Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Authors = Jeffery K. Tomberlin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1919 KiB  
Article
Temperature Effects on the Survival and Oviposition of an Invasive Blow Fly Chrysomya rufifacies Macquart (Diptera: Calliphoridae)
by Travis W. Rusch, Samantha J. Sawyer, Abigail E. Orr, Nicholas Richter, David Sohn, Lauren Gagner, Alexandria Smith, Jeffery K. Tomberlin and Aaron M. Tarone
Insects 2025, 16(3), 310; https://doi.org/10.3390/insects16030310 - 17 Mar 2025
Viewed by 736
Abstract
The globally increased severity and frequency of elevated temperatures are altering native species’ geographic distributions and local abundances while also increasing the invasion of new areas by exotic species. These distributional shifts have affected native species. Through two experiments, we investigated the effects [...] Read more.
The globally increased severity and frequency of elevated temperatures are altering native species’ geographic distributions and local abundances while also increasing the invasion of new areas by exotic species. These distributional shifts have affected native species. Through two experiments, we investigated the effects of temperature on the survival and oviposition of the hairy maggot blow fly Chrysomya rufifacies (Macquart), a highly competitive and predatory invasive blow fly of ecological, economic, and forensic importance. In our first experiment, we exposed mixed-sex colonies of C. rufifacies to a given temperature (10–45.0 °C) for 24 h. High survival (≥90%) was observed from 10 to 40 °C, with moderate mortality at 42.5 °C (29.2%) and high mortality at 43.5 °C (75.4%). All flies died when exposed to 44.5 or 45.0 °C for 24 h. Oviposition occurred from 22.5 to 42.5 °C, with the greatest occurrences (100%) at 30 and 35 °C and the greatest number of eggs (2035) occurring at 30 °C. Although oviposition occurred from 22.5 to 42.5 °C, egg viability was only observed from 22.5 to 37.5 °C. Thus, C. rufifacies has distinct thermal limits for survival, and oviposition may exhibit a bet-hedging strategy in response to temperature exposure. In our second experiment, we assessed the effects of an acute heat shock on C. rufifacies oviposition performance. Adult virgins (males and females) were exposed to 25.0 °C, 42.0 °C, or 44.0 °C for 1 h, and then maintained at ~25 °C in mixed-sex colonies for 14 d. Pre-breeding heat exposure had no effect on male or female reproductive success, except for females exposed to 44.0 °C. Females exposed to this temperature before breeding oviposited sooner (2.5 ± 0.0 d, 37.5% decrease), more frequently (0.5 ± 0.4, 33.3% increase), and produced more eggs (10,772.9 ± 2258.6 eggs, 73.3% increase) than female flies exposed to 25 °C. The combined results show that C. rufifacies survives exposures up to 43.5 °C, successfully oviposits up to 37.5 °C, and accelerates both oviposition timing and intensity following brief exposure to near upper lethal temperatures (44.0 °C), potentially provides C. rufifacies a competitive advantage over native calliphorids in warming environments. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

12 pages, 522 KiB  
Article
Comparison of Growth and Composition of Black Soldier Fly (Hermetia illucens L.) Larvae Reared on Sugarcane By-Products and Other Substrates
by Nooshin Zandi-Sohani and Jeffery K. Tomberlin
Insects 2024, 15(10), 771; https://doi.org/10.3390/insects15100771 - 6 Oct 2024
Cited by 4 | Viewed by 3345
Abstract
Black soldier fly larvae (BSFL) can convert organic waste into high-quality biomass. In this study, we tested the potential of sugarcane by-products as a food source for BSFL and compared larval development and nutritional value with some other organic substrates. Seven different substrates [...] Read more.
Black soldier fly larvae (BSFL) can convert organic waste into high-quality biomass. In this study, we tested the potential of sugarcane by-products as a food source for BSFL and compared larval development and nutritional value with some other organic substrates. Seven different substrates were used, including carrot pomace (C), carrot pomace and leftover bread (CB) (50/50), bagasse and vinasse (BV), bagasse and molasses (BM), bagasse, vinasse, and molasses (BVM), a mixture of all the above treatments (MX), and university canteen leftovers (UCLs). The larval weight and length were measured for two weeks from day 5 to 19. Then, the BSFL were harvested and analyzed for dry matter, crude protein, oil, ash, mineral, and fatty acid composition. Larval weight and length varied depending on the feeding substrate provided. University canteen leftovers resulted in the BSFL having at least 18% greater length (17.00 mm) and 56% greater weight (3.15 g) compared to other treatments. The highest amounts of protein (38.9%) and oil (39.06%) were observed in the UCL treatment, while the BV treatment larvae had the highest quantities of ash (28.9%) and dry matter (28.0%). The fatty acid profile of the BSFL revealed three-times-higher levels of saturated fatty acids than unsaturated fatty acids in the UCL treatment and was at least twice as high in other treatments. Overall, the BSFL had the best growth on the UCL substrate, and the combination of bagasse and vinasse (BV) was the most appropriate substrate for BSFL development among the sugarcane by-products. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

