Combination of Compost and Mineral Fertilizers as an Option for Enhancing Maize (Zea mays L.) Yields and Mitigating Greenhouse Gas Emissions from a Nitisol in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Determination of Maize Yield and Agronomic N Use Efficiency
2.3. Incubation Experiment and Greenhouse Gas Measurement
2.4. Determination of N2O, CO2, and CH4 Emissions, N2O Emission Factor, and Global Warming Potential
2.5. Dehydrogenase Enzyme Activity
2.6. Statistical Analysis
3. Results
3.1. Maize Yield and Agronomic Nitrogen Use Efficiency
3.2. Daily Greenhouse Gas Emissions
3.3. Cumulative Greenhouse Gas Emissions, Global Warming Potential, and Nitrous Oxide Emission Factor
3.4. Dehydrogenase Enzyme Activity
4. Discussion
4.1. Higher Maize Yields and Agronomic Nitrogen Use Efficiency in the Combined Fertilizer Treatments
4.2. Mitigation of GHG Emissions by Compost Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatment | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 9 | Day 10 |
---|---|---|---|---|---|---|---|
(g N2O-N ha−1) | |||||||
Cont | 1.01 ± 0.04 a | 0.76 ± 0.14 a | 0.41 ± 0.05 a | 0.54 ± 0.02 a | 0.42 ± 0.10 a | 0.14 ± 0.01 a | 0.15 ± 0.02 a |
100 min | 1.35 ± 0.08 ab | 0.84 ± 0.09 ab | 0.95 ± 0.09 b | 0.95 ± 0.14 b | 0.55 ± 0.08 ab | 0.30 ± 0.01 b | 0.35 ± 0.02 b |
80 min | 1.38 ± 0.21 ab | 0.99 ± 0.21 b | 0.60 ± 0.05 b | 0.78 ± 0.10 ab | 0.64 ± 0.10 b | 0.21 ± 0.01 ab | 0.36 ± 0.02 b |
40 comp | 1.47 ± 0.20 b | 1.01 ± 0.21 b | 0.60 ± 0.09 b | 0.78 ± 0.12 ab | 0.60 ± 0.06 ab | 0.21 ± 0.01 ab | 0.24 ± 0.01 ab |
50 min | 1.29 ± 0.20 ab | 0.94 ± 0.14 ab | 0.51 ± 0.04 ab | 0.65 ± 0.08 a | 0.49 ± 0.05 ab | 0.23 ± 0.01 ab | 0.34 ± 0.01 b |
30 min | 1.20 ± 0.20 ab | 0.92 ± 0.10 ab | 0.51 ± 0.10 ab | 0.66 ± 0.09 a | 0.56 ± 0.12 ab | 0.23 ± 0.01 ab | 0.26 ± 0.01 ab |
100 comp | 1.03 ± 0.05 ab | 0.86 ± 0.20 ab | 0.48 ± 0.02 ab | 0.59 ± 0.10 a | 0.48 ± 0.05 a | 0.19 ± 0.02 ab | 0.23 ± 0.01 ab |
Treatment | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 8 | Day 9 | Day 10 | Day 12 |
---|---|---|---|---|---|---|---|---|---|
(g N2O-N ha−1) | |||||||||
Cont | 0.39 ± 0.06 a | 1.16 ± 0.08 a | 0.81 ± 0.10 a | 0.44 ± 0.07 a | 0.72 ± 0.08 a | 0.24 ± 0.06 a | 0.23 ± 0.06 a | 0.26 ± 0.06 a | 0.16 ± 0.06 a |
100 min | 1.07 ± 0.11 b | 2.71 ± 0.21 cd | 3.03 ± 0.22 b | 2.42 ± 0.30 b | 2.14 ± 0.22 b | 0.49 ± 0.11 a | 0.48 ± 0.10 b | 0.60 ± 0.10 b | 0.65 ± 0.11 b |
80 min | 1.03 ± 0.11 b | 1.70 ± 0.11 abc | 1.15 ± 0.11 a | 1.25 ± 0.11 a | 0.9 ± 0.03 ab | 0.27 ± 0.03 a | 0.36 ± 0.05 ab | 0.36 ± 0.05 ab | 0.21 ± 0.01 ab |
60 min | 1.0 ± 0.20 b | 3.17 ± 0.40 d | 1.55 ± 0.40 ab | 1.55 ± 0.21 ab | 1.48 ± 0.21 ab | 0.67 ± 0.10 b | 0.41 ± 0.11 ab | 0.52 ± 0.10 ab | 0.60 ± 0.10 b |
50 min | 1.10 ± 0.20 b | 2.21 ± 0.30 abcd | 1.37 ± 0.20 a | 1.05 ± 0.20 ab | 0.77 ± 0.11 a | 0.43 ± 0.06 a | 0.40 ± 0.10 ab | 0.37 ± 0.10 ab | 0.21 ± 0.06 ab |
30 min | 1.07 ± 0.21 b | 2.52 ± 0.30 bcd | 1.08 ± 0.21 a | 1.19 ± 0.21 ab | 0.91 ± 0.11 ab | 0.35 ± 0.06 a | 0.34 ± 0.06 ab | 0.40 ± 0.07 ab | 0.26 ± 0.04 ab |
100 comp | 0.67 ± 0.03 a | 1.32 ± 0.10 ab | 0.91 ± 0.11 a | 0.54 ± 0.03 a | 0.80 ± 0.05 a | 0.25 ± 0.06 a | 0.21 ± 0.05 a | 0.29 ± 0.06 a | 0.18 ± 0.05 a |
Treatment | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 |
---|---|---|---|---|---|---|
(kg CO2 –C ha−1) | ||||||
Cont | 0.68 ± 0.06 a | 0.59 ± 0.05 a | 0.31 ± 0.05 a | 0.41 ± 0.04 a | 0.33 ± 0.05 a | 0.15 ± 0.02 a |
100 min | 1.04 ± 0.10 abc | 0.91 ± 0.14 abc | 0.62 ± 0.15 d | 0.77 ± 0.12 c | 0.53 ± 0.06 b | 0.23 ± 0.04 b |
80 min | 1.09 ± 0.10 bc | 1.18 ± 0.10 c | 0.60 ± 0.06 cd | 0.57 ± 0.06 b | 0.47 ± 0.06 ab | 0.19 ± 0.06 ab |
60 min | 1.17 ± 0.09 c | 1.21 ± 0.10 c | 0.57 ± 0.06 bcd | 0.55 ± 0.06 b | 0.44 ± 0.05 ab | 0.19 ± 0.06 ab |
50 min | 1.06 ± 0.2 bc | 1.09 ± 0.20 bc | 0.44 ± 0.05 abc | 0.48 ± 0.06 ab | 0.34 ± 0.06 a | 0.17 ± 0.06 a |
30 min | 0.89 ± 0.2 abc | 0.92 ± 0.10 abc | 0.42 ± 0.04 ab | 0.46 ± 0.05 ab | 0.39 ± 0.06 ab | 0.17 ± 0.06 a |
