramseier, C.A.; Salvi, G.E. 10-Year survival and success rates of 511 titanium implants with a sandblasted and Acid-Etched surface: A retrospective study in 303 partially edentulous patients. Clin. Implant Dent. Relat. Res. 2012, 14, 839–851. [Google Scholar] [CrossRef]
- Van Velzen, F.J.J.; Ofec, R.; Schulten, E.A.J.M.; Bruggenkate, C.M.T. 10-Year survival rate and the incidence of Peri-Implant disease of 374 titanium dental implants with a SLA surface: A prospective cohort study in 177 fully and partially edentulous patients. Clin. Oral Implant Res. 2014, 26, 1121–1128. [Google Scholar] [CrossRef]
- Chappuis, V.; Buser, R.; Bragger, U.; Bornstein, M.M.; Salvi, G.E.; Buser, D. Long-Term outcomes of dental implants with a titanium Plasma-Sprayed surface: A 20-Year prospective case series study in partially edentulous patients. Clin. Implant Dent. Relat. Res. 2013, 15, 780–790. [Google Scholar] [CrossRef]
- Degidi, M.; Nardi, D.; Piattelli, A. 10-Year Follow-Up of immediately loaded implants with tiunite porous anodized surface. Clin. Implant Dent. Relat. Res. 2012, 14, 828–838. [Google Scholar] [CrossRef]
- Mozzati, M.; Gallesio, G.; Del Fabbro, M. Long-Term (9–12 years) outcomes of titanium implants with an oxidized surface: A retrospective investigation on 209 implants. J. Oral Implant 2015, 41, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Johansson, K.; Jimbo, R.; Östlund, P.; Tranæus, S.; Becktor, J. Effects of bacterial contamination on dental implants during surgery. Implant Dent. 2017, 26, 778–789. [Google Scholar] [CrossRef]
- Zhao, B.; Van Der Mei, H.C.; Rustema-Abbing, M.; Busscher, H.J.; Ren, Y. Osteoblast integration of dental implant materials after challenge by Sub-Gingival pathogens: A Co-Culture study in vitro. Int. J. Oral Sci. 2015, 7, 250–258. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M. Titanium-Based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, R.B.; Swain, M.V. A critical review of dental implant materials with an emphasis on titanium versus zirconium. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef] [Green Version]
- Effah, E.A.; Bianco, P.D.; Ducheyne, P. Crystal structure of the surface oxide layer on titanium and its changes arising from immersion. J. Biomed. Mater. Res. 1995, 29, 73–80. [Google Scholar] [CrossRef]
- Sittig, C.; Textor, M.; Spencer, N.D.; Weiland, M.; Vallotton, P.-H. Surface characterization of implant materials cpTi, Ti-6Al-7Nb and Ti-6Al-4V with different pre-treatments. J. Mater. Sci. Mater. Med. 1999, 10, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Al-Hashedi, A.A.; Laurenti, M.; Benhamon, V.; Tamimi, F. Decontamination of titanium implants using physical methods. Clin. Oral Implants Res. 2017, 28, 1013–1021. [Google Scholar] [CrossRef]
- Juodzbalys, G.; Sapragonlene, M.; Wennerberg, A.; Baltrukonis, T. Titanium oral implant surface micromorphology optimization. J. Oral Implantol. 2007, 33, 177–185. [Google Scholar]
- Hanawa, T. Titanium-tissue interface reaction and its control within surface treatment. Front. Bioeng. Biotechnol. 2019, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Albrektsson, T.; Wennerberg, A. Oral implant surfaces: Part 1—Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int. J. Prosthodont. 2004, 17, 536–543. [Google Scholar] [PubMed]
- Elias, C.N.; Meirelles, L. Improving osseointegration of dental implants. Expert Rev. Med Devices 2010, 7, 241–256. [Google Scholar] [CrossRef]
- Balshe, A.A.; Assad, D.A.; Eckert, S.E.; Koka, S.; Weaver, A.L. A retrospective study of the survival of Smooth-And Rough-Surface dental implants. Int. J. Oral Maxillofac. Implants 2009, 24, 1113–1118. [Google Scholar]
