Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Dong-Gill Kim

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1118 KiB  
Communication
Microbial Risk Assessment of Mature Compost from Human Excreta, Cattle Manure, Organic Waste, and Biochar
by Katharina A. Werner, Daniela Castro-Herrera, Fantaw Yimer, Menfese Tadesse, Dong-Gill Kim, Katharina Prost, Nicolas Brüggemann and Elisabeth Grohmann
Sustainability 2023, 15(5), 4624; https://doi.org/10.3390/su15054624 - 5 Mar 2023
Cited by 2 | Viewed by 3373
Abstract
Lack of sanitation is the underlying cause of many diarrheal infections and associated deaths. Improving sanitation through the set-up of ecological sanitation dry toilets, followed by the thermophilic composting of human excreta, could offer a solution. In addition, treating the excreta via thermophilic [...] Read more.
Lack of sanitation is the underlying cause of many diarrheal infections and associated deaths. Improving sanitation through the set-up of ecological sanitation dry toilets, followed by the thermophilic composting of human excreta, could offer a solution. In addition, treating the excreta via thermophilic composting allows us to recycle the nutrients to be used as fertilizer for agriculture. However, for this purpose, the compost should be free of pathogens. We conducted a thermophilic composting trial over 204 to 256 days with human excreta, along with vegetable scraps and teff straw, with and without biochar. A sawdust–cattle manure mixture with the same supplements served as a control treatment. To evaluate the hygienic quality of the mature compost, the bacterial indicators Escherichia coli and Salmonella were assessed using the cultivation-based most probable number method. In addition, Ascaris lumbricoides eggs were quantified through light microscopy. The amount of detected E. coli was below the thresholds of German and European regulations for organic fertilizer. Salmonella and Ascaris eggs were not detected. No significant differences between the treatments were observed. Thus, the composting process was efficient in decreasing the number of potential human pathogens. The mature compost fulfilled the legal regulations on organic fertilizer regarding potential human pathogens. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

20 pages, 1914 KiB  
Article
Effects of Combined Application of Compost and Mineral Fertilizer on Soil Carbon and Nutrient Content, Yield, and Agronomic Nitrogen Use Efficiency in Maize-Potato Cropping Systems in Southern Ethiopia
by Zeleke Asaye, Dong-Gill Kim, Fantaw Yimer, Katharina Prost, Oukula Obsa, Menfese Tadesse, Mersha Gebrehiwot and Nicolas Brüggemann
Land 2022, 11(6), 784; https://doi.org/10.3390/land11060784 - 26 May 2022
Cited by 20 | Viewed by 5074
Abstract
Low nutrient input and low soil fertility are limiting agricultural productivity in Ethiopia. The main objectives were therefore to evaluate the effects of combined compost and mineral fertilizer (MF) application on soil properties, yield, agronomic nitrogen use efficiency, and adoption of compost application [...] Read more.
Low nutrient input and low soil fertility are limiting agricultural productivity in Ethiopia. The main objectives were therefore to evaluate the effects of combined compost and mineral fertilizer (MF) application on soil properties, yield, agronomic nitrogen use efficiency, and adoption of compost application in maize (Zey mays L.)—potato (Solanum tuberosum L.) cropping systems. Yield data were collected from 20 smallholders applying (i) compost and MF at a total rate of 110 kg N ha−1, with 6 Mg compost ha−1 + MF (6CF), 12 Mg compost ha−1 + MF (12CF), and 16 Mg compost ha−1 + MF (16CF; compost on a fresh weight basis), (ii) MF application of 108 kg N ha−1 (F), and (iii) zero fertilization. Soil from 0–20 and 20–40 cm depths was collected from 16 farms using compost and MF. Compost + MF treatments showed significantly lower soil bulk density and iron contents, while pH, electrical conductivity, and cation exchange capacity were higher compared to F treatments. The 6CF, 12CF, and 16CF showed 22, 43, and 54% higher maize grain yield and 8, 16, and 18% higher potato tuber yield compared to F, respectively. The scarcity of organic material was a major socioeconomic constraint for smallholders for producing and applying compost. Full article
Show Figures

