Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Authors = Ionela Lacramioara Serban

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1306 KiB  
Review
Targeting Dermal Fibroblast Senescence: From Cellular Plasticity to Anti-Aging Therapies
by Raluca Jipu, Ionela Lacramioara Serban, Ancuta Goriuc, Alexandru Gabriel Jipu, Ionut Luchian, Carmen Amititeloaie, Claudia Cristina Tarniceriu, Ion Hurjui, Oana Maria Butnaru and Loredana Liliana Hurjui
Biomedicines 2025, 13(8), 1927; https://doi.org/10.3390/biomedicines13081927 - 7 Aug 2025
Abstract
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, [...] Read more.
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, and microRNA-mediated control. The impact of aging on ECM synthesis and remodeling is discussed, and the diminished production of vital components such as collagen, elastin, and glycosaminoglycans are highlighted, alongside enhanced ECM degradation through upregulated matrix metalloproteinase activity and accumulation of advanced glycation end products. The process of cellular senescence in dermal fibroblasts is explored, with its role in skin aging and its effects on tissue homeostasis and repair capacity being highlighted. The senescence-associated secretory phenotype (SASP) is examined for its contribution to chronic inflammation and ECM disruption. This review also presents therapeutic perspectives, focusing on senolytics and geroprotectors as promising strategies to combat the negative effects of fibroblast senescence. Current challenges in translating preclinical findings to human therapies are addressed, along with future directions for research in this field. This comprehensive review explores the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling in the context of skin aging. In conclusion, understanding the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling is essential for developing effective anti-aging interventions, which highlights the need for further research into senolytic and geroprotective therapies to enhance skin health and longevity. This approach has shown promising results in preclinical studies, demonstrating improved skin elasticity and reduced signs of aging. Full article
Show Figures

Figure 1

22 pages, 85025 KiB  
Article
Atorvastatin Confers Renoprotection and Modulates Inflammation in Diabetic Rats on a High-Fat Diet
by Minela Aida Maranduca, Andreea Clim, Daniela Maria Tanase, Cristian Tudor Cozma, Mariana Floria, Ioana Adelina Clim, Dragomir Nicolae Serban and Ionela Lacramioara Serban
Life 2025, 15(8), 1184; https://doi.org/10.3390/life15081184 - 25 Jul 2025
Viewed by 349
Abstract
Objective: Uncovering the renoprotective and anti-inflammatory effects of atorvastatin treatment in diabetic-and-obese rats by employing traditional renal function indicators (urea and creatinine) and four prototypical cytokines (IL-1β, il-6, IL-17α, TNFα). Method: Twenty-eight male Wistar rats, aged 6 months, 350–400 g, were randomized into [...] Read more.
Objective: Uncovering the renoprotective and anti-inflammatory effects of atorvastatin treatment in diabetic-and-obese rats by employing traditional renal function indicators (urea and creatinine) and four prototypical cytokines (IL-1β, il-6, IL-17α, TNFα). Method: Twenty-eight male Wistar rats, aged 6 months, 350–400 g, were randomized into four groups. The first group, G-I, the denominated control, were fed standard chow over the whole course of the experiments. The rodents in G-II were exposed to a High-Fat Diet. The last two groups were exposed to Streptozotocin peritoneal injection (35 mg/kg of body weight). A short biochemical assessment was performed before diabetes model induction to ensure appropriate glucose metabolism before experiments. Following model induction, only rodents in group G-IV were gradually introduced to the same High-Fat Diet as received by G-II. Model confirmation 10 days after injections marked the start of statin treatment in group G-IV, by daily gavage of atorvastatin 20 mg/kg of body weight/day for 21 days. At the end of the experiments, the biochemical profile of interest comprised typical renal retention byproducts (urea and creatinine) and the inflammatory profile described using plasma levels of TNFα, IL-17α, IL-6, and IL-1β. Results: Treatment with Atorvastatin was associated with a statistically significant improvement in renal function in G-IV compared to untreated diabetic rodents in G-III. Changes in inflammatory activity showed partial association with statin therapy, TNFα and IL-17α mirroring the trend in urea and creatinine values. Conclusions: Our results indicate that atorvastatin treatment yields a myriad of pleiotropic activities, among which renal protection was clearly demonstrated in this model of diabetic-and-obese rodents. The statin impact on inflammation regulation may not be as clear-cut, but the potential synergy of renal function preservation and partial tapering of inflammatory activity requires further research in severely metabolically challenged models. Full article
Show Figures