- Wennerberg, A.; Albrektsson, T. On implant surfaces: A review of current knowledge and opinions. Int. J. Oral Maxillofac. Implants 2010, 25, 63–74. [Google Scholar]
- Vora, H.D.; Rajamure, R.S.; Dahotre, S.N.; Ho, Y.-H.; Banerjee, R.; Dahotre, N.B. Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti–6Al–4V biomaterial in physiological solution. J. Mech. Behav. Biomed. Mater. 2014, 37, 153–164. [Google Scholar] [CrossRef]
- Yu, F.; Addison, O.; Davenport, A. A synergistic effect of albumin and H 2 O 2 accelerates corrosion of Ti6Al4V. Acta Biomater. 2015, 26, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.; Gil, F.J.; Planell, J.A.; Jorge, E.; Alvarez, L.; Garcia, R.; Larrea, M.; Zapata, A. Titanium levels in rats implanted with Ti-6Al-4V treated samples in the absence of wear. J. Mater. Sci. Mater. Med. 1999, 10, 847–851. [Google Scholar] [CrossRef]
- Apostu, D.; Lucaciu, O.; Lucaciu, G.D.O.; Crisan, B.; Crisan, L.; Baciut, M.; Onisor, F.; Baciut, G.; Câmpian, R.S.; Bran, S. Systemic drugs that influence titanium implant osseointegration. Drug Metab. Rev. 2017, 49, 92–104. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J. Musculoskelet. Neuronal Interact. 2009, 9, 61–71. [Google Scholar] [PubMed]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface modifications and their effects on titanium dental implants. BioMed Res. Int. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- John, A.A.; Jaganathan, S.K.; Supriyanto, E.; Manikandan, A. Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics. Curr. Sci. 2016, 111, 1003–1015. [Google Scholar] [CrossRef]
- Blumenthal, N.C.; Cosma, V. Inhibition of apatite formation by titanium and vanadium ions. J. Biomed. Mater. Res. 1989, 23, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Nuss, K.M.R.; von Rechenberg, B. Biocompatibility issues with modern implants in Bone—A review for clinical orthopaedics. Open Orthop. J. 2008, 2, 66–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartoretto, S.C.; Alves, A.T.N.N.; Resende, R.F.B.; Calasans-Maia, J.A.; Granjeiro, J.M.; Calasans-Maia, M.D. Early osseointegration driven by the surface chemistry and wettability of dental implants. J. Appl. Oral Sci. 2015, 23, 279–287. [Google Scholar] [CrossRef]
- Brangdon, C.R.; Jasty, M.; Greene, M.; Rubash, H.E.; Harris, W.H. Biologic fixation of total hip implants: Insghts gained from a series of canine studies. J. Bone Jt. Surg. 2004, 86, 105–117. [Google Scholar] [CrossRef]
- Temiz, M.; Dayi, E.; Saruhan, N. Evaluation of blood titanium levels and total bone contact area of dental implants. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Patton, M.S.; Lyon, T.D.B.; Ashcroft, G.P. Levels of systemic metal ions in patients with intramedullary nails. Acta Orthop. 2008, 79, 820–825. [Google Scholar] [CrossRef]
- Nuevo-Ordoñez, Y.; Montes-Bayón, M.; Blanco-González, E.; Paz-Aparicio, J.; Raimundez, J.D.; Tejerina, J.M.; Peña, M.A.; Sanz-Medel, A. Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal. Bioanal. Chem. 2011, 401, 2747–2754. [Google Scholar] [CrossRef]
- Kim, K.T.; Eo, M.Y.; Nguyen, T.T.H.; Kim, S.-M. General review of titanium toxicity. Int. J. Implant Dent. 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Pigatto, P.D.; Berti, E.; Spadari, F.; Bombeccari, G.P.; Guzzi, G. Photoletter to the editor: Exfoliative cheilitis associated with titanium dental implants and mercury amalgam. J. Dermatol. Case Rep. 2011, 5, 89–90. [Google Scholar] [CrossRef] [Green Version]
- Shah, F.A.; Trobos, M.; Thomsen, P.; Palmquist, A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored Implants–Is one truly better than the other? Mater. Sci. Eng. C 2016, 62, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, J.M.; Barão, V.A.R. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants? Mater. Sci. Eng. C 2017, 71, 1201–1215. [Google Scholar] [CrossRef]