Figure 1

13 pages, 4603 KiB  
Article
Degradation Evaluation Method with a Test Device for Aging Diagnosis in PV Modules
by Jian Shen, Byeong-Gill Han, Ji-Myung Kim, Sung-Moon Choi, Kyung-Hwa Kim, Hu-Dong Lee, Dong-Hyun Tae and Dae-Seok Rho
Energies 2022, 15(11), 3851; https://doi.org/10.3390/en15113851 - 24 May 2022
Cited by 1 | Viewed by 1890
Abstract
Generally, PV (photovoltaic) modules are known as devices which are used semi-permanently for more than 20 years, but the electrical performance and lifespan of PV modules can be significantly degraded due to various environmental factors. Thus, a proper evaluation method for aging phenomenon [...] Read more.
Generally, PV (photovoltaic) modules are known as devices which are used semi-permanently for more than 20 years, but the electrical performance and lifespan of PV modules can be significantly degraded due to various environmental factors. Thus, a proper evaluation method for aging phenomenon of PV modules is required. Although there already are methods which compare adjusted PV output power based on STC (standard test condition) with initial PV module specification, or perform direct comparison by conducting the test under STC, there are issues with objectivity or efficiency in the existing evaluation method of aging phenomenon due to the data distortion while adjusting measured data or difficulties in implementation. Therefore, in order to overcome the above-mentioned disadvantage of the existing evaluation method for deterioration in PV modules and evaluate the aging characteristics of PV modules based on on-site measurement data in an accurate and efficient manner, this paper implements a test device for aging diagnosis to measure and collect actual data from a PV module section, and presents a modeling of data analysis for aging phenomenon with MATLAB S/W in order to minimize the variability of PV output, communication error, delay, etc. Furthermore, this paper confirms the usefulness of the presented test device for aging diagnosis of the PV modules which is accurately evaluated by considering on-site measurement of PV output power by season. Full article
Show Figures

Figure 1

19 pages, 1129 KiB  
Article
Organic Waste Generation and Its Valorization Potential through Composting in Shashemene, Southern Ethiopia
by Oukula Obsa, Menfese Tadesse, Dong-Gill Kim, Zeleke Asaye, Fantaw Yimer, Mersha Gebrehiwot, Nicolas Brüggemann and Katharina Prost
Sustainability 2022, 14(6), 3660; https://doi.org/10.3390/su14063660 - 21 Mar 2022
Cited by 13 | Viewed by 4593
Abstract
Composting organic waste and human excreta could significantly reduce the amount of waste dumped and increase soil fertility and agricultural yields. However, studies focusing on the replacement of mineral fertilizer with compost from these resources are rare. The presented study quantifies the potential [...] Read more.
Composting organic waste and human excreta could significantly reduce the amount of waste dumped and increase soil fertility and agricultural yields. However, studies focusing on the replacement of mineral fertilizer with compost from these resources are rare. The presented study quantifies the potential of human excreta and other organic waste for compost production. During wet and dry seasons, the generation and composition of household solid waste (HSW) was measured from three wealth categories: poor, medium, and rich, as well as the organic waste generated from 20 commercial facilities. Furthermore, the amount of human excreta, when converting unimproved into ecological sanitation facilities, was assessed. The HSW generation was significantly higher in the wet (0.77 ± 0.07 kg fresh weight (FW) cap−1 day−1) compared to the dry season (0.54 ± 0.04 kg FW cap−1 day−1). Organic waste was the main component of HSW in the dry and wet seasons, accounting for 84% and 76% of the total HSW, respectively. Annually, about 6824 Mg of organic dry matter could be collected from households, 212 Mg from commercial units, and 12,472 Mg from ecological sanitation. With these resources, 11,732 Mg of compost could be produced annually and used for fertilizing 470 ha of farmland, completely replacing mineral fertilizer. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