100 comp | 0.73 ± 0.06 ab | 0.73 ± 0.05 ab | 0.40 ± 0.04 ab | 0.44 ± 0.04 ab | 0.37 ± 0.04 a | 0.18 ± 0.03 a |
Treatment | Day 1 | Day 2 | Day 3 | Day 4 |
---|---|---|---|---|
(kg CO2 –C ha−1) | ||||
Cont | 0.28 ± 0.07 a | 0.92 ± 0.10 a | 1.22 ± 0.20 a | 0.65 ± 0.07 a |
100 min | 0.95 ± 0.08 c | 2.27 ± 0.21 d | 2.20 ± 0.21 b | 0.97 ± 0.10 ab |
80 min | 0.86 ± 0.08 c | 1.41 ± 0.10 abc | 1.69 ± 0.10 ab | 1.03 ± 0.07 b |
60 min | 0.79 ± 0.08 c | 1.99 ± 0.20 cd | 1.47 ± 0.11 a | 0.94 ± 0.11 ab |
50 min | 0.90 ± 0.08 c | 1.70 ± 0.10 bcd | 1.55 ± 0.10 ab | 0.90 ± 0.06 ab |
30 min | 0.86 ± 0.08 c | 1.78 ± 0.20 bcd | 1.29 ± 0.14 a | 1.01 ± 0.11 b |
100 comp | 0.54 ± 0.08 b | 1.10 ± 0.20 ab | 1.44 ± 0.20 a | 0.84 ± 0.20 ab |
References
- Tesfai, M.; Moed, I.; Greipsland, I.; Huber, T.; van Duivenbooden, N. Integrated Soil Management Practices. In Climate Change and Agricultural Development; Nagothu, U.S., Ed.; Taylor & Francis Group: Abingdon, UK, 2016; Chapter 8; pp. 161–184. [Google Scholar]
- Komatsuzaki, M.; Ohta, H. Soil Management Practices for Sustainable Agro-Ecosystems. Sustain. Sci. 2007, 2, 103–120. [Google Scholar] [CrossRef]
- Raji, S.G.; Dörsch, P. Effect of legume intercropping on N2O emissions and CH4 uptake during maize production in the Great Rift Valley, Ethiopia. Biogeosciences 2020, 17, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Hernández, T.; Chocano, C.; Moreno, J.-L.; García, C. Towards a More Sustainable Fertilization: Combined Use of Compost and Inorganic Fertilization for Tomato Cultivation. Agric. Ecosyst. Environ. 2014, 196, 178–184. [Google Scholar] [CrossRef]
- Brock, C.; Oltmanns, M.; Matthes, C.; Schmehe, B.; Schaaf, H.; Burghardt, D.; Horst, H.; Spieß, H. Compost as an Option for Sustainable Crop Production at Low Stocking Rates in Organic Farming. Agronomy 2021, 11, 1078. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Seda, M.; Sarraga, C.; Montero, J.I.; Castellari, M.; Muñoz, P. Municipal Solid Waste Composting: Application as a Tomato Fertilizer and Its Effect on Crop Yield, Fruit Quality and Phenolic Content. Renew. Agric. Food Syst. 2017, 32, 358–365. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Muñoz, P.; Antón, A.; Rieradevall, J. Assessment of Tomato Mediterranean Production in Open-Field and Standard Multi-Tunnel Greenhouse, with Compost or Mineral Fertilizers, from an Agricultural and Environmental Standpoint. J. Clean. Prod. 2011, 19, 985–997. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost Benefits for Agriculture Evaluated by Life Cycle Assessment. A Review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. A Review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Abiven, S.; Menasseri, S.; Chenu, C. The Effects of Organic Inputs over Time on Soil Aggregate Stability—A Literature Analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Bonanomi, G.; Antignani, V.; Pane, C.; Scala, F. Suppression of Soilborne Fungal Diseases with Organic Amendments. J. Plant Pathol. 2007, 89, 311–324. [Google Scholar]
- Zicker, T.; von Tucher, S.; Kavka, M.; Eichler-Löbermann, B. Soil Test Phosphorus as Affected by Phosphorus Budgets in Two Long-Term Field Experiments in Germany. Field Crop. Res. 2018, 218, 158–170. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of Organic Fertilizers on the Soil Microorganisms Responsible for N2O Emissions: A Review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Ling, N.; Zhu, C.; Xue, C.; Chen, H.; Duan, Y.; Peng, C.; Guo, S.; Shen, Q. Insight into How Organic Amendments Can Shape the Soil Microbiome in Long-Term Field Experiments as Revealed by Network Analysis. Soil Biol. Biochem. 2016, 99, 137–149. [Google Scholar] [CrossRef]
- Sileshi, G.W. Nutrient Use Efficiency and Crop Yield Response to the Combined Application of Cattle Manure and Inorganic Fertilizer in Sub-Saharan Africa. Nutr. Cycl. Agroecosystems 2019, 113, 181–199. [Google Scholar] [CrossRef]