- Hanawa, T. Evaluation of metallic biomaterials in vitro. Sci. Technol. Adv. Mater. 2002, 3, 289–295. [Google Scholar] [CrossRef]
- International Organization for Standardization. Biological Evaluation of Medical Devices, Part 5: Tests for in vitro Cytotoxicity; ISO10993-5; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Berridge, M.; Tan, A.; McCoy, K.; Wang, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 1996, 4, 14–19. [Google Scholar]
- Marshall, N.J.; Goodwin, C.J.; Holt, S.J. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul. 1995, 5, 69–84. [Google Scholar] [PubMed]
- Koike, M.; Lockwood, P.E.; Wataha, J.C.; Okabe, T. Initial cytotoxicity of novel titanium alloys. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.; Wataha, J.C.; Lockwood, P.E.; Shimizu, H.; Cai, Z.; Okabe, T. Cytotoxicity of commercial and novel binary titanium alloys with and without a Surface-Reaction layer. J. Oral Rehabil. 2004, 31, 185–189. [Google Scholar] [CrossRef]
- Oh, K.-T.; Kang, D.-K.; Choi, G.-S.; Kim, K.-N. Cytocompatibility and electrochemical properties of Ti–Au alloys for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 320–326. [Google Scholar] [CrossRef]
- Zhang, F.; Weidmann, A.; Nebe, J.B.; Beck, U.; Burkel, E. Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 406–413. [Google Scholar] [CrossRef]
- Li, Y.; Wong, C.; Xiong, J.; Hodgson, P.; Wen, C. Cytotoxicity of titanium and titanium alloying elements. J. Dent. Res. 2010, 89, 493–497. [Google Scholar] [CrossRef]
- Cremasco, A.; Messias, A.D.; Esposito, A.R.; deR Duek, E.A.; Caram, R. Effects of alloying elements on cytotoxic responses to titanium alloys. Mater. Sci. Eng. C. 2011, 31, 833–839. [Google Scholar] [CrossRef]
- Uzumaki, E.T.; Lambert, C.S.; Santos, A.R.J.; Zavaglia, C.A.C. Surface properties and cell behavior of Diamond-Like carbon coatings produced by plasma immersion. Thin Sol. Film. 2006, 515, 293–300. [Google Scholar] [CrossRef]
- Lee, C.M.; Ju, C.P.; Lin, J.-H.C. Structure-Property relationship of cast Ti-Nb alloys. J. Oral Rehabil. 2002, 29, 314–322. [Google Scholar] [CrossRef]
- Kikuchi, M.; Takahashi, M.; Okuno, O. Mechanical properties and grindability of dental cast Ti-Nb alloys. Dent. Mater. J. 2003, 22, 328–342. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Wang, B.L.; Qiu, K.; Lin, W.; Li, L.; Wang, Y.; Nie, F.; Zheng, Y. Microstructure, corrosion behavior and cytotoxicity of Zr–Nb alloys for biomedical application. Mater. Sci. Eng. C 2012, 32, 851–857. [Google Scholar] [CrossRef]
- Oh, K.-T.; Shim, H.-M.; Kim, K.-N. Properties of Titanium-Silver alloys for dental application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 74, 649–658. [Google Scholar] [CrossRef]
- Zhang, B.; Qiu, K.; Wang, B.L.; Li, L.; Zheng, Y. Surface characterization and cell response of binary Ti-Ag alloys with CP Ti as material control. J. Mater. Sci. Technol. 2012, 28, 779–784. [Google Scholar] [CrossRef]
- Takahashi, M.; Kikuchi, M.; Okuno, O. Mechanical properties and grindability of experimental Ti-Au alloys. Dent. Mater. J. 2004, 23, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Weidmann, A.; Nebe, B.J.; Burkel, E. Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications. J. Phys. Conf. Ser. 2009, 144, 012007. [Google Scholar] [CrossRef]