20 pages, 1479 KiB  
Article
Sex-Specific Perching: Monitoring of Artificial Plants Reveals Dynamic Female-Biased Perching Behavior in the Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae)
by Noah B. Lemke, Lisa N. Rollison and Jeffery K. Tomberlin
Insects 2024, 15(10), 770; https://doi.org/10.3390/insects15100770 - 5 Oct 2024
Cited by 2 | Viewed by 2202
Abstract
Artificial perches are implemented by many companies that mass-rear the black soldier fly (BSF), to emulate a natural breeding environment or provide additional surface area for flies to rest; however, basic information about perching behavior is lacking. This experiment tested the effect of [...] Read more.
Artificial perches are implemented by many companies that mass-rear the black soldier fly (BSF), to emulate a natural breeding environment or provide additional surface area for flies to rest; however, basic information about perching behavior is lacking. This experiment tested the effect of adding 0.00, 0.04, 0.26, or 0.34 m2 of surface area to 0.93 m3 cages, each supplied with 90 male and 90 female adults. Female thoraxes marked with acrylic paint, and the number of perching flies of each sex were recorded over 6 d. A time-series analysis revealed the following: (a) females utilized perches 1.42 times more often than males across two trials; (b) especially in the morning where the difference could be as high as 2.56 times as great; (c) this decreased to 0.20–1.57 times more females than males by 1600 h; and (d) this cyclical pattern repeated each day throughout the week with a decreasing female-bias, starting from 2.41-times more females on day 1, which fell to 0.88–1.98-times more females than males on day 6. These dynamics are likely due to the presence of male flies engaging in aerial contests near ultraviolet lamps required for mating, especially during the early hours and early adulthood, aligning with and expanding prior knowledge of black soldier fly mating behavior. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

27 pages, 1429 KiB  
Review
Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae
by Md Salahuddin, Ahmed A. A. Abdel-Wareth, Kohzy Hiramatsu, Jeffery K. Tomberlin, Daylan Luza and Jayant Lohakare
Animals 2024, 14(3), 510; https://doi.org/10.3390/ani14030510 - 3 Feb 2024
Cited by 16 | Viewed by 10575
Abstract
Black soldier fly larvae (BSFL), Hermetia illucens (L.) (Diptera: Stratiomyidae), have emerged as a promising feed ingredient in broiler chicken diets, known for their high protein content, nutritional richness, and environmental sustainability. This review examines the effects of integrating BSFL into broiler feeds, [...] Read more.
Black soldier fly larvae (BSFL), Hermetia illucens (L.) (Diptera: Stratiomyidae), have emerged as a promising feed ingredient in broiler chicken diets, known for their high protein content, nutritional richness, and environmental sustainability. This review examines the effects of integrating BSFL into broiler feeds, focusing on aspects such as growth performance, nutrient digestibility, physiological responses, and immune health. The ability of BSFL to transform waste into valuable biomass rich in proteins and lipids underscores their efficiency and ecological benefits. Protein levels in BSFL can range from 32% to 53%, varying with growth stage and diet, offering a robust source of amino acids essential for muscle development and growth in broilers. While the chitin in BSFL poses questions regarding digestibility, the overall impact on nutrient utilization is generally favorable. The inclusion of BSFL in diets has been shown to enhance growth rates, feed efficiency, and carcass quality in broilers, with the larvae’s balanced amino acid profile being particularly advantageous for muscle development. BSFL may also support gut health and immunity in broilers due to its bioactive components, potentially influencing the gut’s microbial composition and enhancing nutrient absorption and overall health. Moreover, the capacity of BSFL to efficiently convert organic waste into protein highlights their role as an environmentally sustainable protein source for broiler nutrition. Nonetheless, further research is necessary to fully understand the long-term effects of BSFL, ideal inclusion rates, and the impact of varying larval diets and rearing conditions. It is crucial for poultry producers to consult nutritionists and comply with local regulations when incorporating new feed ingredients like BSFL into poultry diets. Full article
Show Figures