- Zhu, X.; Silva, L.C.R.; Doane, T.A.; Wu, N.; Horwath, W.R. Quantifying the Effects of Green Waste Compost Application, Water Content and Nitrogen Fertilization on Nitrous Oxide Emissions in 10 Agricultural Soils. J. Environ. Qual. 2013, 42, 912–918. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Liu, T.; Jiang, S.; Cao, C.; Li, C.; Chen, B.; Liu, J. Combined Effects of Straw Returning and Chemical N Fertilization on Greenhouse Gas Emissions and Yield from Paddy Fields in Northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 2020, 20, 392–406. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, J.; Yang, W.; Cai, Z. Effects of Organic Material Amendment and Water Content on NO, N2O, and N2 Emissions in a Nitrate-Rich Vegetable Soil. Biol. Fertil. Soils 2013, 49, 153–163. [Google Scholar] [CrossRef]
- Das, S.; Adhya, T.K. Effect of Combine Application of Organic Manure and Inorganic Fertilizer on Methane and Nitrous Oxide Emissions from a Tropical Flooded Soil Planted to Rice. Geoderma 2014, 213, 185–192. [Google Scholar] [CrossRef]
- Grave, R.A.; Nicoloso, R.; Cassol, P.C.; da Silva, M.L.B.; Mezzari, M.P.; Aita, C.; Wuaden, C.R. Determining the Effects of Tillage and Nitrogen Sources on Soil N2O Emission. Soil Tillage Res. 2018, 175, 1–12. [Google Scholar] [CrossRef]
- Weitao, L.I.; Meng, W.U.; Ming, L.I.U.; Jiang, C.; Chen, X.; Kuzyakov, Y.; Zhongpei, L. I Responses of Soil Enzyme Activities and Microbial Community Composition to Moisture Regimes in Paddy Soils under Long-Term Fertilization Practices. Pedosphere 2018, 28, 323–331. [Google Scholar]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.-L.; Bernoux, M. Soils, a Sink for N2O? A Review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Wang, R.; Filley, T.R.; Xu, Z.; Wang, X.; Li, M.-H.; Zhang, Y.; Luo, W.; Jiang, Y. Coupled Response of Soil Carbon and Nitrogen Pools and Enzyme Activities to Nitrogen and Water Addition in a Semi-Arid Grassland of Inner Mongolia. Plant Soil 2014, 381, 323–336. [Google Scholar] [CrossRef]
- Wolińska, A.; Stępniewska, Z. Dehydrogenase Activity in the Soil Environment. In Dehydrogenases; Canuto, R.A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 183–209, in press. [Google Scholar]
- Chang, E.-H.; Chung, R.-S.; Tsai, Y.-H. Effect of Different Application Rates of Organic Fertilizer on Soil Enzyme Activity and Microbial Population. Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Nath, D.J.; Ozah, B.; Baruah, R.; Barooah, R.C.; Borah, D.K.; Gupta, M. Soil Enzymes and Microbial Biomass Carbon under Rice-Toria Sequence as Influenced by Nutrient Management. J. Indian Soc. Soil Sci. 2012, 60, 20–24. [Google Scholar]
- Shen, W.; Lin, X.; Shi, W.; Min, J.; Gao, N.; Zhang, H.; Yin, R.; He, X. Higher Rates of Nitrogen Fertilization Decrease Soil Enzyme Activities, Microbial Functional Diversity and Nitrification Capacity in a Chinese Polytunnel Greenhouse Vegetable Land. Plant Soil 2010, 337, 137–150. [Google Scholar] [CrossRef]
- Bayu, T. Review on Contribution of Integrated Soil Fertility Management for Climate Change Mitigation and Agricultural Sustainability. Cogent Environ. Sci. 2020, 6, 1823631. [Google Scholar] [CrossRef]
- Ruser, R.; Flessa, H.; Russow, R.; Schmidt, G.; Buegger, F.; Munch, J. C Emission of N2O, N2 and CO2 from Soil Fertilized with Nitrate: Effect of Compaction, Soil Moisture and Rewetting. Soil Biol. Biochem. 2006, 38, 263–274. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of Animal Manure, Crop Type, Climate Zone, and Soil Attributes on Greenhouse Gas Emissions from Agricultural Soils—A Global Meta-Analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Shi, Y.; Chirinda, N.; Olesen, J.E.; Mapanda, F.; Wuta, M.; Wu, W.; Meng, F.; Oelofse, M.; de Neergaard, A.; et al. Combining Organic and Inorganic Nitrogen Fertilisation Reduces N2O Emissions from Cereal Crops: A Comparative Analysis of China and Zimbabwe. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 233–245. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse Gas Emissions from Soils—A Review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Kostyanovsky, K.I.; Huggins, D.R.; Stockle, C.O.; Morrow, J.G.; Madsen, I. J Emissions of N2O and CO2 Following Short-Term Water and n Fertilization Events in Wheat-Based Cropping Systems. Front. Ecol. Evol. 2019, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Rabenarivo, M.; Wrage-Moennig, N.; Chotte, J.; Rabeharisoa, L.; Tantely, M.R.; Chapuis-Lardy, L. Emissions of CO2 and N2O from a Pasture Soil from Madagascar—Simulating Conversion to Direct-Seeding Mulch-Based Cropping in Incubations with Organic and Inorganic Inputs. Plant Nutr. Soil Sci. 2014, 177, 360–368. [Google Scholar] [CrossRef]
- Säurich, A.; Tiemeyer, B.; Dettmann, U.; Don, A. How Do Sand Addition, Soil Moisture and Nutrient Status Influence Greenhouse Gas Fluxes from Drained Organic Soils? Soil Biol. Biochem. 2019, 135, 71–84. [Google Scholar] [CrossRef]
- Sakata, R.; Shimada, S.; Arai, H.; Yoshioka, N.; Yoshioka, R.; Aoki, H.; Kimoto, N.; Sakamoto, A.; Melling, L.; Inubushi, K. Effect of Soil Types and Nitrogen Fertilizer on Nitrous Oxide and Carbon Dioxide Emissions in Oil Palm Plantations. Soil Sci. Plant Nutr. 2015, 61, 48–60. [Google Scholar] [CrossRef]
- Adgeh, T.M. Characterization of Present Day Climate Trend Over Ethiopia for Impact Study. In Climate Change Adaptation in Africa; Springer: Cham, Switzerland, 2017; pp. 25–43. [Google Scholar]
- Girma, E.; Tino, J.; Wayessa, G. Rainfall Trend and Variability Analysis in Setema-Gatira Area of Jimma, Southwestern Ethiopia. Afr. J. Agric. Res. 2016, 11, 3037–3045. [Google Scholar] [CrossRef]
- Worku, M.A. Climate Change Mitigation in Agriculture and Forestry Sectors in Ethiopia: A Review. Agric. For. J. 2020, 4, 11–18. [Google Scholar]
- FDRE Forest Development, Conservation, and Utilization Proclamation. Proclamation No. 1065/2018; [Paper Reference 2]; FDRE: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- Elias, E. Characteristics of Nitisol Profiles as Affected by Land Use Type and Slope Class in Some Ethiopian Highlands. Environ. Syst. Res. 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Abebe, N.; Gebremedin, A.; Endalkachew, K. Fertility Status Os Eutric Nitisol and Fertilizer Recommendation Using NUMASS in the Selected Areas of Jimma Zone, Southwestern Ethiopia. Trop. Subtrop. Agroecosystems 2013, 16, 487–495. [Google Scholar]
- Onasanya, R.O.; Aiyelari, A.; Onasanya, F.E.N. Effect of Different Levels of Nitrogen and Phosphorus Fertilizers on the Growth and Yield of Maize (Zea mays L.) in Southwest Nigeria. Int. J. Agric. Res. 2009, 4, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Wasonga, C.; Sigunga, D.; Musandu, A. Phosphorus Requirements by Maize Varieties in Different Soil Types of Western Kenya. Afr. Crop Sci. J. 2010, 16, 161–173. [Google Scholar] [CrossRef]
- Edwards, S.; Arefayne, A. The Impact of Compost Use on Crop Yields in Tigray, Ethiopia. International Conference on Organic Agriculture and Food Security. 2007. Available online: http://www.fao.org/tempref/docrep/fao/010/ai434e/ai434e00.pdf (accessed on 20 March 2020).
- Laekemariam, F.; Gidago, G. Response of Maize (Zea mays L.) to Integrated Fertilizer Application in Wolaita, South Ethiopia. Adv. Life Sci. Technol. 2012, 5, 10. [Google Scholar]
- Bedada, W.; Karltun, E.; Lemenih, M.; Tolera, M. Long-Term Addition of Compost and NP Fertilizer Increases Crop Yield and Improves Soil Quality in Experiments on Smallholder Farms. Agric. Ecosyst. Environ. 2014, 195, 193–201. [Google Scholar] [CrossRef]
- Tulema, B.; Aune, J.B.; Breland, T.A. Availability of Organic Nutrient Sources and Their Effects on Yield and Nutrient Recovery of Tef [Eragrostis Tef (Zucc.) Trotter] and on Soil Properties. J. Plant Nutr. Soil Sci. 2007, 170, 543–550. [Google Scholar] [CrossRef]
- Chapman, H.D. Cation-exchange Capacity. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 891–901. [Google Scholar]