Figure 1

24 pages, 495 KiB  
Review
Use of Artificial Intelligence Methods for Improved Diagnosis of Urinary Tract Infections and Urinary Stone Disease
by Theodor Florin Pantilimonescu, Costin Damian, Viorel Dragos Radu, Maximilian Hogea, Oana Andreea Costachescu, Pavel Onofrei, Bogdan Toma, Denisa Zelinschi, Iulia Cristina Roca, Ramona Gabriela Ursu, Luminita Smaranda Iancu and Ionela Lacramioara Serban
J. Clin. Med. 2025, 14(14), 4942; https://doi.org/10.3390/jcm14144942 - 12 Jul 2025
Viewed by 600
Abstract
Urinary tract infections (UTIs) are a common pathology worldwide, frequently associated with kidney stones. We aimed to determine how artificial intelligence (AI) could assist and enhance human medical activities in this field. We performed a search in PubMed using different sets of keywords. [...] Read more.
Urinary tract infections (UTIs) are a common pathology worldwide, frequently associated with kidney stones. We aimed to determine how artificial intelligence (AI) could assist and enhance human medical activities in this field. We performed a search in PubMed using different sets of keywords. When using the keywords “AI, artificial intelligence, urinary tract infections, Escherichia coli (E. coli)”, we identified 16 papers, 12 of which fulfilled our research criteria. When using the keywords “urolithiasis, AI, artificial intelligence”, we identified 72 results, 30 of which were suitable for analysis. We identified that AI/machine learning can be used to detect Gram-negative bacilli involved in UTIs in a fast and accurate way and to detect antibiotic-resistant genes in E. coli. The most frequent AI applications for urolithiasis can be summarized into three categories: The first category relates to patient follow-up, trying to improve physical and medical conditions after specific urologic surgical procedures. The second refers to urinary stone disease (USD), focused on stone evaluation, using different AI and machine learning systems, regarding the stone’s composition in terms of uric acid, its dimensions, its volume, and its speed of detection. The third category comprises the comparison of the ChatGPT-4, Bing AI, Grok, Claude, and Perplexity chatbots in different applications for urolithiasis. ChatGPT-4 has received the most positive evaluations. In conclusion, the impressive number of papers published on different applications of AI in UTIs and urology suggest that machine learning will be exploited effectively in the near future to optimize patient follow-up, diagnosis, and treatment. Full article
(This article belongs to the Special Issue Clinical Advances in Artificial Intelligence in Urology)
Show Figures

Figure 1

17 pages, 451 KiB  
Review
Biomarkers and Neuropsychological Tools in Attention-Deficit/Hyperactivity Disorder: From Subjectivity to Precision Diagnosis
by Ion Andrei Hurjui, Ruxandra Maria Hurjui, Loredana Liliana Hurjui, Ionela Lacramioara Serban, Irina Dobrin, Mihai Apostu and Romeo Petru Dobrin
Medicina 2025, 61(7), 1211; https://doi.org/10.3390/medicina61071211 - 3 Jul 2025
Viewed by 612
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder with chronic inattention, hyperactivity, and impulsivity and is linked with significant functional impairment. Despite being highly prevalent, diagnosis of ADHD continues to rely on subjective assessment reports of behavior and is often delayed or inaccurate. [...] Read more.
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder with chronic inattention, hyperactivity, and impulsivity and is linked with significant functional impairment. Despite being highly prevalent, diagnosis of ADHD continues to rely on subjective assessment reports of behavior and is often delayed or inaccurate. This review summarizes current advances in biomarkers and neuropsychological tests for the improvement of ADHD diagnosis and treatment. Key biomarkers are neuroimaging methods (e.g., structural and functional MRI), electrophysiological measures (e.g., EEG, ERP), and biochemical measures (e.g., cortisol, vitamin D). Additionally, novel experimental measures, e.g., eye-tracking, pupillometry, and microbiome analysis, hold the promise to be objective and dynamic measures of ADHD symptoms. The review also comments on the impact of the burden of ADHD on quality of life, e.g., emotional well-being, academic achievement, and social functioning. Additionally, differences between individuals, such as age, sex, comorbidities, and the impact of social and family support, are also addressed in relation to ADHD outcomes. In summary, we highlight the potential of these emerging biomarkers and tools to revolutionize ADHD diagnosis and guide personalized treatment strategies. These insights have significant implications for improving patient outcomes. Full article
(This article belongs to the Section Psychiatry)
Show Figures