Figure 1

10 pages, 1242 KiB  
Communication
Bioinformatic Surveillance Leads to Discovery of Two Novel Putative Bunyaviruses Associated with Black Soldier Fly
by Hunter K. Walt, Emilia Kooienga, Jonathan A. Cammack, Jeffery K. Tomberlin, Heather R. Jordan, Florencia Meyer and Federico G. Hoffmann
Viruses 2023, 15(8), 1654; https://doi.org/10.3390/v15081654 - 29 Jul 2023
Cited by 6 | Viewed by 2277
Abstract
The black soldier fly (Hermetia illucens, BSF) has emerged as an industrial insect of high promise because of its ability to convert organic waste into nutritious feedstock, making it an environmentally sustainable alternative protein source. As global interest rises, rearing efforts [...] Read more.
The black soldier fly (Hermetia illucens, BSF) has emerged as an industrial insect of high promise because of its ability to convert organic waste into nutritious feedstock, making it an environmentally sustainable alternative protein source. As global interest rises, rearing efforts have also been upscaled, which is highly conducive to pathogen transmission. Viral epidemics have stifled mass-rearing efforts of other insects of economic importance, such as crickets, silkworms, and honeybees, but little is known about the viruses that associate with BSF. Although BSFs are thought to be unusually resistant to pathogens because of their expansive antimicrobial gene repertoire, surveillance techniques could be useful in identifying emerging pathogens and common BSF microbes. In this study, we used high-throughput sequencing data to survey BSF larvae and frass samples, and we identified two novel bunyavirus-like sequences. Our phylogenetic analysis grouped one in the family Nairoviridae and the other with two unclassified bunyaviruses. We describe these putative novel viruses as BSF Nairovirus-like 1 and BSF uncharacterized bunyavirus-like 1. We identified candidate segments for the full BSF Nairovirus-like 1 genome using a technique based on transcript co-occurrence and only a partial genome for BSF uncharacterized bunyavirus-like 1. These results emphasize the value of routine BSF colony surveillance and add to the number of viruses associated with BSF. Full article
(This article belongs to the Special Issue Virus Bioinformatics 2023)
Show Figures

Figure 1

12 pages, 1158 KiB  
Article
Inhibition of Zoonotic Pathogens Naturally Found in Pig Manure by Black Soldier Fly Larvae and Their Intestine Bacteria
by Osama Elhag, Yuanpu Zhang, Xiaopeng Xiao, Minmin Cai, Longyu Zheng, Heather R. Jordan, Jeffery K. Tomberlin, Feng Huang, Ziniu Yu and Jibin Zhang
Insects 2022, 13(1), 66; https://doi.org/10.3390/insects13010066 - 7 Jan 2022
Cited by 30 | Viewed by 4828
Abstract
Black soldier fly (BSF) larvae are often exposed to organic waste which harbors abundant zoonotic pathogens. We investigated the ability of BSF larvae to inhibit the zoonotic pathogens naturally found in pig manure. The zoonotic pathogens populations were detected by using selective medium [...] Read more.
Black soldier fly (BSF) larvae are often exposed to organic waste which harbors abundant zoonotic pathogens. We investigated the ability of BSF larvae to inhibit the zoonotic pathogens naturally found in pig manure. The zoonotic pathogens populations were detected by using selective medium during the conversion. Results showed that the viability of the zoonotic pathogens in pig manure was significantly affected. After eight days of conversion, the Coliform populations were undetected, and Staphylococcus aureus and Salmonella spp. decreased significantly on the eighth day. Antimicrobial assays of the purified recombinant defensin-like peptide 4 (DLP4) showed that this peptide exhibits inhibitory activity against S. aureus, Salmonella enterica serovar typhimurium, and Escherichia coli in vitro. Bacteria BSF-CL and BSF-F were isolated from the larvae gut, and both inhibited the growth of S. aureus and E. coli, but Salmonella spp. was sensitive to the BSF-CL strain (but not to the BSF-F strain). The results from our experiments indicate that BSF larvae are capable of functionally inhibiting potential zoonotic pathogens in pig manure through a variety of mechanisms including antimicrobial peptides expression and the gut associate microorganisms. This study provides a theoretical basis for further study on the combined mechanism of BSF larvae immunity and its gut microbes against the zoonotic pathogens in pig manure. Full article
(This article belongs to the Special Issue Immunity and Host-Microbe Interactions in Insects)
Show Figures

