Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Authors = Idrees Khan ORCID = 0000-0002-2251-0904

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11618 KiB  
Article
Impact Assessment of Natural Springs for Irrigation Potential in the Hilly Areas of Kashmir
by Zubair Ahmad Khan, Rohitashw Kumar, Afzal Husain Khan, Adil Majeed, Mohmmad Idrees Attar and P. Jagadesh
Sustainability 2025, 17(12), 5490; https://doi.org/10.3390/su17125490 - 14 Jun 2025
Viewed by 557
Abstract
The increasing water demand, fueled by rapid development activities, has significantly strained freshwater reservoirs. A comprehensive study was conducted in the Anantnag district of Jammu and Kashmir to determine the discharge rates of key water springs and assess their capacity to meet the [...] Read more.
The increasing water demand, fueled by rapid development activities, has significantly strained freshwater reservoirs. A comprehensive study was conducted in the Anantnag district of Jammu and Kashmir to determine the discharge rates of key water springs and assess their capacity to meet the crop water requirements within their respective command areas. The research focused on seven vital springs—Martand, Achabal, Malakhnag, Sherbagh, Verinag, Lukhbawan, and Kokernag—which are critical for domestic and agricultural purposes. The study was carried out from May to October 2018, employed the weir formula to measure spring discharge, and utilized evapotranspiration (ETo) calculations, integrating evaporation and rainfall data to estimate crop water requirements. The results revealed significant variability in spring discharge rates, with Verinag spring being the most productive at 4.55 m3/s, followed by Sherbagh at 1.97 m3/s, while Lukhbawan exhibited the lowest discharge rate at 0.17 m3/s. Springs such as Verinag, Martand, and Achabal demonstrated sufficient capacity to meet the water demands of crops in their command areas, highlighting their potential for sustainable agricultural support. These findings emphasize the importance of integrating surface–subsurface water dynamics in water resource management to ensure efficient utilization of these springs for both domestic and irrigation needs. The study provides valuable insights into optimizing spring water use to address increasing water demands in the region, contributing to sustainable development and resource conservation. Full article
Show Figures

Figure 1

17 pages, 429 KiB  
Article
Investigating an Approximate Solution for a Fractional-Order Bagley–Torvik Equation by Applying the Hermite Wavelet Method
by Yimiao Zhang, Muhammad Idrees Afridi, Muhammad Samad Khan and Amanullah
Mathematics 2025, 13(3), 528; https://doi.org/10.3390/math13030528 - 5 Feb 2025
Viewed by 649
Abstract
In this paper, we introduce the Hermite wavelet method (HWM), a numerical method for the fractional-order Bagley–Torvik equation (BTE) solution. The recommended method is based on a polynomial called the Hermite polynomial. This method uses collocation points to turn the given differential equation [...] Read more.
In this paper, we introduce the Hermite wavelet method (HWM), a numerical method for the fractional-order Bagley–Torvik equation (BTE) solution. The recommended method is based on a polynomial called the Hermite polynomial. This method uses collocation points to turn the given differential equation into an algebraic equation system. We can find the values of the unknown constants after solving the system of equations using the Maple program. The required approximation of the answer was obtained by entering the numerical values of the unknown constants. The approximate solution for the given fractional-order differential equation is also shown graphically and numerically. The suggested method yields straightforward results that closely match the precise solution. The proposed methodology is computationally efficient and produces more accurate findings than earlier numerical approaches. Full article
Show Figures