Figure 1

18 pages, 789 KiB  
Review
Nanotechnology in Osteogenesis and Inflammation Management: Metal–Organic Frameworks, Metal Complexes, and Biomaterials for Bone Restoration
by Bogdan Huzum, Ionut Iulian Lungu, Ovidiu Alexa, Paul Dan Sirbu, Viorel Dan Cionca, Andreia Corciova, Andreea Lungu, Monica Hancianu, Ionela Lacramioara Serban and Oana Cioanca
Biomedicines 2025, 13(7), 1597; https://doi.org/10.3390/biomedicines13071597 - 30 Jun 2025
Viewed by 508
Abstract
A varied family of polyphenolic chemicals, flavonoids, are becoming more and more important in bone tissue engineering because of their osteogenic, anti-inflammatory, and antioxidant effects. Recent developments incorporating flavonoids into different biomaterial platforms to improve bone regeneration are emphasized in this study. Osteocalcin [...] Read more.
A varied family of polyphenolic chemicals, flavonoids, are becoming more and more important in bone tissue engineering because of their osteogenic, anti-inflammatory, and antioxidant effects. Recent developments incorporating flavonoids into different biomaterial platforms to improve bone regeneration are emphasized in this study. Osteocalcin (OCN) expression was 2.1-fold greater in scaffolds loaded with flavonoids—such as those made of polycaprolactone (PCL)—greatly increasing human mesenchymal stem cell (hMSC) proliferation and mineralization. Comparably, a threefold increase in calcium deposition indicates increased mineralization when hydroxyapatite (HA) was functionalized with flavonoids such as quercetin. These HA scaffolds with flavonoids also showed a 45% decrease in osteoclast activity, therefore promoting balanced bone remodeling. Concurrent with flavonoids like EGCG and quercetin, chitosan-based scaffolds encouraged osteogenic differentiation with increases in osteogenic markers like osteopontin (OPN) and alkaline phosphatase (ALP) expression by up to 82%. These scaffolds also showed 82% bone defect repair after six weeks in vivo, suggesting their promise in rapid bone regeneration. With an increase of up to 32% in the bone volume-to-total volume ratio (BV/TV) and 28% greater bone–implant contact (BIC), flavonoid coatings on titanium implants enhanced osteointegration in implantology. Displaying successful osteogenesis and immunomodulation, the addition of flavonoids into metal–organic frameworks (MOFs) and injectable hydrogels demonstrated a 72% increase in new bone formation in vivo. Though further research is required to confirm long-term clinical effectiveness, these findings show the great promise of flavonoid-functionalized biomaterials in bone regeneration. Full article
(This article belongs to the Special Issue Applications and Developments of Metal-Based Drugs)
Show Figures

Figure 1

24 pages, 1688 KiB  
Review
Homocysteine Attack on Vascular Endothelium—Old and New Features
by Loredana Liliana Hurjui, Cristina Claudia Tarniceriu, Dragomir Nicolae Serban, Ludmila Lozneanu, Gabriela Bordeianu, Alin Horatiu Nedelcu, Alin Constantin Panzariu, Raluca Jipu, Ruxandra Maria Hurjui, Daniela Maria Tanase and Ionela Lacramioara Serban
Int. J. Mol. Sci. 2025, 26(13), 6298; https://doi.org/10.3390/ijms26136298 - 30 Jun 2025
Viewed by 478
Abstract
Homocysteine (Hcy) is becoming a well-established risk factor for cardiovascular disease (CVD), mainly involving endothelial dysfunction and atherogenesis. Endothelial dysfunction is reflected primarily in the complex regulation of the main physiological and pathophysiological processes. There is increasing evidence regarding abnormally high concentrations of [...] Read more.
Homocysteine (Hcy) is becoming a well-established risk factor for cardiovascular disease (CVD), mainly involving endothelial dysfunction and atherogenesis. Endothelial dysfunction is reflected primarily in the complex regulation of the main physiological and pathophysiological processes. There is increasing evidence regarding abnormally high concentrations of plasma total homocysteine, or plasma hyperhomocysteinemia, contributing to endothelial dysfunction, inflammation, and CVD. This clinical and experimental study examined the connection between Hcy and cardiovascular disease risk. Homocysteine is a marker of total vascular damage that must be monitored and controlled as early as possible. Dietary and lifestyle changes are recommended for most patients with hyperhomocysteinemia (Hhcy). The purpose of this paper is to review the data from the specialized literature that demonstrate that there is a direct link between endothelial injury and increased homocysteine levels, identifying existing evidence, describing new mechanisms, and exploring potential new therapeutic options. These aspects continue to be debated, and additional efforts are required to refine therapeutic strategies and to investigate the potential implications of Hcy in health and disease. Full article
(This article belongs to the Special Issue Homocysteine in Protein Structure and Function and Human Disease)
Show Figures