- Ho, W.-F.; Chen, W.-K.; Wu, S.-C.; Hsu, H.-C. Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J. Mater. Sci. Mater. Electron. 2008, 19, 3179–3186. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Hsu, S.-K.; Sung, Y.-C.; Ho, W.-F. Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys. Mater. Charact. 2011, 62, 157–163. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Sung, Y.-C.; Ho, W.-F. The structure and mechanical properties of as-cast Zr–Ti alloys. J. Alloys Compd. 2009, 488, 279–283. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Chiang, T.-Y.; Ho, W.-F. Structure and grindability of dental Ti–Cr alloys. J. Alloys Compd. 2009, 476, 817–825. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, J.; Shah, K.; Gartland, A.; Zeggini, E.; Wilkinson, J.M. Effects of chronic cobalt and chromium exposure after Metal-On-Metal hip resurfacing: An Epigenome-Wide association pilot study. J. Orthop. Res. 2017, 35, 2323–2328. [Google Scholar] [CrossRef]
- Ho, W.-F.; Cheng, C.-H.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C. Structure, mechanical properties and grindability of dental Ti–10Zr–X alloys. Mater. Sci. Eng. C 2009, 29, 36–43. [Google Scholar] [CrossRef]
- Kobayashi, E.; Matsumoto, S.; Doi, H.; Yoneyama, T.; Hamanaka, H. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials. J. Biomed. Mater. Res. 1995, 29, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M. In vitro study on biocompatibility and wear of zirconium and titanium. J. Stomatol. Soc. Jan. 1993, 60, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Gahlert, M.; Gudehus, T.; Eichorn, S.; Steinhauser, E.; Kniha, H.; Erhardt, W. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla if miniature pigs. Clin. Oral Implants Res. 2007, 18, 662–668. [Google Scholar] [CrossRef]
- Wen, C.; Yamada, Y.; Hodgson, P. Fabrication of novel TiZr alloy foams for biomedical applications. Mater. Sci. Eng. C 2006, 26, 1439–1444. [Google Scholar] [CrossRef]
- Sista, S.; Nouri, A.; Li, Y.; Wen, C.; Hodgson, P.D.; Pande, G. Cell biological responses of osteoblasts on anodized nanotubular surface of a Titanium-Zirconium alloy. J. Biomed. Mater. Res. Part A 2013, 101, 3416–3430. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Laheurte, P.; Vahabi, H.; Tran, N.; Khamseh, S.; Saeidi, H.; Khodadadi, M.; Zarrintaj, P.; Saeb, M.R.; Mozafari, M. Niobium-Treated titanium implants with improved cellular and molecular activities at the Tissue-Implant interface. Materials 2019, 12, 3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicula, R.; Lüthen, F.; Stir, M.; Nebe, B.; Burkel, E. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Biomol. Eng. 2007, 24, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Matono, Y.; Matsuya, S.; Udoh, K.; Ishikawa, K. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in Fluoride-Containing environments. Biomaterials 2005, 26, 2239–2246. [Google Scholar] [CrossRef]
- Hwang, M.-J.; Park, E.-J.; Moon, W.-J.; Song, H.-J.; Park, Y.-J. Characterization of passive layers formed on Ti–10wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion. Corros. Sci. 2015, 96, 152–159. [Google Scholar] [CrossRef]
- Takahashi, M.; Kikuchi, M.; Takada, Y.; Okuno, O.; Okabe, T. Corrosion behavior and microstructures of experimental Ti-Au alloys. Dent. Mater. J. 2004, 23, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, Y.; Lin, J.; Zheng, Y. Development and properties of Ti–In binary alloys as dental biomaterials. Mater. Sci. Eng. C 2013, 33, 1601–1606. [Google Scholar] [CrossRef]
- Han, M.-K.; Im, J.-B.; Hwang, M.-J.; Kim, B.-J.; Kim, H.-Y.; Park, Y.-J. Effect of indium content on the microstructure, mechanical properties and corrosion behavior of titanium alloys. Metals 2015, 5, 850–862. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.-H.; Kim, Y.D.; Lee, K.H. XPS study of bioactive graded layer in Ti–In–Nb–Ta alloy prepared by alkali and heat treatments. Biomaterials 2003, 24, 2257–2266. [Google Scholar] [CrossRef]