Figure 1

1 pages, 146 KiB  
Correction
Correction: Yaseen et al. Photo-Assisted Removal of Rhodamine B and Nile Blue Dyes from Water Using CuO–SiO2 Composite. Molecules 2022, 27, 5343
by Muhammad Yaseen, Muhammad Humayun, Abbas Khan, Muhammad Idrees, Nasrullah Shah and Shaista Bibi
Molecules 2024, 29(23), 5732; https://doi.org/10.3390/molecules29235732 - 5 Dec 2024
Cited by 1 | Viewed by 563
Abstract
Citation of the publication (our own previous work), Yaseen, M [...] Full article
16 pages, 3757 KiB  
Article
Removal of Cr(VI) from Wastewater Using Acrylonitrile Grafted Cellulose Extracted from Sugarcane Bagasse
by Idrees Khan, Ashraf Ali, Alia Naz, Zenab Tariq Baig, Wisal Shah, Zia Ur Rahman, Tawaf Ali Shah, Kotb A. Attia, Arif Ahmed Mohammed and Yaser M. Hafez
Molecules 2024, 29(10), 2207; https://doi.org/10.3390/molecules29102207 - 8 May 2024
Cited by 9 | Viewed by 1668
Abstract
A highly efficient low-cost adsorbent was prepared using raw and chemically modified cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First, cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline hydrolysis and bleaching with sodium [...] Read more.
A highly efficient low-cost adsorbent was prepared using raw and chemically modified cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First, cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline hydrolysis and bleaching with sodium chlorate (NaClO3). Then, the bleached cellulose pulp was chemically modified with acrylonitrile monomer in the presence Fenton’s reagent (Fe+2/H2O2) to carry out grafting of acrylonitrile onto cellulose by atom transfer radical polymerization. The developed adsorbent (acrylonitrile grafted cellulose) was analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Both raw cellulose and acrylonitrile grafted cellulose were used for chromium removal from wastewater. The effects of metal ion concentration, pH, adsorbent dose and time were studied, and their values were optimized. The optimum conditions for the adsorption of Cr(VI) onto raw and chemically modified cellulose were: metal ion concentration: 50 ppm, adsorbent dose: 1 g, pH: 6, and time: 60 min. The maximum efficiencies of 73% and 94% and adsorption capacities of 125.95 mg/g and 267.93 mg/g were achieved for raw and acrylonitrile grafted cellulose, respectively. High removal efficiency was achieved, owing to high surface area of 79.92 m2/g and functional active binding cites on grafted cellulose. Isotherm and kinetics studies show that the experimental data were fully fitted by the Freundlich isotherm model and pseudo first-order model. The adsorbent (acrylonitrile grafted cellulose) was regenerated using three different types of regenerating reagents and reused thirty times, and there was negligible decrease (19%) in removal efficiency after using it for 30 times. Hence, it is anticipated that acrylonitrile could be utilized as potential candidate material for commercial scale Cr(VI) removal from wastewater. Full article
Show Figures

Figure 1

17 pages, 3385 KiB  
Article
PDGFRβ Activation Induced the Bovine Embryonic Genome Activation via Enhanced NFYA Nuclear Localization
by Chalani Dilshani Perera, Muhammad Idrees, Abdul Majid Khan, Zaheer Haider, Safeer Ullah, Ji-Su Kang, Seo-Hyun Lee, Seon-Min Kang and Il-Keun Kong
Int. J. Mol. Sci. 2023, 24(23), 17047; https://doi.org/10.3390/ijms242317047 - 1 Dec 2023
Cited by 4 | Viewed by 1961
Abstract
Embryonic genome activation (EGA) is a critical step during embryonic development. Several transcription factors have been identified that play major roles in initiating EGA; however, this gradual and complex mechanism still needs to be explored. In this study, we investigated the role of [...] Read more.
Embryonic genome activation (EGA) is a critical step during embryonic development. Several transcription factors have been identified that play major roles in initiating EGA; however, this gradual and complex mechanism still needs to be explored. In this study, we investigated the role of nuclear transcription factor Y subunit A (NFYA) in bovine EGA and bovine embryonic development and its relationship with the platelet-derived growth factor receptor-β (PDGFRβ) by using a potent selective activator (PDGF-BB) and inhibitor (CP-673451) of PDGF receptors. Activation and inhibition of PDGFRβ using PDGF-BB and CP-673451 revealed that NFYA expression is significantly (p < 0.05) affected by the PDGFRβ. In addition, PDGFRβ mRNA expression was significantly increased (p < 0.05) in the activator group and significantly decreased (p < 0.05) in the inhibitor group when compared with PDGFRα. Downregulation of NFYA following PDGFRβ inhibition was associated with the expression of critical EGA-related genes, bovine embryo development rate, and implantation potential. Moreover, ROS and mitochondrial apoptosis levels and expression of pluripotency-related markers necessary for inner cell mass development were also significantly (p < 0.05) affected by the downregulation of NFYA while interrupting trophoblast cell (CDX2) differentiation. In conclusion, the PDGFRβ-NFYA axis is critical for bovine embryonic genome activation and embryonic development. Full article
(This article belongs to the Special Issue Transcriptional Regulation of Late Oogenesis and Early Embryogenesis)
Show Figures