Figure 1

21 pages, 1487 KiB  
Review
Beyond a Single Marker: An Update on the Comprehensive Evaluation of Right Ventricular Dysfunction in Pulmonary Thromboembolism
by Sandu Cucută, Minerva Codruta Badescu, Ștefania-Teodora Duca, Adriana Chetran, Maria-Ruxandra Cepoi, Cosmina-Georgiana Ponor, Amelian Madalin Bobu, Ionela-Lacramioara Serban and Irina-Iuliana Costache-Enache
Life 2025, 15(4), 665; https://doi.org/10.3390/life15040665 - 17 Apr 2025
Viewed by 744
Abstract
Pulmonary thromboembolism (PE) is a life-threatening condition that often leads to right ventricular (RV) dysfunction, a key determinant of prognosis and clinical management. Biomarkers play a crucial role in the early detection and risk stratification of RV dysfunction in PE, complementing imaging and [...] Read more.
Pulmonary thromboembolism (PE) is a life-threatening condition that often leads to right ventricular (RV) dysfunction, a key determinant of prognosis and clinical management. Biomarkers play a crucial role in the early detection and risk stratification of RV dysfunction in PE, complementing imaging and hemodynamic assessments. Cardiac troponins, B-type natriuretic peptides, and novel biomarkers, such as heart-type fatty acid-binding protein (H-FABP) and growth differentiation factor-15 (GDF-15), provide valuable insights into myocardial injury, overload, and stress. This article explores the clinical possible significance of these biomarkers, their predictive value, and their potential to guide therapeutic strategies in patients with PE. Understanding the role of biomarkers in RV dysfunction assessment may improve patient outcomes focusing on early intervention and personalized treatment approaches. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 475 KiB  
Review
The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine
by Alin Constantin Pînzariu, Roxana Moscalu, Radu Petru Soroceanu, Minela Aida Maranduca, Ilie Cristian Drochioi, Vlad Ionut Vlasceanu, Sergiu Timofeiov, Daniel Vasile Timofte, Bogdan Huzum, Mihaela Moscalu, Dragomir Nicolae Serban and Ionela Lacramioara Serban
Int. J. Mol. Sci. 2025, 26(7), 3084; https://doi.org/10.3390/ijms26073084 - 27 Mar 2025
Cited by 1 | Viewed by 1527
Abstract
Mesenchymal stem cells (MSCs) have emerged as a relevant strategy in regenerative medicine due to their multipotent differentiation capacity, immunomodulatory properties, and therapeutic applications in various medical fields. This review explores the therapeutic use of MSCs, focusing on their role in treating autoimmune [...] Read more.
Mesenchymal stem cells (MSCs) have emerged as a relevant strategy in regenerative medicine due to their multipotent differentiation capacity, immunomodulatory properties, and therapeutic applications in various medical fields. This review explores the therapeutic use of MSCs, focusing on their role in treating autoimmune disorders and neoplastic diseases and in tissue regeneration. We discuss the mechanisms underlying MSC-mediated tissue repair, including their paracrine activity, migration to injury sites, and interaction with the immune system. Advances in cellular therapies such as genome engineering and MSC-derived exosome treatments further enhance their applicability. Key methodologies analyzed include genomic studies, next-generation sequencing (NGS), and bioinformatics approaches to optimize MSC-based interventions. Additionally, we reviewed preclinical and clinical evidence demonstrating the therapeutic potential of MSCs in conditions such as graft-versus-host disease, osteoarthritis, liver cirrhosis, and neurodegenerative disorders. While promising, challenges remain regarding standardization, long-term safety, and potential tumorigenic risks associated with MSC therapy. Future research should focus on refining MSC-based treatments to enhance efficacy and minimize risks. This review underscores the need for large-scale clinical trials to validate MSC-based interventions and fully harness their therapeutic potential. Full article
(This article belongs to the Special Issue Latest Research on Mesenchymal Stem Cells)
Show Figures