21 pages, 2437 KiB  
Article
Combination of Compost and Mineral Fertilizers as an Option for Enhancing Maize (Zea mays L.) Yields and Mitigating Greenhouse Gas Emissions from a Nitisol in Ethiopia
by Gebeyanesh Worku Zerssa, Dong-Gill Kim, Philipp Koal and Bettina Eichler-Löbermann
Agronomy 2021, 11(11), 2097; https://doi.org/10.3390/agronomy11112097 - 20 Oct 2021
Cited by 10 | Viewed by 4832
Abstract
Combined application of organic and mineral fertilizers has been proposed as a measure for sustainable yield intensification and mitigation of greenhouse gas (GHG) emissions. However, fertilizer effects strongly depend on the soil type and still no precise information is available for Nitisols in [...] Read more.
Combined application of organic and mineral fertilizers has been proposed as a measure for sustainable yield intensification and mitigation of greenhouse gas (GHG) emissions. However, fertilizer effects strongly depend on the soil type and still no precise information is available for Nitisols in Ethiopia. The study evaluated effects of different ratios of biowaste compost and mineral fertilizers (consisting of nitrogen (N), phosphorus (P), and sulphur (S)) on maize (Zea mays L. Bako-hybrid) yields in a two-year field trial. Soil samples from each treatment of the field trial were used to estimate emissions of nitrous oxide (N2O), carbon dioxide (CO2), methane (CH4), and microbial activity in a 28-day incubation experiment with two moisture levels (40% and 75% water-filled pore space, WFPS). The application of fertilizers corresponded to a N supply of about 100 kg ha−1, whereby the pure application of mineral fertilizers (100 min) was gradually replaced by compost. Maize yields were increased by 12 to 18% (p < 0.05) in the combined treatments of compost and mineral fertilizers compared to the 100 min treatment. The cumulative emissions of N2O and CO2 but not CH4 were affected by the fertilizer treatments and soil moisture levels (p < 0.05). At 75% WFPS, the N2O emissions in the 100 min treatment was with 16.3 g ha−1 more than twice as high as the treatment with 100% compost (6.4 g ha−1) and also considerably higher than in the 50% compost treatment (9.4 g ha−1). The results suggest that a compost application accounting for 40 to 70% of the N supply in the fertilizer combinations can be suitable to increase maize yields as well as to mitigate GHG emissions from Nitisols in Southwestern Ethiopia. Full article
Show Figures

Figure 1

16 pages, 3997 KiB  
Article
Tyrosine Phosphoproteomics of Patient-Derived Xenografts Reveals Ephrin Type-B Receptor 4 Tyrosine Kinase as a Therapeutic Target in Pancreatic Cancer
by Santosh Renuse, Vijay S. Madamsetty, Dong-Gi Mun, Anil K. Madugundu, Smrita Singh, Savita Udainiya, Kiran K. Mangalaparthi, Min-Sik Kim, Ren Liu, S. Ram Kumar, Valery Krasnoperov, Mark Truty, Rondell P. Graham, Parkash S. Gill, Debabrata Mukhopadhyay and Akhilesh Pandey
Cancers 2021, 13(14), 3404; https://doi.org/10.3390/cancers13143404 - 7 Jul 2021
Cited by 4 | Viewed by 3499
Abstract
Pancreatic ductal adenocarcinoma is a recalcitrant tumor with minimal response to conventional chemotherapeutic approaches. Oncogenic signaling by activated tyrosine kinases has been implicated in cancers resulting in activation of diverse effector signaling pathways. Thus, the discovery of aberrantly activated tyrosine kinases is of [...] Read more.
Pancreatic ductal adenocarcinoma is a recalcitrant tumor with minimal response to conventional chemotherapeutic approaches. Oncogenic signaling by activated tyrosine kinases has been implicated in cancers resulting in activation of diverse effector signaling pathways. Thus, the discovery of aberrantly activated tyrosine kinases is of great interest in developing novel therapeutic strategies in the treatment and management of pancreatic cancer. Patient-derived tumor xenografts (PDXs) in mice serve as potentially valuable preclinical models as they maintain the histological and molecular heterogeneity of the original human tumor. Here, we employed high-resolution mass spectrometry combined with immunoaffinity purification using anti-phosphotyrosine antibodies to profile tyrosine phosphoproteome across 13 pancreatic ductal adenocarcinoma PDX models. This analysis resulted in the identification of 1199 tyrosine-phosphorylated sites mapping to 704 proteins. The mass spectrometric analysis revealed widespread and heterogeneous activation of both receptor and non-receptor tyrosine kinases. Preclinical studies confirmed ephrin type-B receptor 4 (EphB4) as a potential therapeutic target based on the efficacy of human serum albumin-conjugated soluble EphB4 in mice bearing orthotopic xenografts. Immunohistochemistry-based validation using tissue microarrays from 346 patients with PDAC showed significant expression of EphB4 in >70% of patients. In summary, we present a comprehensive landscape of tyrosine phosphoproteome with EphB4 as a promising therapeutic target in pancreatic ductal adenocarcinoma. Full article
(This article belongs to the Special Issue Proteomics in Cancer)
Show Figures