Graphical abstract

15 pages, 2412 KiB  
Review
g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives
by Abdulelah Aljuaid, Mazen Almehmadi, Ahad Amer Alsaiari, Mamdouh Allahyani, Osama Abdulaziz, Abdulaziz Alsharif, Jawaher Amer Alsaiari, Magdi Saih, Rema Turki Alotaibi and Idrees Khan
Molecules 2023, 28(7), 3199; https://doi.org/10.3390/molecules28073199 - 4 Apr 2023
Cited by 59 | Viewed by 6373
Abstract
Industrial effluents containing dyes are the dominant pollutants, making the drinking water unfit. Among the dyes, methylene orange (MO) dye is mutagenic, carcinogenic and toxic to aquatic organisms. Therefore, its removal from water bodies through effective and economical approach is gaining increased attention [...] Read more.
Industrial effluents containing dyes are the dominant pollutants, making the drinking water unfit. Among the dyes, methylene orange (MO) dye is mutagenic, carcinogenic and toxic to aquatic organisms. Therefore, its removal from water bodies through effective and economical approach is gaining increased attention in the last decades. Photocatalytic degradation has the ability to convert economically complex dye molecules into non-toxic and smaller species via redox reactions, by using photocatalysts. g-C3N4 is a metal-free n-type semiconductor, typical nonmetallic and non-toxici polymeric photocatalyst. It widely used in photocatalytic materials, due to its easy and simple synthesis, fascinating electronic band structure, high stability and abundant availability. As a photocatalyst, its major drawbacks are its limited efficiency in separating photo-excited electron–hole pairs, high separated charge recombination, low specific surface area, and low absorption coefficient. In this review, we report the recent modification strategies adopted for g-C3N4 for the efficient photodegradation of MO dye. The different modification approaches, such as nanocomposites and heterojunctions, as well as doping and defect introductions, are briefly discussed. The mechanism of the photodegradation of MO dye by g-C3N4 and future perspectives are discussed. This review paper will predict strategies for the fabrication of an efficient g-C3N4-based photocatalyst for the photodegradation of MO dye. Full article
Show Figures

Graphical abstract

13 pages, 3057 KiB  
Article
Downregulation of PI3K/AKT/mTOR Pathway in Juglone-Treated Bovine Oocytes
by Marwa El-Sheikh, Ayman Mesalam, Atif Ali Khan Khalil, Muhammad Idrees, Mi-Jeong Ahn, Ahmed Atef Mesalam and Il-Keun Kong
Antioxidants 2023, 12(1), 114; https://doi.org/10.3390/antiox12010114 - 3 Jan 2023
Cited by 12 | Viewed by 3862
Abstract
We have previously reported that juglone, a natural compound found in Juglandaceae with a wide range of biological activities, can reduces the developmental competence of bovine oocytes. In the current study, we investigated the possible mechanisms behind the toxicity of juglone and the [...] Read more.
We have previously reported that juglone, a natural compound found in Juglandaceae with a wide range of biological activities, can reduces the developmental competence of bovine oocytes. In the current study, we investigated the possible mechanisms behind the toxicity of juglone and the relationship with PI3K/AKT/mTOR signaling during the in vitro maturation (IVM) of oocytes. Results show that oocyte exposure to juglone was associated with a significant decrease in filamentous actin (F-actin) accumulation. The RT-qPCR showed downregulation of the meiosis progression indicator GSK-3A, oocyte development marker BMP15, mitochondria fusion controlling MFN1, oxidative stress-related OGG1, and histone methylation-related EZH1, EZH2, SUZ12, G9a, and SUV39H2 genes in juglone-treated oocytes. In addition, glycolysis- (PFK1 and GLUT1), ATP synthesis- (ATPase8 and ATP5F1B), and OXPHOS-specific markers (SDHA and SDHD), as well as the oocyte survival regulators (SOD2, VEGF, and MAPK1) significantly decreased upon juglone treatment. Moreover, lower expression of PI3K, AKT, and mTOR was observed at the transcriptional and/or translational level(s). The autophagy markers LC3B and beclin-1 as well as the DNA damage-specific marker 8-OxoG displayed overexpression in juglone-exposed oocytes. Taken together, our results show that administration of juglone during the IVM can reduce the quality and developmental health of bovine oocytes through downregulation of the PI3K/AKT/mTOR pathway and its downstream signaling cascades. Full article
Show Figures