- Bouyoucos, G. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, Part 1; Klute, A., Ed.; Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Testa, G.; Reyneri, A.; Blandino, M. Maize Grain Yield Enhancement through High Plant Density Cultivation with Different Inter-Row and Intra-Row Spacings. Eur. J. Agron. 2016, 72, 28–37. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K. Nutrient Use Efficiency in Plants. Int. Aff. R. Inst. Int. Aff. 2001, 72, 376–377. Available online: www.dekker.com (accessed on 12 January 2020). [CrossRef]
- Frimpong, K.A.; Baggs, E.M. Do Combined Applications of Crop Residues and Inorganic Fertilizer Lower Emission of N2O from Soil? N2O from Combined Residue and Fertilizer Application. Soil Use Manag. 2010, 26, 412–424. [Google Scholar] [CrossRef]
- Sun, L.; Ma, Y.; Li, B.; Xiao, C.; Fan, L.; Xiong, Z. Nitrogen Fertilizer in Combination with an Ameliorant Mitigated Yield-Scaled Greenhouse Gas Emissions from a Coastal Saline Rice Field in Southeastern China. Environ. Sci. Pollut. Res. 2018, 25, 15896–15908. [Google Scholar] [CrossRef]
- Comeau, L.-P.; Lai, D.Y.F.; Cui, J.J.; Hartill, J. Soil Heterotrophic Respiration Assessment Using Minimally Disturbed Soil Microcosm Cores. MethodsX 2018, 5, 834–840. [Google Scholar] [CrossRef]
- Zhang, F.; Che, Y.; Xiao, Y. Effects of Rice Straw Incorporation and N Fertilizer on Ryegrass Yield, Soil Quality, and Greenhouse Gas Emissions from Paddy Soil. J. Soils Sediments 2019, 19, 1053–1063. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Akiyama, H.; Bernoux, M.; Chirinda, N.; del Prado, A.; MacDonald, J.D.; Kasimir, Å.; Ogle, S.M.; Regina, K.; van der Weerden, T.J.; et al. N2O Emission from Managed Soils, and CO2 Emissions from Lime and Urea Fertilizer. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2019; Volume 4. [Google Scholar]
- Bhattacharyya, R.; Bhatia, A.; Das, T.K.; Lata, S.; Kumar, A.; Tomer, R.; Biswas, A. K Aggregate-Associated N and Global Warming Potential of Conservation Agriculture-Based Cropping of Maize-Wheat System in the North-Western Indo-Gangetic Plains. Soil Tillage Res. 2018, 182, 66–77. [Google Scholar] [CrossRef]
- Anthropogenic and Natural Radiative Forcing. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 659–740. ISBN 9781107057999.
- von Mersi, W.; Schinner, F. An Improved and Accurate Method for Determining the Dehydrogenase Activity of Soils with Iodonitrotetrazolium Chloride. Biol. Fertil. Soils 1991, 11, 216–220. [Google Scholar] [CrossRef]
- Drezner, Z.; Turel, O.; Zerom, D.A. Modified Kolmogorov-Smirnov Test for Normality. Commun. Stat. Comput. 2010, 39, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Ejigu, W.; Selassie, Y.G.; Elias, E.; Damte, M. Integrated Fertilizer Application Improves Soil Properties and Maize (Zea mays L.) Yield on Nitisols in Northwestern Ethiopia. Heliyon 2021, 7, e06074. [Google Scholar] [CrossRef] [PubMed]
- Mamuye, M.; Nebiyu, A.; Elias, E.; Berecha, G. Combined Use of Organic and Inorganic Nutrient Sources Improved Maize Productivity and Soil Fertility in Southwestern Ethiopia. Int. J. Plant Prod. 2021, 15, 407–418. [Google Scholar] [CrossRef]
- Eichler-Loebermann, B.; Schiemenz, K.; Makadi, M.; Vágó, I.; Koeppen, D. Nutrient Cycling by Using Residues of Bio-Energy Production—Effects of Biomass Ashes on Plant and Soil Parameters. Cereal Res. Commun. 2008, 36, 1259–1262. [Google Scholar]
- Saha, R.; Mishra, V.K.; Majumdar, B.; Laxminarayana, K.; Ghosh, P.K. Effect of Integrated Nutrient Management on Soil Physical Properties and Crop Productivity under a Maize (Zea mays)—Mustard (Brassica campestris) Cropping Sequence in Acidic Soils of Northeast India. Commun. Soil Sci. Plant Anal. 2010, 41, 2187–2200. [Google Scholar] [CrossRef]
- Biramo, G. The Role of Integrated Nutrient Management System for Improving Crop Yield and Enhancing Soil Fertility under Small Holder Farmers in Sub-Saharan Africa: A Review Article. Mod. Concepts Dev. Agron. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Naohiro, M.; Koji, N.; Chisambi, C.; Moyo, M. Improvement of Maize Yield and Soil Fertility by 2-Years Compost Application in Malawis Northern Districts. Afr. J. Agric. Res. 2016, 11, 2708–2719. [Google Scholar] [CrossRef] [Green Version]