Figure 1

26 pages, 12375 KiB  
Article
Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach
by Carmen Scieuzo, Marisa Nardiello, Donatella Farina, Andrea Scala, Jonathan A. Cammack, Jeffery K. Tomberlin, Heiko Vogel, Rosanna Salvia, Krishna Persaud and Patrizia Falabella
Insects 2021, 12(9), 814; https://doi.org/10.3390/insects12090814 - 11 Sep 2021
Cited by 37 | Viewed by 6056
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires [...] Read more.
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Graphical abstract

11 pages, 255 KiB  
Review
The Forensic Entomology Case Report—A Global Perspective
by Zanthé Kotzé, Sylvain Aimar, Jens Amendt, Gail S. Anderson, Luc Bourguignon, Martin J.R. Hall and Jeffery K. Tomberlin
Insects 2021, 12(4), 283; https://doi.org/10.3390/insects12040283 - 25 Mar 2021
Cited by 24 | Viewed by 8099
Abstract
Forensic practitioners analyzing entomological evidence are faced with numerous challenges when presenting their findings to law practitioners, particularly in terms of terminology used to describe insect age, what this means for colonization time of remains, and the limitations to estimates made. Due to [...] Read more.
Forensic practitioners analyzing entomological evidence are faced with numerous challenges when presenting their findings to law practitioners, particularly in terms of terminology used to describe insect age, what this means for colonization time of remains, and the limitations to estimates made. Due to varying legal requirements in different countries, there is no standard format for the entomological case report prepared, nor any guidelines as to the sections that are required, optional or unnecessary in a case report. The authors herein propose sections that should be considered when drafting an entomological case report. The criteria under which entomological evidence is analyzed are discussed, as well as the limitations for each criterion. The concept of a global, standardized entomological case report is impossible to achieve due to national legislative differences, but the authors here propose a basic template which can be adapted and changed according to the needs of the practitioner. Furthermore, while the discussion is fairly detailed, capturing all differences between nations could not be accomplished, and those initiating casework for the first time are encouraged to engage other practicing forensic entomologists or professional associations within their own nation or region, to ensure a complete report is generated that meets lab or national requirements, prior to generating a finalized report. Full article
12 pages, 1283 KiB  
Article
Olfactory Choice for Decomposition Stage in the Burying Beetle Nicrophorus vespilloides: Preference or Aversion?
by Pablo J. Delclos, Tammy L. Bouldin and Jeffery K. Tomberlin
Insects 2021, 12(1), 11; https://doi.org/10.3390/insects12010011 - 26 Dec 2020
Cited by 6 | Viewed by 3304
Abstract
Sensory cues predicting resource quality are drivers of key animal behaviors such as preference or aversion. Despite the abundance of behavioral choice studies across the animal kingdom, relatively few studies have tested whether these decisions are driven by preference for one choice or [...] Read more.
Sensory cues predicting resource quality are drivers of key animal behaviors such as preference or aversion. Despite the abundance of behavioral choice studies across the animal kingdom, relatively few studies have tested whether these decisions are driven by preference for one choice or aversion to another. In the burying beetle Nicrophorus vespilloides, adult pairs exhibit parental care to raise their offspring on a small carrion resource. We tested whether carrion decomposition stage affected brood quantity and quality and found that mating pairs had significantly more offspring on fresher carcasses. To determine whether this observed reproductive benefit correlates with maternal preference behavior, we conducted a series of olfactory trials testing mated female preferences for mouse carcasses of differing decomposition stages. When given the option between fresh and older carcasses, females associated significantly more with fresher, 1-day old carcasses. However, this behavior may be driven by aversion, as females that were given a choice between the 7-day old carcass and a blank control spent significantly more time in the control chamber. We characterized volatile organic compound profiles of both carcass types, highlighting unique compounds that may serve as public information (sensu lato) conveying resource quality information to gravid beetles. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