Figure 1

18 pages, 3048 KiB  
Article
The Influence of Atorvastatin Treatment on Homocysteine Metabolism and Oxidative Stress in an Experimental Model of Diabetic Rats
by Andreea Clim, Minela Aida Maranduca, Nina Filip, Daniela Maria Tănase, Mariana Floria, Alin Constantin Pinzariu, Irene Paula Popa, Roxana Nemteanu, Tudor Cristian Cozma, Flaviu Ionut Faur, Dragomir Nicolae Serban, Dragoș Viorel Scripcariu and Ionela Lacramioara Serban
Life 2024, 14(11), 1414; https://doi.org/10.3390/life14111414 - 2 Nov 2024
Cited by 2 | Viewed by 2299
Abstract
Objective: In our experimental study, we evaluated the influence of treatment with atorvastatin on the antioxidant activity of intracellular and extracellular systems factors, homocysteine levels (Hcy), and lipid profiles in obese and diabetic rats. Method: Twenty-one male Wistar rats, aged 6 months, 450–550 [...] Read more.
Objective: In our experimental study, we evaluated the influence of treatment with atorvastatin on the antioxidant activity of intracellular and extracellular systems factors, homocysteine levels (Hcy), and lipid profiles in obese and diabetic rats. Method: Twenty-one male Wistar rats, aged 6 months, 450–550 g, were allocated into three groups. From the beginning of the study, the first group (G-I, control) received only standard food, while the second and third groups (G II—obese, G III—diabetic) were administered a high-fat diet (HFD) with 2% cholesterol. After 2 weeks of accommodation, the specimens in G-III were injected intraperitoneal (i.p.) streptozotocin (35 mg of body weight, pH 4.5), intervention followed by the onset of type 2 diabetes mellitus. Following confirmation of diabetes onset, the specimens in G III were administered concomitantly with the HFD a daily gavage of atorvastatin 20 mg of body weight/day for 20 days. We measured, at the beginning and the end of the study, the Hcy levels, lipid profile, vitamin B12, B6, folic acid, and various parameters of oxidative stress (OS)—total antioxidant status (TAS), glutathione peroxidase (GPX) and superoxide dismutase (SOD). Results: After treatment with atorvastatin, the lipid profile in G III significantly improved compared to the other two groups, but enzymatic markers of oxidative stress did not closely parallel this trend. However, after the treatment of statin, we observed an important reduction in Hcy values. Conclusion: Our results demonstrate that treatment with atorvastatin can be used not only for its lipid-lowering properties and antioxidant effects but also to reduce Hcy concentration in this experimental model of diabetic rats. Moreover, atorvastatin therapy improves lipid profiles, reduces inflammation, suppresses oxidation, and decreases Hcy levels, potentially preventing major adverse cardiovascular events. Full article
Show Figures

Figure 1

26 pages, 4627 KiB  
Article
A Multimodal Fuzzy Approach in Evaluating Pediatric Chronic Kidney Disease Using Kidney Biomarkers
by Cristian Petru Dușa, Valentin Bejan, Marius Pislaru, Iuliana Magdalena Starcea and Ionela Lacramioara Serban
Diagnostics 2024, 14(15), 1648; https://doi.org/10.3390/diagnostics14151648 - 30 Jul 2024
Cited by 2 | Viewed by 1310
Abstract
Chronic kidney disease (CKD) is one of the most important causes of chronic pediatric morbidity and mortality and places an important burden on the medical system. Current diagnosis and progression monitoring techniques have numerous sensitivity and specificity limitations. New biomarkers for monitoring CKD [...] Read more.
Chronic kidney disease (CKD) is one of the most important causes of chronic pediatric morbidity and mortality and places an important burden on the medical system. Current diagnosis and progression monitoring techniques have numerous sensitivity and specificity limitations. New biomarkers for monitoring CKD progression have been assessed. Neutrophil gelatinase-associated lipocalin (NGAL) has had some promising results in adults, but in pediatric patients, due to the small number of patients included in the studies, cutoff values are not agreed upon. The small sample size also makes the statistical approach limited. The aim of our study was to develop a fuzzy logic approach to assess the probability of pediatric CKD progression using both NGAL (urinary and plasmatic) and routine blood test parameters (creatinine and erythrocyte sedimentation rate) as input data. In our study, we describe in detail how to configure a fuzzy model that can simulate the correlations between the input variables ESR, NGAL-P, NGAL-U, creatinine, and the output variable Prob regarding the prognosis of the patient’s evolution. The results of the simulations on the model, i.e., the correlations between the input and output variables (3D graphic presentations) are explained in detail. We propose this model as a tool for physicians which will allow them to improve diagnosis, follow-up, and interventional decisions relative to the CKD stage. We believe this innovative approach can be a great tool for the clinician and validates the feasibility of using a fuzzy logic approach in interpreting NGAL biomarker results for CKD progression. Full article
(This article belongs to the Special Issue Artificial Intelligence in Clinical Decision Support)
Show Figures

