An Integrated Approach of Hypobaric Pressures and Potassium Permanganate to Maintain Quality and Biochemical Changes in Tomato Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Treatments
2.2. Hypobaric Treatment
2.3. Potassium Permanganate Treatments
2.4. Ethylene Production Rate
2.5. Weight Loss
2.6. Color (L*, a*, and b*) Values
2.7. Spoilage (%)
2.8. Firmness (N)
2.9. pH and TSS (Brix)
2.10. Statistical Analysis
3. Results
3.1. pH
3.2. Total Soluble Solids (Brix)
3.3. Weight Loss (%)
3.4. Percent Spoilage
3.5. Firmness (N)
3.6. Color (L*, a*, b*) Values
3.7. Ethylene Production Rate (μmol kg−1 hr−1)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullah, J. Storage of Fresh Tomatoes to Determine the Level of (CaCl2) Coating and Optimum Temperature for Extended Shelflife; Asian Institute of Technology: Thailand, Bangkok, 2009. [Google Scholar]
- FAO. Food and Agricultural Organization, Statistics Division. 2011. Available online: http://www.fao.org/3/i2697e/i2697e.pdf (accessed on 16 April 2022).
- Tonucci, L.; Holden, J.; Beecher, G.; Khackik, F.; Davis, C.; Mulokozi, G. Carotenoid content of thermally processed tomato-based food products. J. Agric. Food Chem. 1995, 43, 579–586. [Google Scholar] [CrossRef]
- Peter, A.I.D.A.H.; Aderibigbe, B.A. Quality changes in dried tomatoes storedin sealed polythene and open storage systems. Leonardo Electron. J. Pract. Technol. 2007, 10, 123–136. [Google Scholar]
- Sammi, S.; Masud, T. Effect of different packaging systems on storage life and quality of tomato (Lycopersicon esculentum var. Rio Grande) during different ripening stages. Int. J. Food Safety 2007, 9, 37–44. [Google Scholar]
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant capacity, vitamin C, phenolics and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef] [PubMed]
- Aleminew, T.; Kebede, W.; Fikreyohannes, G.; Mokula, M.R. Effects of preharvest applications of chemicals and storage conditions on the physico-chemical characteristics and shelf life of tomato (Solanum lycopersicum L.) fruit. Heliyon 2022, 8, e09494. [Google Scholar] [CrossRef]
- Zeraatgar, H.; Davarynejad, G.H.; Moradinezhad, F.; Abedi, B. Effect of salicylic acid and calcium nitrate spraying on qualitative properties and storability of fresh jujube fruit (Ziziphus jujube Mill.). Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Rahman, W.U.; Majid, S.H.; Yasser, D.; Sadiq, S.; Ayaz, A.; Sahib, A.; Waqar, A. Hypobaric treatment augments the efficacy of 1-MCP in apple fruit. J. Food Sci. Technol. 2022, 59, 4221–4229. [Google Scholar] [CrossRef]
- Goyette, J.; Geczy, C.L. Inflammation-associated S100 proteins: New mechanisms that regulate function. Amino Acids 2011, 41, 821–842. [Google Scholar] [CrossRef]
- Vigneault, C.; Leblanc, D.I.; Goyette, B.; Jenni, S. Invited review: Engineering aspects of physical treatments to increase fruit and vegetable phytochemical content. Can. J. Plant Sci. 2012, 92, 373–397. [Google Scholar] [CrossRef]
- Huan, C.; Xijie, D.; Lufan, W.; Mariama, K.; Huihong, L.; Xiaohan, Y.; Shuling, S.; Xiaolin, Z. Transcriptome analysis reveals the metabolisms of starch degradation and ethanol fermentation involved in alcoholic off-flavour development in kiwifruit during ambient storage. Postharvest Bio. Technol. 2021, 180, 111621. [Google Scholar] [CrossRef]
- Huan, C.; Li, H.; Jiang, Z.; Shen, S.; Zheng, X. Effect of hypobaric treatment on off-flavour development and energy metabolism in ‘Bruno’ kiwifruit. LWT 2021, 136, 110349. [Google Scholar] [CrossRef]
- Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Hypobaric treatments of strawberries: A step towards commercial application. Sci. Hortic. 2016, 198, 407–413. [Google Scholar] [CrossRef]