11 pages, 625 KiB  
Article
Hermetia illucens and Hermetia fenestrata (Diptera: Stratiomyidae) Colonization of “Spoiled” Stingless Bee Geniotrigona thoracica (Hymenoptera: Apidae) Hives in Malaysia
by Tania Ivorra, Martin Hauser, Van Lun Low, Jeffery K. Tomberlin, Natasha Azmi Nur Aliah, Jonathan A. Cammack and Chong Chin Heo
Insects 2020, 11(11), 737; https://doi.org/10.3390/insects11110737 - 27 Oct 2020
Cited by 9 | Viewed by 5444
Abstract
Meliponiculture, the keeping of domesticated stingless bees such as Geniotrigona thoracica (Smith, 1857) (Hymenoptera: Apidae), is an increasingly popular agricultural industry in Malaysia. This study reports the soldier fly (Diptera: Stratiomyidae) species of the genus Hermetia colonizing stingless bee colonies in Malaysia. The [...] Read more.
Meliponiculture, the keeping of domesticated stingless bees such as Geniotrigona thoracica (Smith, 1857) (Hymenoptera: Apidae), is an increasingly popular agricultural industry in Malaysia. This study reports the soldier fly (Diptera: Stratiomyidae) species of the genus Hermetia colonizing stingless bee colonies in Malaysia. The larvae were reared in the laboratory to the adult stage and identified through molecular and morphological approaches. Hermetia illucens (Linnaeus, 1758) and Hermetia fenestrata de Meijere, 1904 (Diptera: Stratiomyidae) were identified from the sample provided. Earlier records of stratiomyids in stingless bee nests were misidentified as H. illucens. This paper represents the first identified record of H. fenestrata colonizing a “spoiled” stingless bee colony. In addition, adult and larval morphological differences between both species and the roles of both species in bee nest decomposition are discussed. Full article
Show Figures

Figure 1

11 pages, 969 KiB  
Article
Mass Production of the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) Reared on Three Manure Types
by Chelsea D. Miranda, Jonathan A. Cammack and Jeffery K. Tomberlin
Animals 2020, 10(7), 1243; https://doi.org/10.3390/ani10071243 - 21 Jul 2020
Cited by 76 | Viewed by 12882
Abstract
Recent interest in the mass production of black soldier fly (BSF) larvae has resulted in many studies being generated. However, a majority of the studies are benchtop, or small-scale, experiments. Results generated from such studies may not translate to large-scale/industrial production. The current [...] Read more.
Recent interest in the mass production of black soldier fly (BSF) larvae has resulted in many studies being generated. However, a majority of the studies are benchtop, or small-scale, experiments. Results generated from such studies may not translate to large-scale/industrial production. The current study was conducted at a conventional large-scale (10,000 larvae/treatment fed seven kg) to determine the impact on selected life-history traits when BSF were fed seven kg of manure (swine, dairy, or poultry) or a control diet (Gainesville diet: 50% wheat bran, 30% alfalfa meal, and 20% corn). Results showed larvae fed dairy manure took one to two days longer to develop to prepupation, with lower survivorship (45%) compared to those fed poultry or swine manure (>70%). Furthermore, the maximum larval weight was reached on day six for those fed swine manure, while other treatments achieved the maximum weight on day seven. However, larvae fed swine manure averaged 150 mg, while those fed the other diets ranged between 175 and 200 mg. Data from this study may be valuable for the industrialization of BSF. Companies using a scale varying from previously published work, including this study, should conduct pilot studies to optimize their system prior to implementation. Full article
(This article belongs to the Special Issue Black Soldier Fly Production and Applications)
Show Figures