Figure 1

29 pages, 853 KiB  
Review
The Molecular Mechanisms Underlying the Systemic Effects Mediated by Parathormone in the Context of Chronic Kidney Disease
by Minela Aida Maranduca, Cristian Tudor Cozma, Andreea Clim, Alin Constantin Pinzariu, Ionut Tudorancea, Irene Paula Popa, Cristina Iuliana Lazar, Roxana Moscalu, Nina Filip, Mihaela Moscalu, Mihai Constantin, Dragos Viorel Scripcariu, Dragomir Nicolae Serban and Ionela Lacramioara Serban
Curr. Issues Mol. Biol. 2024, 46(5), 3877-3905; https://doi.org/10.3390/cimb46050241 - 25 Apr 2024
Cited by 1 | Viewed by 2835
Abstract
Chronic kidney disease (CKD) stands as a prominent non-communicable ailment, significantly impacting life expectancy. Physiopathology stands mainly upon the triangle represented by parathormone–Vitamin D–Fibroblast Growth Factor-23. Parathormone (PTH), the key hormone in mineral homeostasis, is one of the less easily modifiable parameters in [...] Read more.
Chronic kidney disease (CKD) stands as a prominent non-communicable ailment, significantly impacting life expectancy. Physiopathology stands mainly upon the triangle represented by parathormone–Vitamin D–Fibroblast Growth Factor-23. Parathormone (PTH), the key hormone in mineral homeostasis, is one of the less easily modifiable parameters in CKD; however, it stands as a significant marker for assessing the risk of complications. The updated “trade-off hypothesis” reveals that levels of PTH spike out of the normal range as early as stage G2 CKD, advancing it as a possible determinant of systemic damage. The present review aims to review the effects exhibited by PTH on several organs while linking the molecular mechanisms to the observed actions in the context of CKD. From a diagnostic perspective, PTH is the most reliable and accessible biochemical marker in CKD, but its trend bears a higher significance on a patient’s prognosis rather than the absolute value. Classically, PTH acts in a dichotomous manner on bone tissue, maintaining a balance between formation and resorption. Under the uremic conditions of advanced CKD, the altered intestinal microbiota majorly tips the balance towards bone lysis. Probiotic treatment has proven reliable in animal models, but in humans, data are limited. Regarding bone status, persistently high levels of PTH determine a reduction in mineral density and a concurrent increase in fracture risk. Pharmacological manipulation of serum PTH requires appropriate patient selection and monitoring since dangerously low levels of PTH may completely inhibit bone turnover. Moreover, the altered mineral balance extends to the cardiovascular system, promoting vascular calcifications. Lastly, the involvement of PTH in the Renin–Angiotensin–Aldosterone axis highlights the importance of opting for the appropriate pharmacological agent should hypertension develop. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