Figure 1

18 pages, 1577 KiB  
Perspective
The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives
by Shujaat Ahmad, Mazen Almehmadi, Hammad Tariq Janjuhah, George Kontakiotis, Osama Abdulaziz, Khalid Saeed, Hanif Ahmad, Mamdouh Allahyani, Abdulelah Aljuaid, Ahad Amer Alsaiari, Juma Muhammad and Idrees Khan
Water 2023, 15(1), 175; https://doi.org/10.3390/w15010175 - 1 Jan 2023
Cited by 59 | Viewed by 5534
Abstract
Photodegradation is the chemical conversion of large, toxic, and complex molecules into non-toxic, simpler, and lower molecular weight species due to light exposure. Heterogeneous photocatalysis has sufficient potential to degrade toxic organic pollutants present in wastewater. As industries discharge their effluents containing organic [...] Read more.
Photodegradation is the chemical conversion of large, toxic, and complex molecules into non-toxic, simpler, and lower molecular weight species due to light exposure. Heterogeneous photocatalysis has sufficient potential to degrade toxic organic pollutants present in wastewater. As industries discharge their effluents containing organic pollutants into natural water bodies, which penetrate into the subsurface through connected pores it is necessary to study this process in natural or tap water. Tap water (TW) is mainly obtained from underground wells having inorganic salts in a minute quantity with a conductivity of 500 μS/cm. TW contains inorganic anions, which affect the photocatalytic activity and photocatalysis process. The aim of this review is to evaluate the effect of TW on the photo-degradation of organic pollutants such as dyes, pharmaceutical products, pesticides, etc., with the support of the literature. The TW had a diverse effect on the photodegradation of organic pollutants; either it may enhance or decrease the rate of pollutants’ photodegradation. Full article
Show Figures