Figure 1

26 pages, 2273 KiB  
Review
Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture
by Gebeyanesh Zerssa, Debela Feyssa, Dong-Gill Kim and Bettina Eichler-Löbermann
Agriculture 2021, 11(3), 192; https://doi.org/10.3390/agriculture11030192 - 26 Feb 2021
Cited by 206 | Viewed by 49787
Abstract
Agriculture is the backbone of the Ethiopian economy, and the agricultural sector is dominated by smallholder farming systems. The farming systems are facing constraints such as small land size, lack of resources, and increasing degradation of soil quality that hamper sustainable crop production [...] Read more.
Agriculture is the backbone of the Ethiopian economy, and the agricultural sector is dominated by smallholder farming systems. The farming systems are facing constraints such as small land size, lack of resources, and increasing degradation of soil quality that hamper sustainable crop production and food security. The effects of climate change (e.g., frequent occurrence of extreme weather events) exacerbate these problems. Applying appropriate technologies like climate-smart agriculture (CSA) can help to resolve the constraints of smallholder farming systems. This paper provides a comprehensive overview regarding opportunities and challenges of traditional and newly developed CSA practices in Ethiopia, such as integrated soil fertility management, water harvesting, and agroforestry. These practices are commonly related to drought resilience, stability of crop yields, carbon sequestration, greenhouse gas mitigation, and higher household income. However, the adoption of the practices by smallholder farmers is often limited, mainly due to shortage of cropland, land tenure issues, lack of adequate knowledge about CSA, slow return on investments, and insufficient policy and implementation schemes. It is suggested that additional measures be developed and made available to help CSA practices become more prevalent in smallholder farming systems. The measures should include the utilization of degraded and marginal lands, improvement of the soil organic matter management, provision of capacity-building opportunities and financial support, as well as the development of specific policies for smallholder farming. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

15 pages, 4021 KiB  
Article
Neuroprotective and Anti-Inflammatory Effects of Kuwanon C from Cudrania tricuspidata Are Mediated by Heme Oxygenase-1 in HT22 Hippocampal Cells, RAW264.7 Macrophage, and BV2 Microglia
by Wonmin Ko, Chi-Su Yoon, Kwan-Woo Kim, Hwan Lee, Nayeon Kim, Eun-Rhan Woo, Youn-Chul Kim, Dae Gill Kang, Ho Sub Lee, Hyuncheol Oh and Dong-Sung Lee
Int. J. Mol. Sci. 2020, 21(14), 4839; https://doi.org/10.3390/ijms21144839 - 8 Jul 2020
Cited by 23 | Viewed by 4361
Abstract
Heme oxygenase (HO)-1 is a detoxifying phase II enzyme that plays a role in both inflammatory and oxidative stress responses. Curdrania tricuspidata is widespread throughout East Asia and is used as a therapeutic agent in traditional medicine. We investigated whether treatment with sixteen [...] Read more.
Heme oxygenase (HO)-1 is a detoxifying phase II enzyme that plays a role in both inflammatory and oxidative stress responses. Curdrania tricuspidata is widespread throughout East Asia and is used as a therapeutic agent in traditional medicine. We investigated whether treatment with sixteen flavonoid or xanthone compounds from C. tricuspidata could induce HO-1 expression in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. In these compounds, kuwanon C showed the most remarkable HO-1 expression effects. In addition, treatment with kuwanon C reduced cytoplasmic nuclear erythroid 2-related factor (Nrf2) expression and increased Nrf2 expression in the nucleus. Significant inhibition of glutamate-induced oxidative injury and induction of reactive oxygen species (ROS) occurred when HT22 hippocampal cells were pretreated with kuwanon C. The levels of inflammatory mediator and cytokine, which increased following lipopolysaccharide (LPS) stimulation, were suppressed in RAW264.7 macrophage and BV2 microglia after kuwanon C pretreatment. Kuwanon C also attenuated p65 DNA binding and translocation into the nucleus in LPS-induced RAW264.7 and BV2 cells. The anti-inflammatory, anti-neuroinflammatory, and neuroprotective effects of kuwanon C were reversed when co-treatment with HO-1 inhibitor of tin protoporphyrin-IX (SnPP). These results suggest that the neuroprotective and anti-inflammatory effects of kuwanon C are regulated by HO-1 expression. Full article
Show Figures