22 pages, 7667 KiB  
Article
Can Combining Hyaluronic Acid and Physiotherapy in Knee Osteoarthritis Improve the Physicochemical Properties of Synovial Fluid?
by Ilie Onu, Robert Gherghel, Isabella Nacu, Florina-Daniela Cojocaru, Liliana Verestiuc, Daniela-Viorelia Matei, Dan Cascaval, Ionela Lacramioara Serban, Daniel Andrei Iordan, Alexandra Tucaliuc and Anca-Irina Galaction
Biomedicines 2024, 12(2), 449; https://doi.org/10.3390/biomedicines12020449 - 17 Feb 2024
Cited by 7 | Viewed by 4567
Abstract
Known as the degenerative disease of the knee with the highest prevalence, knee osteoarthritis (KOA) is characterized by a gradual destructive mechanism that, in severe cases, can provoke the need for total knee substitution. As the disease progresses, various enzymatic, immunological, and inflammatory [...] Read more.
Known as the degenerative disease of the knee with the highest prevalence, knee osteoarthritis (KOA) is characterized by a gradual destructive mechanism that, in severe cases, can provoke the need for total knee substitution. As the disease progresses, various enzymatic, immunological, and inflammatory processes abnormally degrade hyaluronic acid (HA), SF’s main component, and affect the concentrations of specific proteins, with the final results seriously endangering synovial fluid (SF)’s rheological and tribological features and characteristics. No effective treatments have been found to stop the progression of KOA, but the injection of HA-based viscoelastic gels has been considered (alone or combined with physiotherapy (PT)) as an alternative to symptomatic therapies. In order to evaluate the effect of viscosupplementation and PT on the characteristics of SF, SF aspirated from groups treated for KOA (HA Kombihylan® and groups that received Kombihylan® and complex PT) was analyzed and compared from analytical, spectrophotometrical, and rheological perspectives. In the patients treated with PT, the SF extracted 6 weeks after viscosupplementation had a superior elastic modulus (G′) and viscous moduli (G″), as well as a homogeneous distribution of proteins and polysaccharides. The viscosupplementation fluid improved the bioadhesive properties of the SF, and the use of the viscosupplementation fluid in conjunction with PT was found to be favorable for the distribution of macromolecules and phospholipids, contributing to the lubrication process and the treatment of OA-affected joints. Full article
Show Figures

Figure 1

23 pages, 3416 KiB  
Review
The Renin-Angiotensin System: The Challenge behind Autoimmune Dermatological Diseases
by Minela Aida Maranduca, Mihai Andrei Cosovanu, Andreea Clim, Alin Constantin Pinzariu, Nina Filip, Ilie Cristian Drochioi, Vlad Ionut Vlasceanu, Daniel Vasile Timofte, Roxana Nemteanu, Alina Plesa, Mihaela Pertea and Ionela Lacramioara Serban
Diagnostics 2023, 13(22), 3398; https://doi.org/10.3390/diagnostics13223398 - 7 Nov 2023
Cited by 6 | Viewed by 9051
Abstract
Autoimmune dermatological diseases (AIDD) encompass a diverse group of disorders characterized by aberrant immune responses targeting the skin and its associated structures. In recent years, emerging evidence suggests a potential involvement of the renin–angiotensin system (RAS) in the pathogenesis and progression of these [...] Read more.
Autoimmune dermatological diseases (AIDD) encompass a diverse group of disorders characterized by aberrant immune responses targeting the skin and its associated structures. In recent years, emerging evidence suggests a potential involvement of the renin–angiotensin system (RAS) in the pathogenesis and progression of these conditions. RAS is a multicomponent cascade, primarily known for its role in regulating blood pressure and fluid balance. All of the RAS components play an important role in controlling inflammation and other immune responses. Angiotensin II, the main effector, acts on two essential receptors: Angiotensin Receptor 1 and 2 (AT1R and AT2R). A disturbance in the axis can lead to many pathological processes, including autoimmune (AI) diseases. AT1R activation triggers diverse signaling cascades involved in inflammation, fibrosis and tissue remodeling. Experimental studies have demonstrated the presence of AT1R in various cutaneous cells and immune cells, further emphasizing its potential contribution to the AI processes in the skin. Furthermore, recent investigations have highlighted the role of other RAS components, beyond angiotensin-converting enzyme (ACE) and Ang II, that may contribute to the pathophysiology of AIDD. Alternative pathways involving ACE2, Ang receptors and Ang-(1-7) have been implicated in regulating immune responses and tissue homeostasis within the skin microenvironment. Understanding the intricate involvement of the RAS in AIDD may provide novel therapeutic opportunities. Targeting specific components of the RAS, such as angiotensin receptor blockers (ARBs), ACE inhibitors (ACEIs) or alternative RAS pathway modulators, could potentially ameliorate inflammatory responses, reduce tissue damage and lessen disease manifestations. Further research is warranted to outline the exact mechanisms underlying RAS-mediated immune dysregulation in AIDD. This abstract aims to provide a concise overview of the intricate interplay between the RAS and AIDD. Therefore, we elaborate a systematic review of the potential challenge of RAS in the AIDD, including psoriasis, systemic sclerosis, vitiligo, lupus erythematosus and many more. Full article
(This article belongs to the Special Issue Dermatology Essentials)
Show Figures