- Okazaki, Y.; Rao, S.; Ito, Y.; Tateishi, T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 1998, 19, 1197–1215. [Google Scholar] [CrossRef]
- Niinomi, M.; Kuroda, D.; Fukunaga, K.-I.; Morinaga, M.; Kato, Y.; Yashiro, T.; Suzuki, A. Corrosion wear fracture of new β type biomedical titanium alloys. Mater. Sci. Eng. A 1999, 263, 193–199. [Google Scholar] [CrossRef]
- Wang, P.; Feng, Y.; Liu, F.; Wu, L.; Guan, S. Microstructure and mechanical properties of Ti–Zr–Cr biomedical alloys. Mater. Sci. Eng. C 2015, 51, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.; Vicente, F.B.; Donato, T.; Arana-Chavez, V.; Buzalaf, M.; Grandini, C.R. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications. Mater. Sci. Eng. C 2014, 34, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Li, Y.; Li, K.; Zhang, D.; Zhou, C. Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy. Mater. Sci. Eng. C 2015, 50, 179–186. [Google Scholar] [CrossRef]
- Raducanu, D.; Vasilescu, E.; Cojocaru, V.D.; Cinca, I.; Drob, P.; Drob, S. Mechanical and corrosion resistance of a new nanostructured Ti–Zr–Ta–Nb alloy. J. Mech. Behav. Biomed. Mater. 2011, 4, 1421–1430. [Google Scholar] [CrossRef]
- Lavos-Valereto, I.C.; König, B.; Rossa, C.J.; Marcantonio, E.J.; Zavaglia, A.C. A study of histological responses from Ti-6Al-7Nb alloy dental implants with and without plasma-sprayed hydroxyapatite coating in dogs. J. Mater. Sci. Mater. Med. 2001, 12, 273–276. [Google Scholar] [CrossRef]
- Srimaneepong, V.; Yoneyama, T.; Wakabayashi, N.; Kobayashi, E.; Hanawa, T.; Doi, H. Deformation properties of Ti-6A1-7Nb alloy castings for removable partial denture frameworks. Dent. Mater. J. 2004, 23, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Aridome, K.; Yamazaki, M.; Baba, K.; Ohyama, T. Bending properties of strengthened Ti-6Al-7Nb alloy major connectors compared to Co-Cr alloy major connectors. J. Prosthet. Dent. 2005, 93, 267–273. [Google Scholar] [CrossRef]
- Yamazoe, J.; Nakagawa, M.; Matono, Y.; Takeuchi, A.; Ishikawa, K. The development of Ti alloys for dental implant with high corrosion resistance and mechanical strength. Dent. Mater. J. 2007, 26, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, E.; Wang, T.; Doi, H.; Yoneyama, T.; Hamanaka, H. Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings. J. Mater. Sci. Mater. Electron. 1998, 9, 567–574. [Google Scholar] [CrossRef]
- Iijima, D. Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials 2003, 24, 1519–1524. [Google Scholar] [CrossRef]
- Al-Mobarak, N.A.; Al-Swayih, A.A.; Al-Rashoud, F.A. Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications. Int. J. Electrochem. 2011, 6, 2031–2042. [Google Scholar]
- Shimojo, N.; Kondo, C.; Yamashita, K.; Hoshino, T.; Hayakawa, T. Cytotoxicity analysis of a novel titanium alloy in vitro: Adhesion, spreading, and proliferation of human gingival fibroblasts. Biomed. Mater. Eng. 2007, 17, 127–135. [Google Scholar]
- Pennekamp, P.H.; Gessmann, J.; Diedrich, O.; Burian, B.; Wimmer, M.A.; Frauchiger, V.M.; Kraft, C.N. Short-Term microvascular response of striated muscle to Cp-Ti, Ti-6Al-4V, and Ti-6Al-7Nb. J. Orthop. Res. 2006, 24, 531–540. [Google Scholar] [CrossRef]
- Pennekamp, P.H.; Wimmer, M.A.; Eschbach, L.; Burian, B.; Koch, P.; Kraft, C.N. Microvasculatory reaction of skeletal muscle to Ti–15Mo in comparison to Well-Established titanium alloys. J. Mater. Sci. Mater. Electron. 2007, 18, 2053–2060. [Google Scholar] [CrossRef]
- Osathanon, T.; Bespinyowong, K.; Arksornnukit, M.; Takahashi, H.; Pavasant, P. Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in Osteoblast-Like cells. J. Mater. Sci. Mater. Electron. 2006, 17, 619–625. [Google Scholar] [CrossRef]