- Ayal, D.Y.; Leal, F.W. Farmers’ Perceptions of Climate Variability and Its Adverse Impacts on Crop and Livestock Production in Ethiopia. J. Arid Environ. 2017, 140, 20–28. [Google Scholar] [CrossRef]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-Term and Residual Availability of Nitrogen after Long-Term Application of Organic Fertilizers on Arable Land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop Yield, Plant Nutrient Uptake and Soil Physicochemical Properties under Organic Soil Amendments and Nitrogen Fertilization on Nitisols. Soil Tillage Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. The Effects of Biochar, Compost and Their Mixture and Nitrogen Fertilizer on Yield and Nitrogen Use Efficiency of Barley Grown on a Nitisol in the Highlands of Ethiopia. Sci. Total Environ. 2016, 569–570, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Negassa, W.; Negisho, K.; Friesen, D.K.; Ransom, J.; Yadessa, A. Determination of Optimum Farmyard Manure and Np Fertilizers for Maize on Farmers Fields. Seventh E. S. Afr. Reg. Maize Conf. 2001, 11, 387–393. [Google Scholar]
- Buczko, U.; van Laak, M.; Eichler-Löbermann, B.; Gans, W.; Merbach, I.; Panten, K.; Peiter, E.; Reitz, T.; Spiegel, H.; von Tucher, S. Re-Evaluation of the Yield Response to Phosphorus Fertilization Based on Meta-Analyses of Long-Term Field Experiments. Ambio 2018, 47, 50–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mkhabela, M.S.; Warman, P.R. The Influence of Municipal Solid Waste Compost on Yield, Soil Phosphorus Availability and Uptake by Two Vegetable Crops Grown in a Pugwash Sandy Loam Soil in Nova Scotia. Agric. Ecosyst. Environ. 2005, 106, 57–67. [Google Scholar] [CrossRef]
- Roobroeck, D.; Palm, C.A.; Nziguheba, G.; Weil, R.; Vanlauwe, B. Assessing and Understanding Non-Responsiveness of Maize and Soybean to Fertilizer Applications in African Smallholder Farms. Agric. Ecosyst. Environ. 2021, 305, 107165. [Google Scholar] [CrossRef]
- Olaleye, A.; Peak, D.; Shorunke, A.; Dhillon, G.; Oyedele, D.; Adebooye, O.; Akponikpe, P.B.I. Effect of Manure and Urea Fertilization on Yield, Carbon Speciation and Greenhouse Gas Emissions from Vegetable Production Systems of Nigeria and Republic of Benin: A Phytotron Study. Agronomy 2020, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, W.; Vaughan, S.M.; Dalal, R.C.; Menzies, N.W. Crop Residues and Fertilizer Nitrogen Influence Residue Decomposition and Nitrous Oxide Emission from a Vertisol. Biol. Fertil. Soils 2011, 47, 15–23. [Google Scholar] [CrossRef]
- De Rosa, D.; Rowlings, D.W.; Biala, J.; Scheer, C.; Basso, B.; Grace, P.R. N2O and CO2 Emissions Following Repeated Application of Organic and Mineral N Fertiliser from a Vegetable Crop Rotation. Sci. Total Environ. 2018, 637–638, 813–824. [Google Scholar] [CrossRef]
- Lv, B.; Zhang, D.; Cui, Y.; Yin, F. Effects of C/N Ratio and Earthworms on Greenhouse Gas Emissions during Vermicomposting of Sewage Sludge. Bioresour. Technol. 2018, 268, 408–414. [Google Scholar] [CrossRef]
- Liang, L.L.; Eberwein, J.R.; Allsman, L.A.; Grantz, D.A.; Jenerette, G.D. Regulation of CO2 and N2O Fluxes by Coupled Carbon and Nitrogen Availability. Environ. Res. Lett. 2015, 10, 34008. [Google Scholar] [CrossRef]
- Eichler-Löbermann, B.; Zicker, T.; Kavka, M.; Busch, S.; Brandt, C.; Stahn, P.; Miegel, K. Mixed Cropping of Maize or Sorghum with Legumes as Affected by Long-Term Phosphorus Management. Field Crop. Res. 2021, 265, 108120. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, A.K.; Swain, C.K.; Dhal, B.R.; Kumar, A.; Kumar, U.; Tripathi, R.; Shahid, M.; Behera, K.K. Impact of Integrated Nutrient Management Options on GHG Emission, N Loss and N Use Efficiency of Low Land Rice. Soil Tillage Res. 2020, 200, 104616. [Google Scholar] [CrossRef]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of Straw Returning on Soil Organic Carbon in Rice—Wheat Rotation System: A Review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef] [Green Version]