- Yam, K.L. The Wiley Encyclopedia of Packaging Technology; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Köstekli, M.; Özdzikicierlev, O.; Cortés, C.; Zulueta, A.; Esteve, M.M.J.; Anoves, A.F. Role of potassium permanganate ethylene on physicochemical properties, during storage of five different tomato cultivars. MOJ Food Process. Technol. 2016, 3, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Gao, W.C.; Li, Q.; Khan, M.R.; Hu, G.H.; Liu, Y.; Wu, W.; Huang, C.X.; Li, R.K.Y. Recent advances in superhydrophobic polyurethane: Preparations and applications. Adv. Colloid Interface Sci. 2022, 303, 102644. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Huang, C.X.; Ullah, R.; Ullah, H.; Qazi, I.M.; Nawaz, T.; Adnan, M.; Khan, A.; Su, H.; Ren, L. Effects of Various Polymeric Films on the Pericarp Microstructure and Storability of Longan (cv. Shixia) Fruit Treated with Propyl Disulfide Essential Oil from the Neem (Azadirachta indica) Plant. Polymers 2022, 14, 536. [Google Scholar] [CrossRef]
- Khan, M.R.; Huang, C.; Zhao, H.; Huang, H.; Ren, L.; Faiq, M.; Hashmi, M.S.; Li, B.; Zheng, D.; Xu, Y.; et al. Antioxidant activity of thymol essential oil and inhibition of polyphenol oxidase enzyme: A case study on the enzymatic browning of harvested longan fruit. Chem. Biol. Technol. Agr. 2021, 8, 61. [Google Scholar] [CrossRef]
- Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Pre-storage hypobaric treatment delay fungal decay of strawberries. Postharvest Bio. Technol. 2013, 77, 75–79. [Google Scholar] [CrossRef]
- Mujtaba, A.; Masud, T.; Butt, S.J.; Qazalbash, M.; Fareed, W.; Shahid, A. Potential role of calcium chloride, potassium permanganate and boric acid on quality maintenance of tomato cv. Rio grandi at ambient temperature. Int. J. Biosci. 2014, 5, 9–20. [Google Scholar] [CrossRef]
- Lerud, R.M.; Beseau, D.; Hale, C.M.; Noll, C.; Rananavare, S.B. Optimizing the performance of a commercial electrochemical ethylene sensor via controlled ethylene generation in situ. Sens. Actuators B Chem. 2019, 281, 535–541. [Google Scholar] [CrossRef]
- Khan, M.R.; Huang, C.; Durrani, Y.; Muhammad, A. Chemistry of enzymatic browning in longan fruit as a function of pericarp pH and dehydration and its prevention by essential oil, an alternative approach to SO2 fumigation. PeerJ 2021, 9, e11539. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis Association of Official and Analytical Chemists, 17th ed.; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- Albertini, M.V.; Carcouet, E.; Pailly, O.; Gambotti, C.; Luro, F.; Berti, L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agric. Food Chem. 2006, 54, 8335–8339. [Google Scholar] [CrossRef] [PubMed]
- Moneruzzaman, K.M.; Hossain, A.B.M.S.; Sani, W.; Saifuddin, M.; Alenazi, M. Effect of harvesting and storage conditions on the post-harvest quality of tomato (Lycopersicon esculentum Mill) cv. Roma VF. Aust. J. Crop Sci. 2009, 3, 113. [Google Scholar]
- Salamanca, F.A.; Balaguera-Lopez, H.; Herrera, A. Effect of potassium permanganate on some postharvest characteristics of tomato “chonto” fruits (Solanum lycopersicum L.). Acta Hortic. 2014, 1016, 171–176. [Google Scholar] [CrossRef]
- Wills, R.B.H.; Ku, V.V.V. Use of 1-MCP to extend the time to ripen of green tomatoes and postharvest life of ripe tomatoes. Postharvest Bio. Technol. 2002, 26, 85–90. [Google Scholar] [CrossRef]
- Kays, S.J. Postharvest Physiology of Perishable Plant Products; Nostrand Reinhold: New York, NY, USA; Athens, Greece, 1997. [Google Scholar]
- Liplap, P.; Charlebois, D.; Charles, M.T.; Toivonen, P.; Vigneault, C.; Raghavan, G.V. Tomato shelf-life extension at room temperature by hyperbaric pressure treatment. Postharvest Bio. Technol. 2013, 86, 45–52. [Google Scholar] [CrossRef]
- Azzolini, M. Fisiologia Pós-Colheita de Goiabas\‘Pedro Sato\’: Estádios de Maturação e Padrão Respiratório. Ph.D. Thesis, Universidade de São Paulo, Sao Paulo, Brazil, 2002. [Google Scholar]
- Sabir, M.S.; Shah, S.Z.A.; Afzal, A. Effect of chemical treatment, wax coating, oil dipping and different wrapping materials on physio-chemical characteristics and storage behavior of apple (Malus domestica Borkh). Pak. J. Nutr. 2004, 3, 122–127. [Google Scholar]
- Roth, D. US Army Uses Ethylene Control to Stretch Shelf Life. Fresh Perspectives. 1999, pp. 1–4. Available online: https://img1.wsimg.com/blobby/go/6f4d267a-b566-4004-87b8-3b7dfa163561/downloads/spring1999.pdf (accessed on 21 April 2022).