- Castellano, A.; Gil, L.F.; Bonfante, E.A.; Tovar, N.; Neiva, R.; Janal, M.N.; Coelho, P.G. Early healing evaluation of commercially pure titanium and Ti-6Al-4V presenting similar surface texture: An in vitro study. Implant Dent. 2017, 26, 338–344. [Google Scholar] [CrossRef]
- Milosev, I.; Kosec, T.; Strehblow, H.-H. XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim. Acta 2008, 53, 3547–3558. [Google Scholar] [CrossRef]
- Al-Nawas, B.; Hangen, U.; Duschner, H.; Krummenauer, F.; Wagner, W. Turned, machined versus Double-Etched dental implants in vivo. Clin. Implant Dent. Relat. Res. 2007, 9, 71–78. [Google Scholar] [CrossRef]
- Pinholt, E.M. Bränemark and ITI dental implants in the human Bone-Grafted maxilla: A comparative study. Clin. Oral Implants Res. 2003, 14, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Boukari, A.; Francius, G.; Hemmerlé, J. AFM force spectroscopy of the fibrinogen adsorption process onto dental implants. J. Biomed. Mater. Res. Part A 2006, 78, 466–472. [Google Scholar] [CrossRef]
- Kirmanidou, Y.; Sidira, M.; Drosou, M.-E.; Bennani, V.; Bakapoulou, A.; Tsouknidas, A.; Michailidis, N.; Michaolakis, K. New Ti-Alloys and surface modifications to improve the mechanical properties and biological response to orthopaedic and dental implants: A review. BioMed Res. Int. 2016, 2, 2908570. [Google Scholar]
- Bagno, A.; Bello, C.D. Surface treatments and roughness properties of Ti-Based biomaterials. J. Mater. Sci. Mater. Med. 2004, 15, 935–949. [Google Scholar] [CrossRef]
- Takadama, H.; Kim, H.M.; Kokubo, T.; Nakamura, T. An X-Ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J. Biomed. Mater. Res. 2001, 55, 185–193. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Cross-Sectional analysis of the surface ceramic layer developed on Ti metal by NaOH-Heat treatment and soaking in SBF. J. Ceram. Soc. Jpn. 2009, 117, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Pattanayak, D.K.; Yamaguchi, S.; Matsushita, T.; Nakamura, T.; Kokubo, T. Apatite-Forming ability of titanium in terms of pH of the exposed solution. J. R. Soc. Interface 2012, 9, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-M.; Himeno, T.; Kawashita, M.; Lee, J.-H.; Kokubo, T.; Nakamura, T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J. Biomed. Mater. Res. 2003, 67, 1305–1309. [Google Scholar] [CrossRef]
- Takadama, H.; Kim, H.M.; Kokubo, T.; Nakamura, T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 2001, 57, 441–448. [Google Scholar] [CrossRef]
- Kawanabe, K.; Ise, K.; Goto, K.; Akiyama, H.; Nakamura, T.; Kaneuji, A.; Sugimori, T.; Matsumoto, T. A new cementless total hip arthroplasty with bioactive titanium Porous-Coating by alkaline and heat treatment: Average 4.8-Year results. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 90, 476–481. [Google Scholar] [CrossRef]
- So, K.; Kaneuji, A.; Matsumoto, T.; Matsuda, S.; Akiyama, H. Is the Bone-Bonding ability of a cementless total hip prosthesis enhanced by alkaline and heat treatment? Clin. Orthop. Relat. Res. 2013, 471, 3847–3855. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Leinenbach, C.; Eifler, D. Influyence of oxidation on fatigue and fatigue-induced damage of commercially pure titanium. Acta Biomater. 2009, 5, 281002819. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Uchida, M.; Kim, H.-M.; Zhang, X.; Kokubo, T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 2004, 25, 1003–1010. [Google Scholar] [CrossRef]
- Cui, X.; Kim, H.-M.; Kawashita, M.; Wang, L.; Xiong, T.; Kokubo, T.; Nakamura, T. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent. Mater. 2009, 25, 80–86. [Google Scholar] [CrossRef]
- Kuromoto, N.K.; Simão, R.A.; Soares, G.A. Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Mater. Charact. 2007, 58, 114–121. [Google Scholar] [CrossRef]