Figure 1

13 pages, 1621 KiB  
Article
Interspecific Competition between the House Fly, Musca domestica L. (Diptera: Muscidae) and Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) When Reared on Poultry Manure
by Chelsea D. Miranda, Jonathan A. Cammack and Jeffery K. Tomberlin
Insects 2019, 10(12), 440; https://doi.org/10.3390/insects10120440 - 7 Dec 2019
Cited by 28 | Viewed by 6488
Abstract
Few studies have examined the competitive interaction between the house fly (HF) and the black soldier fly (BSF). The fact that the BSF deters HF oviposition is widely cited in BSF literature, but this interaction has not been assessed in over three decades. [...] Read more.
Few studies have examined the competitive interaction between the house fly (HF) and the black soldier fly (BSF). The fact that the BSF deters HF oviposition is widely cited in BSF literature, but this interaction has not been assessed in over three decades. In this study, the competitive interaction of BSF and HF larvae was observed on fresh (day 0) and aged poultry manure (manure aged for two, four, six, or eight days). Specifically, a priority effect study was conducted to determine if colonization sequence influences time to first pupariation (HF) or pre-pupation (BSF), survivorship, and weight. Results show >70% of HFs reached pupariation in all treatments except when placed on manure eight days after the initial inoculation with BSF. However, age of the resource negatively impacted time to first pupariation and puparium weight when HFs were reared alone or introduced two to eight days after BSF. No BSF pre-pupae resulted from treatments in which HFs were the pioneering species. BSFs reached the highest percent pre-pupation when reared alone on fresh manure, but BSFs may be more susceptible to the negative impacts of an aging resource, as no pre-pupae were observed when provided with six- or eight-day-old manure. Similar to HFs, age of the resource may have impacted development and survivorship; other factors such as moisture content, chemical composition, and amount of resource provided may have also impacted our results. These data may be useful in implementing BSFs as biological control agents of the HF, as well provide valuable information for facilities mass-producing HFs or BSFs for food or feed. Full article
(This article belongs to the Special Issue Control of House Flies and Stable Flies)
Show Figures

Figure 1

15 pages, 1079 KiB  
Article
Life-History Traits of the Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), Reared on Three Manure Types
by Chelsea D. Miranda, Jonathan A. Cammack and Jeffery K. Tomberlin
Animals 2019, 9(5), 281; https://doi.org/10.3390/ani9050281 - 25 May 2019
Cited by 99 | Viewed by 11665
Abstract
Structural changes and growth of animal production systems have resulted in greater volumes of manure. Current manure storage methods pose a potential environmental threat. Lessening these issues is a key concern for the animal production industry. The primary aim of this research was [...] Read more.
Structural changes and growth of animal production systems have resulted in greater volumes of manure. Current manure storage methods pose a potential environmental threat. Lessening these issues is a key concern for the animal production industry. The primary aim of this research was to evaluate black soldier fly (BSF) performance when fed poultry, swine, or dairy manure at different rates (18 or 27 g/2 d until 40% prepupation). The results indicated that larvae fed with the control diet (Gainesville diet) were the heaviest (+31–70%); however, for other life-history traits, those fed the higher feed rate of poultry manure produced comparable results to the control. Larvae fed more resource, regardless of manure type, weighed more as larvae (+3–9%), pupae (+22–48%), and adults (+18–42%), developed faster (up to 3–4 d), had a higher percentage reach the prepupal stage (+2–16%), lived longer as adults (+1 d), and converted more resource to biomass (up to 1% more) than those fed at the lower rate. Yet, no difference was detected in dry matter (DM) reduction across feed rate for a given manure type. Based on these results, all three manure types can be digested by black soldier fly larvae, thus demonstrating their potential for waste management. Full article
(This article belongs to the Special Issue Insects: Alternative Protein Source for Animal Feed)
Show Figures