Figure 1

12 pages, 937 KiB  
Article
Development and Validation of an Analytical Method for Carnosol, Carnosic Acid and Rosmarinic Acid in Food Matrices and Evaluation of the Antioxidant Activity of Rosemary Extract as a Food Additive
by Seung-Hyun Choi, Gill-Woong Jang, Sun-Il Choi, Tae-Dong Jung, Bong-Yeon Cho, Wan-Sup Sim, Xionggao Han, Jin-Sol Lee, Do-Yeon Kim, Dan-Bi Kim and Ok-Hwan Lee
Antioxidants 2019, 8(3), 76; https://doi.org/10.3390/antiox8030076 - 26 Mar 2019
Cited by 48 | Viewed by 8468
Abstract
Antioxidants are used to prevent the oxidation of foods. When used for food additive purposes, the dosage should be regulated and the functionality evaluated to ensure stability. In this study, we performed a method validation for the quantitative analysis of rosemary extract residues [...] Read more.
Antioxidants are used to prevent the oxidation of foods. When used for food additive purposes, the dosage should be regulated and the functionality evaluated to ensure stability. In this study, we performed a method validation for the quantitative analysis of rosemary extract residues and evaluated the antioxidant activity of rosemary extract in food matrices. The validated method was able to determine rosemary extract under the optimized high-performance liquid chromatography-photodiode array (HPLC-PDA) conditions. Furthermore, the antioxidant activity was evaluated by peroxide value, acid value, and in terms of the residual antioxidant levels in lard oil. For HPLC-PDA analysis, the limit of detection and quantification of rosemary extracts was ranged from 0.22 to 1.73 μg/mL, 0.66 to 5.23 μg/mL and the recoveries of the rosemary extracts ranged from 70.6 to 114.0%, with relative standard deviations of between 0.2% and 3.8%. In terms of antioxidant activity, carnosic acid performed better than carnosol. Furthermore, by evaluation of the residual antioxidant level using HPLC, we found that carnosic acid is more stable in lard oil than carnosol. These results indicate that rosemary extract can be used as an antioxidant and that the analytical method is suitable for the determination of rosemary extract in various food samples. Full article
(This article belongs to the Special Issue Antioxidant Activity of Polyphenolic Plant Extracts)
Show Figures

Graphical abstract

10 pages, 11108 KiB  
Article
Development of Lateral Flow Assay Based on Size-Controlled Gold Nanoparticles for Detection of Hepatitis B Surface Antigen
by Dong Seok Kim, Yong Tae Kim, Seok Bok Hong, Jinwoon Kim, Nam Su Heo, Moon-Keun Lee, Seok Jae Lee, Byeong Il Kim, In Soo Kim, Yun Suk Huh and Bong Gill Choi
Sensors 2016, 16(12), 2154; https://doi.org/10.3390/s16122154 - 16 Dec 2016
Cited by 83 | Viewed by 10532
Abstract
In this study, we developed lateral flow assay (LFA) biosensors for the detection of hepatitis B surface antigens using well-controlled gold nanoparticles (AuNPs). To enhance colorimetric signals, a seeded growth method was used for the preparation of size-controlled AuNPs with a narrow size [...] Read more.
In this study, we developed lateral flow assay (LFA) biosensors for the detection of hepatitis B surface antigens using well-controlled gold nanoparticles (AuNPs). To enhance colorimetric signals, a seeded growth method was used for the preparation of size-controlled AuNPs with a narrow size distribution. Different sizes of AuNPs in the range of 342–137.8 nm were conjugated with antibodies and then optimized for the efficient detection of LFA biosensors. The conjugation stability was investigated by UV-vis spectroscopy of AuNP dispersion at various pH values and concentrations of antibody. Based on optimized conjugation conditions, the use of 42.7 ± 0.8 nm AuNPs exhibited superior performance for the detection of LFAs relative to other sizes of AuNPs. Full article
(This article belongs to the Special Issue Nanobiosensing for Sensors)
Show Figures

Figure 1

12 pages, 1866 KiB  
Article
A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia
by Chi-Su Yoon, Dong-Cheol Kim, Tran Hong Quang, Jungwon Seo, Dae Gill Kang, Ho Sub Lee, Hyuncheol Oh and Youn-Chul Kim
Molecules 2016, 21(9), 1240; https://doi.org/10.3390/molecules21091240 - 16 Sep 2016
Cited by 26 | Viewed by 7384
Abstract
Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal [...] Read more.
Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1β, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation. Full article
(This article belongs to the Special Issue Natural Products and Inflammation)
Show Figures

Figure 1

Back to TopTop