Figure 1

24 pages, 8313 KiB  
Article
An Immunoinformatics Approach to Design a Potent Multi-Epitope Vaccine against Asia-1 Genotype of Crimean–Congo Haemorrhagic Fever Virus Using the Structural Glycoproteins as a Target
by Syed Zawar Shah, Basit Jabbar, Muhammad Usman Mirza, Muhammad Waqas, Shahkaar Aziz, Sobia Ahsan Halim, Amjad Ali, Shazia Rafique, Muhammad Idrees, Asaad Khalid, Ashraf N. Abdalla, Ajmal Khan and Ahmed Al-Harrasi
Vaccines 2023, 11(1), 61; https://doi.org/10.3390/vaccines11010061 - 27 Dec 2022
Cited by 14 | Viewed by 4136
Abstract
Crimean–Congo haemorrhagic fever (CCHF), caused by Crimean–Congo haemorrhagic fever virus (CCHFV), is a disease of worldwide importance (endemic yet not limited to Asia, Middle East, and Africa) and has triggered several outbreaks amounting to a case fatality rate of 10–40% as per the [...] Read more.
Crimean–Congo haemorrhagic fever (CCHF), caused by Crimean–Congo haemorrhagic fever virus (CCHFV), is a disease of worldwide importance (endemic yet not limited to Asia, Middle East, and Africa) and has triggered several outbreaks amounting to a case fatality rate of 10–40% as per the World Health Organization. Genetic diversity and phylogenetic data revealed that the Asia-1 genotype of CCHFV remained dominant in Pakistan, where 688 confirmed cases were reported between the 2012–2022 period. Currently, no approved vaccine is available to tackle the viral infection. Epitope-based vaccine design has gained significant attention in recent years due to its safety, timeliness, and cost efficiency compared to conventional vaccines. In the present study, we employed a robust immunoinformatics-based approach targeting the structural glycoproteins G1 and G2 of CCHFV (Asia-1 genotype) to design a multi-epitope vaccine construct. Five B-cells and six cytotoxic T-lymphocytes (CTL) epitopes were mapped and finalized from G1 and G2 and were fused with suitable linkers (EAAAK, GGGS, AAY, and GPGPG), a PADRE sequence (13 aa), and an adjuvant (50S ribosomal protein L7/L12) to formulate a chimeric vaccine construct. The selected CTL epitopes showed high affinity and stable binding with the binding groove of common human HLA class I molecules (HLA-A*02:01 and HLA-B*44:02) and mouse major histocompatibility complex class I molecules. The chimeric vaccine was predicted to be an antigenic, non-allergenic, and soluble molecule with a suitable physicochemical profile. Molecular docking and molecular dynamics simulation indicated a stable and energetically favourable interaction between the constructed antigen and Toll-like receptors (TLR2, TLR3, and TLR4). Our results demonstrated that innate, adaptive, and humoral immune responses could be elicited upon administration of such a potent muti-epitope vaccine construct. These results could be helpful for an experimental vaccinologist to develop an effective vaccine against the Asia-1 genotype of CCHFV. Full article
(This article belongs to the Special Issue Vaccines and Emerging/Re-Emerging Virus Diseases)
Show Figures

Figure 1

19 pages, 7262 KiB  
Article
Photocatalytic Degradation of Organic Dyes Contaminated Aqueous Solution Using Binary CdTiO2 and Ternary NiCdTiO2 Nanocomposites
by Shakeel Khan, Awal Noor, Idrees Khan, Mian Muhammad, Muhammad Sadiq and Niaz Muhammad
Catalysts 2023, 13(1), 44; https://doi.org/10.3390/catal13010044 - 26 Dec 2022
Cited by 23 | Viewed by 4744
Abstract
The synergistic effect of binary CdTiO2 and ternary NiCdTiO2 on the photocatalytic efficiency of TiO2 nanoparticles was investigated. The SEM analysis demonstrates spherical TiO2 NPs of different sizes present in agglomerated form. The structural analysis of the nanocomposites reveals [...] Read more.
The synergistic effect of binary CdTiO2 and ternary NiCdTiO2 on the photocatalytic efficiency of TiO2 nanoparticles was investigated. The SEM analysis demonstrates spherical TiO2 NPs of different sizes present in agglomerated form. The structural analysis of the nanocomposites reveals a porous structure for TiO2 with well deposited Cd and Ni NPs. TEM images show NiCdTiO2 nanocomposites as highly crystalline particles having spherical and cubical geometry with an average particle size of 20 nm. The EDX and XRD analysis confirm the purity and anatase phase of TiO2, respectively. Physical features of NiCdTiO2 nanocomposite were determined via BET analysis which shows that the surface area, pore size and pore volume are 61.2 m2/g, 10.6 nm and 0.1 cm3/g, respectively. The absorbance wavelengths of the CdTiO2 and NiCdTiO2 nanocomposites have shown red shift as compared to the neat TiO2 due to coupling with Ni and Cd that results in the enhanced photocatalytic activity. The photocatalytic activity demonstrated that TiO2, CdTiO2 and NiCdTiO2 degrade methylene blue (MB) and methyl green (MG) about 76.59, 82, 86% and 63.5, 88, 97.5%, respectively, at optimum reaction conditions. Full article
(This article belongs to the Special Issue Catalytic Processes for Water and Wastewater Treatment)
Show Figures