Figure 1

15 pages, 2432 KiB  
Article
Spatial Distribution of Forensically Significant Blow Flies in Subfamily Luciliinae (Diptera: Calliphoridae), Chiang Mai Province, Northern Thailand: Observations and Modeling Using GIS
by Tunwadee Klong-klaew, Ratchadawan Ngoen-klan, Kittikhun Moophayak, Kom Sukontason, Kim N. Irvine, Jeffery K. Tomberlin, Hiromu Kurahashi, Theeraphap Chareonviriyaphap, Pradya Somboon and Kabkaew L. Sukontason
Insects 2018, 9(4), 181; https://doi.org/10.3390/insects9040181 - 3 Dec 2018
Cited by 6 | Viewed by 5146
Abstract
Blow flies of the subfamily Luciliinae (Diptera: Calliphoridae) are one of the main forensically important subfamilies globally. In addition to being used to estimate the minimum post-mortem interval (PMImin), assuming colonization occurred after death, blow fly specimens found infesting a human [...] Read more.
Blow flies of the subfamily Luciliinae (Diptera: Calliphoridae) are one of the main forensically important subfamilies globally. In addition to being used to estimate the minimum post-mortem interval (PMImin), assuming colonization occurred after death, blow fly specimens found infesting a human corpse are used to determine if the corpse was relocated or if the individual ingested narcotics prior to death. The presence of these blow flies in a given area is strongly influenced by abiotic and biotic factors, such as temperature, elevation, and habitat. Having this information, along with geographical distributions and the characteristics of preferred habitats, is necessary to better understand the biology of this group. This study aimed to characterize the spatial distribution of Luciliinae throughout 18 sampling sites within six ecozones (disturbed mixed deciduous forest, mixed deciduous forest, mixed orchard, paddy field, lowland village, and city/town) in central Chiang Mai Province, northern Thailand over one year (May 2009–May 2010). The purpose of the study was to elucidate the relationship of blow fly species composition with environmental abiotic factors (e.g., temperature, relative humidity, light intensity), and to predict the distribution of the common species within this subfamily using GIS. Adult collections were performed biweekly, baited with one-day-old beef offal. A total of 2331 Luciliinae flies trapped, comprising eight species, of which the four predominant species were Hemipyrellia ligurriens (Wiedemann) (n = 1428; 61.3%), Lucilia porphyrina (Walker) (n = 381; 16.3%), Hemipyrellia pulchra (Wiedemann) (n = 293; 12.6%), and Lucilia papuensis Macquart (n = 129; 5.5%). Population density across species varied seasonally, peaking in August 2009 coinciding with the rainy season. Predicting population composition was based on a model developed with ArcGIS 9.2, which utilized environmental variables (temperature, relative humidity, and light intensity) in conjunction with abundance data. Models indicated H. ligurriens had the most widespread geographic distribution, while H. pulchra was predicted to occur largely in mixed orchards and lowland villages. Lucilia porphyrina and L. papuensis were less widespread, restricted mainly to mixed deciduous forest. This model, along with knowledge of forensic information, may be useful under certain investigations where the corpse may have been relocated. Full article
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Predicting Geographic Distribution of Forensically Significant Blow Flies of Subfamily Chrysomyinae (Diptera: Calliphoridae) in Northern Thailand
by Tunwadee Klong-klaew, Ratchadawan Ngoen-klan, Kittikhun Moophayak, Kom Sukontason, Kim N. Irvine, Jeffery K. Tomberlin, Pradya Somboon, Theeraphap Chareonviriyaphap, Hiromu Kurahashi and Kabkaew L. Sukontason
Insects 2018, 9(3), 106; https://doi.org/10.3390/insects9030106 - 21 Aug 2018
Cited by 12 | Viewed by 5799
Abstract
Blow flies (Diptera: Calliphoridae) are carrion-breeding flies that are commonly used as evidence in forensic investigation. An adequate knowledge of ecological and geographical data of blow fly has a direct application in forensic science, as far as estimating time of colonization or corpse [...] Read more.
Blow flies (Diptera: Calliphoridae) are carrion-breeding flies that are commonly used as evidence in forensic investigation. An adequate knowledge of ecological and geographical data of blow fly has a direct application in forensic science, as far as estimating time of colonization or corpse relocation. The aim of this study was to evaluate the occurrence of four species of Chrysomyinae (Chrysomya pinguis, Chrysomya chani, Chrysomya villeneuvi, and Ceylonomyia nigripes) across six land use types in central Chiang Mai, northern Thailand. Eighteen study sites were selected for sampling across three districts of Chiang Mai province (Mueang Chiang Mai, Mae Rim, and Hang Dong). Adult flies were collected every two weeks using a funnel trap baited with 1-day tainted beef offal. The predicted geographic distributions of forensically important blow fly species were modeled using the computer program ArcGIS, based on selected climatic variables (temperature, relative humidity, and light intensity) recorded at study sites. During the study period, 1298 adult flies were collected, with peak fly occurrence during summer (April–May). Seasonal fluctuation patterns varied depending on fly species. Climatic factors displayed diverse impact on associated fly populations. Identified species were restricted mainly to mixed deciduous forests (MDF) especially in the mountainous area. None of these flies were trapped in an urban area. Full article
(This article belongs to the Special Issue Insect Population Dynamics: Theory & Practice)
Show Figures

Figure 1

Back to TopTop