- Sul, Y.-T.; Johansson, C.B.; Jeong, Y.; Albrektsson, T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med. Eng. Phys. 2001, 23, 329–346. [Google Scholar] [CrossRef]
- Chen, Z.X.; Takao, Y.; Wang, W.X.; Matsubara, T.; Ren, L.M. Surface characteristics and in vitro biocompatibility of titanium anodized in a phosphoric acid solution at different voltages. Biomed. Mater. 2009, 4, 65003. [Google Scholar] [CrossRef]
- Zhang, B.G.X.; Myers, D.E.; Wallace, G.G.; Brandt, M.; Choong, P.F.M. Bioactive coatings for orthopaedic Implants–Recent trends in development of implant coatings. Int. J. Mol. Sci. 2014, 15, 11878–11921. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, S.L. Eight-Year clinical retrospective study of titanium Plasma-Sprayed and Hydroxyapatite-Coated cylinder implants. Int. J. Oral Maxillofac. Implant 1996, 11, 340–350. [Google Scholar] [CrossRef]
- De Groot, K.; Geesink, R.; Klein, C.P.; Serekian, P. Plasma sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res. 1987, 21, 1375–1381. [Google Scholar] [CrossRef]
- Szmukler-Moncler, S.; Piattelli, A.; Favero, G.A.; Dubruille, J.-H. Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin. Oral Implant Res. 2000, 11, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Gapski, R.; Wang, H.-L.; Mascarenhas, P.; Lang, N.P. Critical review of immediate implant loading. Clin. Oral Implant Res. 2003, 14, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Zablotsky, M.H. Hydroxyapatite Coatings in Implant Dentistry. Implant Dent. 1992, 1, 253–257. [Google Scholar] [CrossRef]
- Jung, J.-H.; Kim, S.-Y.; Yi, Y.-J.; Lee, B.-K.; Kim, Y.-K. Hydroxyapatite-Coated implant: Clinical prognosis assessment via a retrospective Follow-Up study for the average of 3 years. J. Adv. Prosthodont. 2018, 10, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, T.; Miake, Y.; Yajima, Y.; Yamamoto, K.; Sakurai, K. Surface observation of thin Hydroxyapatite-Coated implants at 80 months after insertion. J. Oral Implant 2011, 37, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.L.; Chan, D.C.N. Hydroxyapatite and their use as coatings in dental implants: A review. Crit. Rev. Biomed. Eng. 2000, 28, 667–707. [Google Scholar] [CrossRef]
- Yazdani, J.; Ahmadian, E.; Sharifi, S.; Shahi, S.; Dizaj, S.M. A short view on nanohydroxyapatite as coating of dental implants. Biomed. Pharmacother. 2018, 105, 553–557. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, J.B.; Koak, J.Y.; Heo, S.-J.; Lee, K.R.; Cho, L.R.; Lee, S.S. An abutment screw loosening study of a Diamond Like Carbon-coated CP titanium implant. J. Oral Rehabil. 2005, 32, 346–350. [Google Scholar] [CrossRef]
- Love, C.A.; Cook, R.B.; Harvey, T.J.; Dearnley, P.A.; Wood, R.J.K. Diamond-Like carbon coatings for potential application in biological Implants—A review. Tribol. Int. 2013, 63, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Manhabosco, T.M.; Martens, L.A.M.; Tamborin, S.M.; Ilha, M.; Vieira, M.Q.; Guma, F.C.R.; Müller, I.L. Cell response and corrosion behaviour of electrodeposited Diamond-Like carbon films on nanostructured titanium. Corr. Sci. 2013, 66, 169–176. [Google Scholar] [CrossRef]
- Butter, R.; Allen, M.; Chandra, L.; Lettington, A.; Rushton, N. In vitro studies of DLC coatings with silicon intermediate layer. Diam. Relat. Mater. 1995, 4, 857–861. [Google Scholar] [CrossRef]
- Kim, H.-G.; Ahn, S.-H.; Kim, J.-G.; Park, S.J.; Lee, K.-R. Corrosion performance of Diamond-Like carbon (DLC)-Coated Ti alloy in the simulated body fluid environment. Diam. Relat. Mater. 2005, 14, 35–41. [Google Scholar] [CrossRef]