Figure 1

29 pages, 2071 KiB  
Review
Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets
by Daniela Maria Tanase, Emilia Valasciuc, Evelina Maria Gosav, Anca Ouatu, Oana Nicoleta Buliga-Finis, Mariana Floria, Minela Aida Maranduca and Ionela Lacramioara Serban
Int. J. Mol. Sci. 2023, 24(9), 8162; https://doi.org/10.3390/ijms24098162 - 3 May 2023
Cited by 32 | Viewed by 4757
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in [...] Read more.
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential. Full article
(This article belongs to the Special Issue New Trends in Diabetes, Hypertension and Cardiovascular Diseases)
Show Figures

Figure 1

18 pages, 3064 KiB  
Article
Syndecan-1: From a Promising Novel Cardiac Biomarker to a Surrogate Early Predictor of Kidney and Liver Injury in Patients with Acute Heart Failure
by Radu-Stefan Miftode, Irina-Iuliana Costache, Daniela Constantinescu, Ovidiu Mitu, Amalia-Stefana Timpau, Monica Hancianu, Daniela-Anicuta Leca, Ionela-Larisa Miftode, Raul-Alexandru Jigoranu, Alexandru-Florinel Oancea, Mihai Stefan Cristian Haba, Diandra Ioana Miftode and Ionela-Lacramioara Serban
Life 2023, 13(4), 898; https://doi.org/10.3390/life13040898 - 28 Mar 2023
Cited by 8 | Viewed by 2962
Abstract
(1) Background: Acute heart failure (HF) represents a complex clinical syndrome burdened by increased mortality and a high rate of systemic complications. Although natriuretic peptides (e.g., NT-proBNP) currently represent the diagnostic and prognostic gold standard in acute HF, those molecules do not accurately [...] Read more.
(1) Background: Acute heart failure (HF) represents a complex clinical syndrome burdened by increased mortality and a high rate of systemic complications. Although natriuretic peptides (e.g., NT-proBNP) currently represent the diagnostic and prognostic gold standard in acute HF, those molecules do not accurately reflect all the pathophysiological mechanisms involved in the progression of this pathology when determined independently. Therefore, the current paradigm tends to focus on a multi-marker approach for the risk stratification of patients with acute HF. Syndecan-1 is a less studied biomarker in cardiovascular diseases; its assessment in patients with acute HF being potentially able to reflect the myocardial pathological changes, such as fibrosis, inflammation, endothelial dysfunction or global wall stress. (2) Methods: We conducted a single center prospective study that enrolled 173 patients (120 patients admitted for acute HF, compared to 53 controls with stable chronic HF). A complete standardized clinical, echocardiography and laboratory evaluation was performed at admission, including serum samples for the determination of syndecan-1 by the enzyme-linked immunosorbent assay (ELISA) method. (3) Results: The serum concentration of syndecan-1 was significantly higher in patients with acute HF, compared to controls [121.4 (69.3–257.9) vs. 72.1 (41.4–135.8) ng/mL, p = 0.015]. Syndecan-1 was a significant predictor for the diagnosis of acute HF, expressed by an area under the curve (AUC) of 0.898, similar to NT-proBNP (AUC: 0.976) or cardiac troponin (AUC: 0.839). Moreover, syndecan-1 was independently associated with impaired kidney and liver function at admission, being also a predictor for early, subclinical organ dysfunction in patients with normal biological parameters at admission. When included in the multi-marker model, syndecan-1 levels influenced mortality more significantly than NT-proBNP or troponin. A multivariable regression including syndecan-1, NT-proBNP and troponin provided additional prognostic value compared to each independent biomarker. (4) Conclusions: Syndecan-1 can be considered a promising novel biomarker in acute HF, exhibiting adequate diagnostic and prognostic value. Additionally, syndecan-1 can be used as a surrogate biomarker for non-cardiac organ dysfunction, as its highs levels can accurately reflect early acute kidney and liver injury. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

Back to TopTop