- Wang, S.; Morris, S.C. Effects of borax and guazatine on the ripening and postharvest diseases of tomato (cv. Flora-Dade). Physiol. Basis Postharvest Technol. 1992, 343, 331–333. [Google Scholar] [CrossRef]
- García, M.; Casariego, A.; Diaz, R.; Roblejo, L. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emir. J. Food Agric. 2014, 26, 238–246. [Google Scholar] [CrossRef]
- Wakabayashi, K. Changes in cell wall polysaccharides during fruit ripening. J. Plant Res. 2000, 113, 231. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, H.Y.; Chang, C.Y.; Liu, Y.C. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
- Paul, R.E.; Gross, K.; Qui, Y. Changes in papaya cell walls during fruit ripening. Postharvest Bio. Technol. 1999, 16, 79–89. [Google Scholar] [CrossRef]
- Bombelli, E.C.; Wright, E.R. Tomato fruit quality conservation during post-harvest by application of potassium bicarbonate and its effect on Botrytis cinerea. Cienc. Investig. Agrar. 2006, 33, 167–172. [Google Scholar] [CrossRef]
- Freitas, W.E.S.; Almeida, M.L.B.; de Morais, P.L.D.; da Curnha, A.K.M.; Júnior, R.S. Potassium permanganate effects on the quality and postharvest conservation of sapodilla (Manilkara zapota (L.) P. Royen) fruits under modified atmosphere. Acta Agronómica 2017, 66, 331–337. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.S.; Kwon, T.R.; Lee, S.I.; Kim, J.A.; Lee, G.M.; Jeong, M.J. Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Bio. Technol. 2015, 110, 43–50. [Google Scholar] [CrossRef]
- Su, L.; Diretto, G.; Purgatto, E.; Danoun, S.; Zouine, M.; Li, Z.; Chervin, C. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Bio. 2015, 15, 114. [Google Scholar] [CrossRef]
- Tohge, T.; Alseekh, S.; Fernie, A.R. On the regulation and function of secondary metabolism during fruit development and ripening. J. Exp. Bot. 2013, 65, 4599–4611. [Google Scholar] [CrossRef] [Green Version]
- Wabali, V.C.; Esiri, A. Effect of Potassium Permanganate on Colour and Textural Characteristics of Tomatoes at Ambient Temperature Storage. Eur. J. Agric. Food Sci. 2021, 3, 60–62. [Google Scholar] [CrossRef]
- Zhu, T.; Tan, W.R.; Deng, X.G.; Zheng, T.; Zhang, D.W.; Lin, H.H. Effects of brassino steroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Bio. Technol. 2015, 100, 196–204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, A.; Dayisoylu, K.S.; Khan, H.; Khan, M.R.; Khan, I.; Hussain, F.; Basit, A.; Ali, M.; Khan, S.; Idrees, M. An Integrated Approach of Hypobaric Pressures and Potassium Permanganate to Maintain Quality and Biochemical Changes in Tomato Fruits. Horticulturae 2023, 9, 9. https://doi.org/10.3390/horticulturae9010009
Muhammad A, Dayisoylu KS, Khan H, Khan MR, Khan I, Hussain F, Basit A, Ali M, Khan S, Idrees M. An Integrated Approach of Hypobaric Pressures and Potassium Permanganate to Maintain Quality and Biochemical Changes in Tomato Fruits. Horticulturae. 2023; 9(1):9. https://doi.org/10.3390/horticulturae9010009
Chicago/Turabian StyleMuhammad, Ali, Kenan Sinan Dayisoylu, Hamid Khan, Muhammad Rafiullah Khan, Imran Khan, Fida Hussain, Abdul Basit, Mehboob Ali, Suliman Khan, and Muhammad Idrees. 2023. "An Integrated Approach of Hypobaric Pressures and Potassium Permanganate to Maintain Quality and Biochemical Changes in Tomato Fruits" Horticulturae 9, no. 1: 9. https://doi.org/10.3390/horticulturae9010009
APA StyleMuhammad, A., Dayisoylu, K. S., Khan, H., Khan, M. R., Khan, I., Hussain, F., Basit, A., Ali, M., Khan, S., & Idrees, M. (2023). An Integrated Approach of Hypobaric Pressures and Potassium Permanganate to Maintain Quality and Biochemical Changes in Tomato Fruits. Horticulturae, 9(1), 9. https://doi.org/10.3390/horticulturae9010009