Figure 1

17 pages, 4705 KiB  
Article
Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations
by Nisar Khan, Tamanna Gul, Idrees Khan, Eman A. Alabbad, Shahid Ali, Khalid Saeed and Ibrahim Khan
Materials 2023, 16(1), 142; https://doi.org/10.3390/ma16010142 - 23 Dec 2022
Cited by 4 | Viewed by 2308
Abstract
Waste management and energy generation are the foremost concerns due to their direct relationship with biological species and the environment. Herein, we report the utilization of iron rust (inorganic pollutant) as a photocatalyst for the photodegradation of methylene blue (MB) dye (organic pollutant) [...] Read more.
Waste management and energy generation are the foremost concerns due to their direct relationship with biological species and the environment. Herein, we report the utilization of iron rust (inorganic pollutant) as a photocatalyst for the photodegradation of methylene blue (MB) dye (organic pollutant) under visible light (economic) and water oxidation (energy generation). Iron rust was collected from metallic pipes and calcined in the furnace at 700 °C for 3 h to remove the moisture/volatile content. The uncalcined and calcined rust NPs are characterized through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared (FTIR) analysis, X-ray Diffraction (XRD), and thermogravimetric analysis (TGA). The morphological study illustrated that the shape of uncalcined and calcined iron rust is spongy, porous, and agglomerated. The XRD and DLS particle sizes are in a few hundred nanometers range. The photodegradation (PD) investigation shows that calcined rust NPs are potent for the PD of modeled MB, and the degradation efficiency was about 94% in a very short time of 11 min. The photoelectrochemical (PEC) measurements revealed that calcined rust NPs are more active than uncalcined rust under simulated 1 SUN illumination with the respective photocurrent densities of ~0.40 and ~0.32 mA/cm2. The density functional theory simulations show the chemisorption of dye molecules over the catalyst surface, which evinces the high catalytic activity of the catalyst. These results demonstrate that cheaper and abundantly available rust can be useful for environmental and energy applications. Full article
Show Figures

Figure 1

12 pages, 4743 KiB  
Article
An Integrated Approach of Hypobaric Pressures and Potassium Permanganate to Maintain Quality and Biochemical Changes in Tomato Fruits
by Ali Muhammad, Kenan Sinan Dayisoylu, Hamid Khan, Muhammad Rafiullah Khan, Imran Khan, Fida Hussain, Abdul Basit, Mehboob Ali, Suliman Khan and Muhammad Idrees
Horticulturae 2023, 9(1), 9; https://doi.org/10.3390/horticulturae9010009 - 21 Dec 2022
Cited by 6 | Viewed by 3594
Abstract
Limited postharvest life of tomato fruit is due to its highly perishable nature. Hypobaric pressure is a new emerging hurdle technology usually used up to a pressure of 100 kPa for the preservation of fruits and vegetables. In this study, an integrated approach [...] Read more.
Limited postharvest life of tomato fruit is due to its highly perishable nature. Hypobaric pressure is a new emerging hurdle technology usually used up to a pressure of 100 kPa for the preservation of fruits and vegetables. In this study, an integrated approach of hypobaric pressures (40 kPa and 50 kPa) and sponge-dipping of potassium permanganate (KMnO4) was designed for the postharvest life extension of tomato fruits. Fruits were treated with either 400 ppm of KMnO4, or 40 or 50 kPa hypobaric pressures, or their combination. Fruits without any treatment was considered as a control treatment. All groups were packaged in polypropylene trays as ready to retail and stored at room temperature at 25 ± 1 °C for 21 days. Basic quality parameters such as pH, total soluble solid, percent weight loss, percent spoilage, firmness, ethylene production rate, and color were evaluated at 3-day intervals. Results showed the application of hypobaric pressures and KMnO4, either alone or in combination, provided a synergistic effect in maintaining the quality compared to the control treatment during the 21 days of storage. The highest decay was found in the control compared to the combined treatments of KMnO4 + 40 kPa and KMnO4 + 50 kPa. Similarly, a decrease in firmness and color values was highest in the control treatment followed by the KMnO4 and 50 kPa hypobaric pressure compared to the combined treatment of KMnO4 + 50 kPa. In the same way, a high ethylene production rate was observed in the control, while the lowest ethylene production rate was found in KMnO4 + 50 kpa. Sensory evaluation indicated a highest score of 9 on the 9-point hedonic scale of tomato fruits. Among all groups, the combined application of 50 kPa hypobaric pressure + 400 ppm KMnO4 retained the best overall quality attributes compared to all other treatments throughout the experiment; therefore, this treatment could be applied at a commercial level for tomato fruits. Full article
(This article belongs to the Special Issue Postharvest Handling of Fruits and Vegetables)
Show Figures