- Huacho, P.M.M.; Nogueira, M.N.M.; Basso, F.G.; Junior, M.J.; Francisconi, R.S.; Spolidorio, D.M.P. Analyses of biofilm on implant abutment surfaces coating with Diamond-Like carbon and biocompatibility. Braz. Dent. J. 2017, 28, 317–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
cpTi Grade 1 | cpTi Grade 2 | cpTi Grade 3 | cpTi Grade 4 | Ti6Al4V | |
---|---|---|---|---|---|
Titanium | ca 99% | ca 99% | ca 99% | ca 99% | 90% |
Oxygen | 0.18% | 0.25% | 0.35% | 0.4% | 0.2% max |
Iron | 0.2% | 0.2% | 0.2% | 0.3% | 0.25% |
Nitrogen | 0.03% | 0.03% | 0.05% | 0.05% | - |
Hydrogen | 0.15% | 0.15% | 0.15% | 0.15% | - |
Carbon | 0.1% | 0.1% | 0.1% | 0.1% | - |
UTS/MPa | 240 | 340 | 450 | 550 | 900 |
Yield | |||||
strength/MPa | 170 | 275 | 380 | 480 | 850 |
Elongation at failure/% | 25 | 20 | 18 | 15 | 10 |
Follow-Up Time/Years | Pretreatment | Survival Rate/% | Reference |
---|---|---|---|
10 | Sandblast and acid-etch | 98.8 | [13] |
10 | Sandblast and acid-etch | 99.7 | [14] |
20 | Plasma-sprayed with Ti | 89.5 | [15] |
10 | Anodised | 96.5 | [16] |
9–12 | Oxidised | 97.1 | [17] |
Alloy | Micro-Structure | Elastic Modulus/GPa | Yield Strength/MPa | Density/g cm−3 |
---|---|---|---|---|
cpTi Grade 1 | α | 102 | 170 | 4.5 |
cpTi Grade 2 | α | 102 | 275 | 4.5 |
cpTi Grade 3 | α | 102 | 380 | 4.5 |
cpTi Grade 4 | α | 104 | 483 | 4.5 |
Ti-6A1-4V | α + β | 113 | 795 | 4.4 |
Treatment type | Surface Change | Effect |
---|---|---|
Mechanical | ||
Machining | Alter surface roughness. | Cleans surface. |
Grinding | Improves adhesion | |
Polishing | ||
Blasting | ||
Chemical | ||
Acid treatment | Modifies oxide layer. | Improves biocompatibility in all cases. |
Alkali treatment | Forms sodium titanate gel. | Improves biocompatibility in all cases. |
Hydrogen peroxide | Dense inner oxide layer, porous outer layer. | |
Anodic oxidation | Increase thickness of TiO2 | |
Physical | ||
Plasma spray | Deposits coating such as hydroxyapatite. | |
Flame spray | Deposits coating such as hydroxyapatite. | Improves wear and corrosion resistance. |
Ion beam implantation | Modifies surface composition. | Enhances biological properties. |
Composition | Reference | Reference Number |
---|---|---|
Ti-15Zr-4Nb-0.2Pd-0.2O-0.05N | Okazaki et al, Biomaterials, 1998, 19, 1197. | [92] |
Ti-15Zr-4Nb-4Ta-4Mo | Okazaki et al, Biomaterials, 1998, 19, 1197. | [92] |
Ti-16Nb-13Ta-4Mo | Niinomi, et al, Mater. Sci. Eng. A., 1999, 263, 193. | [93] |
Ti-15Sn-4Nb-2Ta-0.2Pd | Okazaki et al, Biomaterials, 1998, 19, 1197. | [92] |
Ti-15Sn-4Nb-0.2Pd-0.2O | Okazaki et al, Biomaterials, 1998, 19, 1197. | [92] |
Ti-15Zr-10Cr | Wang et al, Mater. Sci. Eng. C., 2015, 51, 148. | [94] |
Ti-13Nb-13Zr | Correa et al, Mater. Sci. Eng. C., 2014, 34, 354. | [95] |
Ti-29Nb-13Ta-4Mo | Niinomi et al, Mater. Sci. Eng. A., 1999, 263, 193. | [93] |
Ti-29Nb-13Ta-6Sn | Niinomi et al, Mater. Sci. Eng. A., 1999, 263, 193. | [93] |
Ti-29Nb-13Ta-2Sn | Niinomi et al, Mater. Sci. Eng. A., 1999, 263, 193. | [93] |
Ti-19Zr-10Nb-1Fe | Xue et al, Mater. Sci. Eng. C., 2015, 50, 179–186. | [96] |
Ti-29Nb-13Ta | Raducanu et al, J. Mech. Behav. Biomed. Mater., 2011, 4, 1421. | [97] |
Ti-29Nb-13Ta-7Zr | Correa et al, Mater. Sci. Eng. C., 2014, 34, 354. | [95] |
Ti-10Zr-5Nb-5Ta | Raducanu et al, J. Mech. Behav. Biomed. Mater., 2011, 4, 1421. | [97] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
W. Nicholson, J. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100-116. https://doi.org/10.3390/prosthesis2020011
W. Nicholson J. Titanium Alloys for Dental Implants: A Review. Prosthesis. 2020; 2(2):100-116. https://doi.org/10.3390/prosthesis2020011
Chicago/Turabian StyleW. Nicholson, John. 2020. "Titanium Alloys for Dental Implants: A Review" Prosthesis 2, no. 2: 100-116. https://doi.org/10.3390/prosthesis2020011