- Zelleke, G.; Agegnehu, G.; Abera, D.; Rashid, S. Fertilizer and Soil Fertility Potential in Ethiopia: Constraints and Opportunities for Enhancing the System; International Food Policy Research Institute: Washington, DC, USA, 2010. [Google Scholar]
- Bharali, A.; Baruah, K.K.; Baruah, S.G.; Bhattacharyya, P. Impacts of Integrated Nutrient Management on Methane Emission, Global Warming Potential and Carbon Storage Capacity in Rice Grown in a Northeast India Soil. Environ. Sci. Pollut. Res. 2018, 25, 5889–5901. [Google Scholar] [CrossRef] [PubMed]
- Brempong, M.B.; Norton, U.; Norton, J.B. Compost and Soil Moisture Effects on Seasonal Carbon and Nitrogen Dynamics, Greenhouse Gas Fluxes and Global Warming Potential of Semi-Arid Soils. Int. J. Recycl. Org. Waste Agric. 2019, 8, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Bao, Q.-L.; Xiao, K.-Q.; Chen, Z.; Yao, H.-Y.; Zhu, Y.-G. Methane Production and Methanogenic Archaeal Communities in Two Types of Paddy Soil Amended with Different Amounts of Rice Straw. FEMS Microbiol. Ecol. 2014, 88, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Meng, L.; Yin, Y.; Cai, Z.; Zheng, X. CO2 Emission in an Intensively Cultivated Loam as Affected by Long-Term Application of Organic Manure and Nitrogen Fertilizer. Soil Biol. Biochem. 2007, 39, 669–679. [Google Scholar] [CrossRef]
- Mazza, G.; Agnelli, A.E.; Andrenelli, M.C.; Lagomarsino, A. Effects of Water Content and N Addition on Potential Greenhouse Gas Production from Two Differently Textured Soils under Laboratory Conditions. Arch. Agron. Soil Sci. 2018, 64, 654–667. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of Organic Amendment Application on Greenhouse Gas Emission from Soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. [Google Scholar] [CrossRef]
- Abebe, G.; Debebe, S. Factors Affecting Use of Organic Fertilizer among Smallholder Farmers in Sekela District of Amhara Region, Northwestern Ethiopia. Cogent Food Agric. 2019, 5, 1–11. [Google Scholar] [CrossRef]
Parameters | Biowaste Compost | Soil (5 cm Soil Depth) |
---|---|---|
Org. C (g kg−1) | 92.9 ± 0.8 | 24.0 ± 4.0 |
N (g kg−1) | 12.0 ± 0.7 | 2.2 ± 0.1 |
S (g kg−1) | 2.2 ± 0.08 | 0.5 ± 0.02 |
Ca (g kg−1) | 25.1 ± 1.5 | 2.3 ± 0.2 |
P * (mg kg−1) | 718.2 ± 7.5 | 2.1 ± 0.1 |
K * (g kg−1) | 1.9 ± 0.02 | 0.4 ± 0.1 |
Mg * (g kg−1) | 1.3 ± 0.04 | 0.2 ± 0.01 |
Cu (mg kg−1) | 39.8 ± 1.6 | 22.3 ± 1.2 |
Fe (mg kg−1) | 44.4 ± 0.2 | 66.6 ± 1.6 |
Zn (mg kg−1) | 188.9 ± 2.3 | 98.1 ± 3.2 |
Mn (mg kg−1) | 1.9 ± 0.05 | 0.4 ± 0.02 |
pH | 7.1 ± 1.0 | 4.9 ± 0.9 |
EC (µS cm−1) | 6.1 ± 0.5 | 0.3 ± 0.01 |
CEC (cmole kg−1) | 118.0 ± 4.8 | 42.7 ± 5.3 |
Moisture content (%) | 9.7 ± 1.1 | 8.2 ± 1.0 |
Texture | - | Silty clay loam |
Bulk density (g cm−3) | - | 1.2 ± 0.2 |
Treatment Name | Description of Treatments | |
---|---|---|
Urea and NPS | Biowaste Compost | |
control | 0 | 0 |
100 min | 100% inorganic fertilizer [urea (135 kg ha−1) and NPS (200 kg ha−1) fertilizers); 100 kg N ha−1 and 33.3 kg P ha−1] | 0 |
80 min | 80% inorganic fertilizer [urea (108 kg ha−1) and NPS (160 kg ha−1); 80 kg N ha−1 and 27.7 kg P ha−1] | (1.4 t ha−1 compost): 130.1 kg C ha−1, 16.8 kg N ha−1 and 1.01 kg P ha−1 |
60 min | 60% inorganic fertilizer [urea (81 kg ha−1) and NPS (120 kg ha−1); 60 kg N ha−1 and 22 kg P ha−1] | (2.8 t ha−1 compost): 260.1 kg C ha−1, 33.6 kg N ha−1 and 2.02 kg P ha−1 |
50 min | 50% inorganic fertilizer [urea (67.5 kg ha−1) and NPS (100 kg ha−1); 50 kg N ha−1 and 19.2 kg P ha−1] | (3.50 t ha−1 compost): 325.2 kg C ha−1, 42 kg N ha−1 and 2.5 kg P ha−1 |
30 min | 30% inorganic [urea (40.5 kg ha−1) and NPS (60 kg ha−1); 30 kg N ha−1 and 13.5 kg P ha−1] | (4.90 t ha−1 compost): 455.2 kg C ha−1, 58.8 kg N ha−1 and 3.53 kg P ha−1 |
100 comp | 0 | 100% Compost (7 t ha−1 compost): (650.3 kg C ha−1; 84 kg N ha−1 and 5.04 kg P ha−1) |