Figure 1

14 pages, 7667 KiB  
Article
Numerical Investigation of Photo-Generated Carrier Recombination Dynamics on the Device Characteristics for the Perovskite/Carbon Nitride Absorber-Layer Solar Cell
by Faisal Saeed, Muhammad Haseeb Khan, Haider Ali Tauqeer, Asfand Haroon, Asad Idrees, Syed Mzhar Shehrazi, Lukas Prokop, Vojtech Blazek, Stanislav Misak and Nasim Ullah
Nanomaterials 2022, 12(22), 4012; https://doi.org/10.3390/nano12224012 - 15 Nov 2022
Cited by 6 | Viewed by 2815
Abstract
The nitrogenated holey two-dimensional carbon nitride (C2N) has been efficaciously utilized in the fabrication of transistors, sensors, and batteries in recent years, but lacks application in the photovoltaic industry. The C2N possesses favorable optoelectronic properties. To investigate [...] Read more.
The nitrogenated holey two-dimensional carbon nitride (C2N) has been efficaciously utilized in the fabrication of transistors, sensors, and batteries in recent years, but lacks application in the photovoltaic industry. The C2N possesses favorable optoelectronic properties. To investigate its potential feasibility for solar cells (as either an absorber layer/interface layer), we foremost detailed the numerical modeling of the double-absorber-layer–methyl ammonium lead iodide (CH3NH3PbI3) –carbon nitride (C2N) layer solar cell and subsequently provided in-depth insight into the active-layer-associated recombination losses limiting the efficiency (η) of the solar cell. Under the recombination kinetics phenomena, we explored the influence of radiative recombination, Auger recombination, Shockley Read Hall recombination, the energy distribution of defects, Band Tail recombination (Hoping Model), Gaussian distribution, and metastable defect states, including single-donor (0/+), single-acceptor (−/0), double-donor (0/+/2+), double-acceptor (2/−/0−), and the interface-layer defects on the output characteristics of the solar cell. Setting the defect (or trap) density to 1015cm3 with a uniform energy distribution of defects for all layers, we achieved an η of 24.16%. A considerable enhancement in power-conversion efficiency ( η~27%) was perceived as we reduced the trap density to 1014cm3 for the absorber layers. Furthermore, it was observed that, for the absorber layer with double-donor defect states, the active layer should be carefully synthesized to reduce crystal-order defects to keep the total defect density as low as 1017cm3 to achieve efficient device characteristics. Full article
Show Figures