Treatments | 1st Year Yield (Mg ha−1) | 2nd Year Yield (Mg ha−1) | Average Yield (Mg ha−1) | 1st Year ANUE (kg grain kg−1 N) | 2nd Year ANUE (kg grain kg−1 N) | Average ANUE (kg grain kg−1 N) |
---|---|---|---|---|---|---|
Cont. | 8.5 ± 0.3 a | 7.5 ± 0.2 a | 8.0 ± 0.1 a | - | - | - |
100 min | 9.0 ± 0.1 ab | 7.6 ± 0.2 a | 8.3 ± 0.2 ab | 4.5 ± 1.2 a | 0.3 ± 3.8 a | 2.4 ± 0.8 a |
80 min | 9.0 ± 0.1 ab | 8.1 ± 0.3 ab | 8.6 ± 0.3 abc | 5.6 ± 0.8 a | 6.3 ± 4.0 ab | 5.6 ± 0.6 a |
60 min | 10.4 ± 0.7 c | 9.2 ± 0.7 c | 9.8 ± 0.1 d | 18.8 ± 2.6 c | 17.6 ± 1.9 bc | 18.2 ± 1.9 b |
50 min | 10.1 ± 0.2 bc | 8.6 ± 0.2 bc | 9.2 ± 0.3 bcd | 16.6 ± 1.8 bc | 11.2 ± 0.7 bc | 13.9 ±1.9 b |
30 min | 9.1 ± 0.2 ab | 9.2 ± 0.3 c | 9.3 ± 0.3 cd | 6.6 ± 1.6 a | 19.2 ± 2.2 c | 12.7 ± 1.0 b |
100 comp | 9.5 ± 0.4 b | 7.6 ± 0.2 a | 8.5 ± 0.3 abc | 11.0 ± 1.9 ab | −0.002 ± 0.5 a | 5.5 ± 0.5 a |
Treatment | N2O (g N2O-N ha−1) | CO2 (kg CO2-C ha−1) | CH4 (g CH4-C ha−1) | GWP (kg CO2 eq. ha−1) | N2O EF (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
WFPS | 40% | 75% | 40% | 75% | 40% | 75% | 40% | 75% | 40% | 75% |
Cont. | 4.5 ± 0.1 Aa | 5.7 ± 0.6 Aa | 3.4 ± 0.2 Aa | 5.9 ± 0.3 Ba | 10.0± 0.1 Aa | 9.6 ± 0.1 Aa | 4.9 ± 0.1 Aa | 7.8 ± 0.4 Ba | - | - |
100 min | 6.6 ± 0.3 Ab | 16.3 ± 2.2 Bb | 5.3± 0.02 Abc | 9.9 ± 0.3 Bc | 9.9 ± 0.04 Aa | 9.7± 0.1 Aa | 7.5 ± 0.5 Ac | 15.0 ± 0.9 Bd | 0.74 ± 0.08 Ab | 3.85 ± 0.62 Bc |
80 min | 6.7 ± 0.3 Ab | 9.1 ± 0.5 Aa | 5.2 ± 0.3 Abc | 8.2 ± 0.3 Bbc | 9.8 ± 0.1 Aa | 10.0 ± 0.3 Aa | 7.4 ± 0.4 Ac | 11.8 ± 0.4 Bbc | 0.80 ± 0.09 Ab | 1.56 ± 0.32 Bab |
60 min | 6.5 ± 0.3 Ab | 13.3± 1.6 Bab | 5.4 ± 0.3 Ac | 8.6 ± 0.3 Bc | 10.5 ± 0.2 Aa | 9.9 ± 0.1 Aa | 7.5 ± 0.4 Ac | 12.8 ± 0.4 Bcd | 0.75 ± 0.1 Ab | 2.97 ± 0.53 Bbc |
50 min | 5.9± 0. 3 Aab | 9.4 ± 0.3 Aa | 4.6 ± 0.2 Abc | 8.1 ± 0.5 Bbc | 10.1 ±0.2 Aa | 9.9 ± 0.2 Aa | 6.6 ± 0.3 Abc | 11.5 ± 0.6 Bbc | 0.50 ± 0.1 Aab | 1.47 ± 0.34 Bab |
30 min | 5.8 ± 0.3 Aab | 9.1 ± 0.2 Aa | 4.4 ± 0.2 Ab | 8.2 ± 0.1 Bbc | 10.2 ± 0.1 Aa | 9.6 ± 0.1 Aa | 6.3 ± 0.2 Abc | 11.2 ± 0.2 Bbc | 0.47 ± 0.09 Aab | 1.38 ± 0.23 Bab |
100comp | 5.1 ± 0.4 Aa | 6.4 ± 0.2 Aa | 3.9 ± 0.1 Aab | 7.1 ± 0.2 Bab | 10.5± 0.5 Aa | 9.7 ± 0.1 Aa | 5.6 ± 0.2 Aab | 9.2 ± 0.2 Bab | 0.24 ± 0.1 Aa | 0.28 ± 0.08 Aa |
C Input | N2O | CO2 | CH4 | N2O EF | |||||
WFPS | 40% | 75% | 40% | 75% | 40% | 75% | 40% | 75% | |
−0.77 ** | −0.52 * | −0.82 ** | −0.59 * | 0.36 | −0.31 | −0.76 ** | −0.51 |
Treatments | Day 1 (µg TPF g−1 DM 24 h−1) | Day 7 (µg TPF g−1 DM 24 h−1) | ||
---|---|---|---|---|
WFPS | 40% | 75% | 40% | 75% |
Cont. | 67.2 ± 3.7 Aa | 71.9 ± 3.8 Aa | 65.5 ± 4.9 Aa | 61.01 ± 2.2 Aa |
100 min | 85.3 ± 2.1 Ab | 82.9 ± 1.4 Ab | 90.2 ± 1.7 Bd | 64.5 ± 2.6 Aa |
80 min | 87.8 ± 2.6 Ab | 83.3 ± 2.1 Ab | 79.2 ± 4.9 Bb | 61.4 ± 4.4 Aa |
60 min | 86.6 ± 3.1 Ab | 94.9 ± 3.0 Ac | 81.0 ± 1.0 Ab | 79.3 ± 3.5 Ab |
50 min | 88.7 ± 2.5 Ab | 81.9 ± 0.9 Ab | 79.7 ± 3.8 Ab | 67.5 ± 4.0 Aa |
30 min | 89.0 ± 3.6 Ab | 88.1 ± 5.2 Ac | 86.7 ± 6.4 Acd | 62.0 ± 1.7 Aa |
100 comp | 82.8 ± 2.6 Ab | 80.9 ± 3.1 Ab | 84.8 ± 3.1 Abc | 81.3 ± 3.8 Ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerssa, G.W.; Kim, D.-G.; Koal, P.; Eichler-Löbermann, B. Combination of Compost and Mineral Fertilizers as an Option for Enhancing Maize (Zea mays L.) Yields and Mitigating Greenhouse Gas Emissions from a Nitisol in Ethiopia. Agronomy 2021, 11, 2097. https://doi.org/10.3390/agronomy11112097
Zerssa GW, Kim D-G, Koal P, Eichler-Löbermann B. Combination of Compost and Mineral Fertilizers as an Option for Enhancing Maize (Zea mays L.) Yields and Mitigating Greenhouse Gas Emissions from a Nitisol in Ethiopia. Agronomy. 2021; 11(11):2097. https://doi.org/10.3390/agronomy11112097
Chicago/Turabian StyleZerssa, Gebeyanesh Worku, Dong-Gill Kim, Philipp Koal, and Bettina Eichler-Löbermann. 2021. "Combination of Compost and Mineral Fertilizers as an Option for Enhancing Maize (Zea mays L.) Yields and Mitigating Greenhouse Gas Emissions from a Nitisol in Ethiopia" Agronomy 11, no. 11: 2097. https://doi.org/10.3390/agronomy11112097