Figure 1

19 pages, 4597 KiB  
Article
Estimation of Water Balance for Anticipated Land Use in the Potohar Plateau of the Indus Basin Using SWAT
by Muhammad Idrees, Shakil Ahmad, Muhammad Wasif Khan, Zakir Hussain Dahri, Khalil Ahmad, Muhammad Azmat and Irfan Ahmad Rana
Remote Sens. 2022, 14(21), 5421; https://doi.org/10.3390/rs14215421 - 28 Oct 2022
Cited by 11 | Viewed by 3700
Abstract
Land Use/Land Cover (LU/LC) change is among the dominant driving factors that directly influence water balance by transforming hydrological responses. Consequently, a thorough comprehension of its impacts is imperative for sustainable water resource planning and development, notably in developing worlds such as Pakistan, [...] Read more.
Land Use/Land Cover (LU/LC) change is among the dominant driving factors that directly influence water balance by transforming hydrological responses. Consequently, a thorough comprehension of its impacts is imperative for sustainable water resource planning and development, notably in developing worlds such as Pakistan, where agriculture is a major livelihood. This research intends to assess the continuing changes in LU/LC and evaluate their probable repercussions on the hydrological regime of the Potohar Plateau. The maximum likelihood classification (MLC) algorithm for land use classification of the high-resolution satellite imageries, the Cellular-Automata Markov Chain Model (CA-MCM) for the projection of LU/LC maps, and the Soil and Water Assessment Tool (SWAT) in tandem with SWAT-CUP for hydrological modeling were employed in this research. The high-resolution climatic dataset (10 × 10 km) was used in SWAT. The LU/LC analysis revealed a continual propagation of agricultural and built-up lands at the detriment of forest and barren land during the last three decades, which is anticipated to continue in the future, too. Hydrological model calibrations and validations were performed on multi-basins, and the performance was evaluated using different statistical coefficients, e.g., the coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE), Kling–Gupta Efficiency (KGE), and Percent Bias (PBIAS). The results yielded that the model performed very well and demonstrated the model’s robustness in reproducing the flow regime. The water balance study revealed that the anticipated LU/LC changes are projected to decrease the mean annual surface runoff, water yield, and streamflow due to an increase in percolation, lateral flow, sub-surface flow, and evapotranspiration. More significant variations of the water balance components were observed at the sub-basin level, owing to the heterogeneous spatial distribution of LU/LC, than at the basin level. The outcome of this study will provide pragmatic details to legislative bodies to develop land and water management ameliorative strategies to harness hydrological changes sustainably. Full article
(This article belongs to the Topic Hydrology and Water Resources in Agriculture and Ecology)
Show Figures

Graphical abstract

17 pages, 1848 KiB  
Article
Biological and Physicochemical Characterization of Self-Adhesive Protective Coating Dental Restorative Material after Incorporation of Antibacterial Nanoparticles
by Nazish Gul, Qura Tul Ain Idrees, Muhammad Amber Fareed, Salman Aziz Mian, Hafiz Muhammad Owais Nasim, Fariha Naz, Bashayer Aldahlan and Abdul Samad Khan
Polymers 2022, 14(20), 4280; https://doi.org/10.3390/polym14204280 - 12 Oct 2022
Cited by 3 | Viewed by 2187
Abstract
This study evaluated the physicochemical and antibacterial properties of EQUIATM coat liquid (E) after incorporation of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles. ZnO and TiO2 (1 wt.% and 2 wt.%) were dispersed in EQUIA coat. Principal component [...] Read more.
This study evaluated the physicochemical and antibacterial properties of EQUIATM coat liquid (E) after incorporation of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles. ZnO and TiO2 (1 wt.% and 2 wt.%) were dispersed in EQUIA coat. Principal component analysis (PCA) and cluster analysis were performed to visualize systemic variation. Antibacterial activity was evaluated by colony-forming units and crystal violet staining using Streptococcusmutans and Lactobacillusacidophilus after 24 h, 48 h, and 72 h, and the microstructure was studied by scanning electron microscopy. The weight change was analyzed at 1 and 21 days. The PCA for TiO2- and ZnO-based groups showed 100% variance at all spectral ranges at 600–800/cm and 800–1200/cm, whereas 1200–1800/cm and 2700–3800/cm spectral regions demonstrated 99% variance. The absorbance values were significant (p < 0.05) for both nanoparticles-based adhesives, and the specimens with 2 wt.% ZnO showed the maximum response by minimum bacterial attachment, and the control group showed the least response by maximum attachment. The weight change percentage was reduced after the incorporation of antibacterial nanoparticles. It is suggested that EQUIATM coat containing nanoparticles exhibits promising results, and it may be recommended to clinically use as an improved coating material. Full article
(This article belongs to the Special Issue Adhesives and Fibers in Dentistry)
Show Figures

Figure 1

Back to TopTop